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These exercises are taken from Pr. Tanja Lange lecture at
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The corresponding lecture materials are at
https://www.hyperelliptic.org/tanja/teaching/isogeny-school21/

and Lorenz Panny materials at
https://yx7.cc/docs/misc/isog_bristol_notes.pdf

Question 1. Let

E1/F17 : y2 = x3 + 1, E2/F17 : y2 = x3 − 10,

E3/F17 : y2 = x3 + 2x+ 5 .

p = 17

Fp = GF(p)

E1 = EllipticCurve(Fp, [0, 1])

E2 = EllipticCurve(Fp, [0, -10])

E3 = EllipticCurve(Fp, [2, 5])

(a) Check that

f : (x, y) 7→
(
x3 + 4

x2
, y
x3 − 8

x3

)
defines a map E1 → E2.

(b) Determine the kernel of f .
(c) What is the degree of f?
(d) Calculate the points in the preimage of (3, 0) under f .
(e) Compute the number of points on E1(F17), E2(F17), E3(F17).
(f) Compute j(E1), j(E2), j(E3).
(g) Show that E1 and E2 are not isomorphic over F17 but that they are isomorphic over F172 .
(h) Check that

g : (x, y) 7→
(
x2 + x+ 3

x+ 1
, y
x2 + 2x+ 15

(x+ 1)2

)
defines a map E1 → E3.

(i) Determine the kernel of g.
(j) What is the degree of g?

Solution 1.

(a) We only need to check that f(x, y) = (fx(x), fy(x)) ∈ E2, that is it satisfies the curve equa-
tion. The shortest SageMath code: define the Function Field of the curve E1. https:

//en.wikipedia.org/wiki/Algebraic_function_field#Example

def f(x0, y0):

return ((x0^3+4)/x0^2, y0*(x0^3-8)/x0^3)

p = 17

Fp = GF(p)

# Definition of the function field of E1

K0.<x>= FunctionField(Fp) # to allow inversion of the variable x

K0Y.<Y> = K0[] # polynomial ring in Y

K.<y> = K0.extension(Y**2 - x**3 - 1) # E1 equation
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(fx, fy) = f(x,y)

check_f = fy^2 == fx^3 - 10

print("Check that Y^2 == X^3-10, where (X, Y) = f(x,y), (x,y) in E1: {}".format(check_f))

See the SageMath code for more details and alternatives.
(b) The x-values such that the denominator of fx or fy vanishes are the x-coordinates of points in

the kernel of f . We solve{
x = 0 mod 17 (denominator vanishes)
y2 − (x3 + 1) = 0 mod 17 (E1)

⇐⇒
{
x = 0
y2 = 1

⇐⇒ (x, y) ∈ {(0, 1), (0,−1)}

and moreover there is O. Finally ker f = {O, (0, 1), (0,−1)}. See the SageMath code for an
alternative.

(c) The degree of a homomorphism (x, y) 7→ (φx(x), yφy(x)) is the highest degree of the polynomials
at the numerator and denominator of φx, provided that the fraction is reduced, that is the GCD
of the numerator and denominator is 1. (Washington’s book page 51 for endomorphisms, p. 387
for homomorphisms).

First, checking that the two rational functions fx and fy are reduced. fx = x3+4
x2 , and gcd(x3 +

4, x2) = 1 in F17[x]. fy = y x3−8
x3 and gcd(x3 − 8, x3) = 1 in F17[x].

deg f = max(numerator(fx),denominator(fx)) = max(3, 2) = 3 .

It turns out that f is an isogeny of degree 3, also noted a 3-isogeny, and its kernel is a subgroup
of order 3, made of points of 3-torsion (whose order divides 3).

(d) See the SageMath code for an alternative solution.

f(x, y) = (3, 0) ⇐⇒ x 6= 0 and

{
(x3 + 4)/x2 = 3 mod 17
y(x3 − 8)/x3 = 0 mod 17

One can start solving y(x3 − 8) = 0 mod 17 ⇐⇒ y = 0 or x3 = 8 mod 17 ⇐⇒ x = 2. There is
no other root: ζ32 /∈ F17 because 17 ≡ 2 mod 3, in the case p = 2 mod 3 there is no primitive cube
root of unity modulo p. Now (E1) : y2 = x3 + 1 gives the other coordinate for y = 0 and x = 2:
{(−1, 0), (2,±3)}. We just check that fx(2) = 3 and fx(−1) = 3. Because the homomorphism f
has kernel of order 3, the preimage of a point is made of three points. Finally,

f−1(3, 0) = {(−1, 0), (2, 3), (2,−3)} .
(e) There are different options for that, the quickest is

E1.order()

E2.order()

E3.order()

whose answer is 18 = p+ 1 in the three cases.
(f) Quickest way is with Sagemath and

E1.j_invariant()

E2.j_invariant()

E3.j_invariant()

Alternatively, j(E) = 1728(4a3)/(4a3 + 27b2) for a curve in short Weierstrass form. answers
j(E1) = 0, j(E2) = 0, and j(E3) = 8. We observe that j(E1) = j(E2), that is E1 and E2 are
isomorphic over some extension of F17.

(g) An isomorphism of curves in short Weierstrass form has the form (Washington’s book page 46)

E : y2 = x3 + ax+ b → E′ : y2 = x3 + au4x+ bu6

(x, y) 7→ (xu2, yu3)

We look for u ∈ F17 such that b1u
6 = b2 ⇐⇒ u6 = −10 mod 17. Note that 33 = 27 = 10 mod 17,

that is (−3)3 = −10 = u6, then u2 = −3. But −10 is not a square modulo 17 (check that
(−10)(p−1)/2 = (−10)8 mod 17 = −1 6= 1), and u /∈ F17. A quadratic extension is required,
such as F172 = F17(

√
−3), so that u =

√
−3 ∈ F172 , and u6 = (−3)3 = −10 = b2 mod 17. We

conclude that because the equation u6 = −10 mod 17 has no solution modulo p, but has a
solution u =

√
−3 in F172 , the curves E1 and E2 are isomorphic over F172 but not over Fp. The

isomorphism is
(x, y) 7→ (−3x,−3

√
−3y) .

See the SageMath code for an alternative.
(h) Same procedure as for (a).

2



def g(x0, y0):

return ((x0^2+x0+3)/(x0+1), y0*(x0^2+2*x0+15)/(x0+1)^2)

p = 17

Fp = GF(p)

# Definition of the function field of E1

K0.<x>= FunctionField(Fp) # to allow inversion of the variable x

K0Y.<Y> = K0[] # polynomial ring in Y

K.<y> = K0.extension(Y**2 - x**3 - 1) # E1 equation

(gx, gy) = g(x,y)

check_g = gy^2 == gx^3 +2*gx + 5

print("Check that Y^2 == X^3+2*X+5, where (X, Y) = g(x,y), (x,y) in E1: {}".format(check_g))

(i) Same procedure as for (b). The x-values such that the denominator of gx or gy vanishes are the
x-coordinates of points in the kernel of g. We solve{

x+ 1 = 0 mod 17 (denominator vanishes)
y2 − (x3 + 1) = 0 mod 17 (E1)

⇐⇒
{
x = −1
y2 = 0

⇐⇒ (x, y) ∈ {(−1, 0)}

and moreover there is O. Finally ker g = {O, (−1, 0)}. See the SageMath code for an alternative.
(j) Same procedure as for (c). The degree of a homomorphism φ : (x, y) 7→ (φx(x), yφy(x)) is the

highest degree of the polynomials at the numerator and denominator, provided that the fraction
is reduced, that is the GCD of the numerator and denominator is 1. (Washington’s book page 51
for endomorphisms, p. 387 for homomorphisms).

First, checking that the two rational functions gx and gy are reduced. gx = x2+x+3
(x+1)2 , and

gcd(x2 + x+ 1, x+ 1) = 1 in F17[x]. gy = y x2+2x+15
(x+1)3 and gcd(x2 + 2x+ 15, x+ 1) = 1 in F17[x].

deg g = max(numerator(gx),denominator(gx)) = max(2, 1) = 2 .

It turns out that g is an isogeny of degree 2, also noted a 2-isogeny, and its kernel is a subgroup
of order 2, made of points of 2-torsion (whose order divides 2).

Question 2. Let ` be a prime. Show that there are `+ 1 size-` subgroups of Z/`Z× Z/`Z.

Solution 2. Let’s consider the possible subgroups and their generator. The `-torsion has a structure of
two-dimensional vector space with a basis {P,Q} for two points P,Q of order ` generating two distinct
subgroups 〈P 〉, 〈Q〉. It means that any point of order ` can be written as iP + jQ for i, j ∈ {0, . . . , `− 1}.
If (i, j) = (a · i0, a · j0) for some non-zero a ∈ Z/`Z, then the point iP + jQ is in the same subgroup as the
point i0P + j0Q. Counting the distinct subgroups boilds down to counting the distinct pairs (i, j) that are
linearly independant of each others. One can fix i = 1, then P + jQ is a generator of the subgroup made
of all the points of the form aP + ajQ for 0 ≤ a ≤ `− 1 (including O). The parameter j takes values in
{1, . . . , `− 1}. For example the two subgroups made of {O, P + bQ, 2(P + bQ), . . . , (`− 1)(P + bQ)} of `
points (b 6= 0) and {O, P + cQ, 2(P + cQ), . . . , (`− 1)(P + cQ)} of ` points (c 6= 0) are distinct subgroups
of intersection {O} whenever c 6= b mod `. There are ` − 1 such distinct subgroups made of distinct
points. For j = 0, the subgroup is 〈P 〉, that makes ` choices. Finally (i, j) = (0, 1) for 〈Q〉 completes the
set of `+ 1 distinct subgroups.

In total there are `+ 1 subgroups of order `. We counted the point at infinity O `+ 1 times in total
(one for each subgroup). Deducing the redundant counts of O, that makes `(`+ 1)− ` = `2 distinct points.

Another solution proposed by a student: let’s enumerate the distinct non-zero ratio values i/j: there
are `− 1 such distinct ratios, hence `− 1 distinct subgroups. Then adding 〈P 〉 (b = 0, ratio being infinity)
and 〈Q〉 (a = 0, ratio being 0) that makes `+ 1 subgroups. In other terms, it is the same as computing
the number of points on the projective line P(Z/`Z): {(0 : 1), (1 : 1), (2 : 1), . . . , (`− 1 : 1), (1, 0)} of `+ 1
points.

Question 3. Let p = 419 = 4 · 3 · 5 · 7− 1 and let E0 : y2 = x3 + x.

(a) Find a point P of order 105 (= (p+ 1)/4) on E0. Compute R = 35P , a point of order 3.
(b) Vélu’s formulas have a Montgomery form as follows. Let ` be a prime, P a point of order ` so

that 〈P 〉 is a subgroup of order `, and let xi denotes the x-coordinate of the point [i]P in the
subgroup generated by P . Define

τ` =

`−1∏
i=1

xi, σ` =

`−1∑
i=1

xi −
1

xi
, f`(x) = x

`−1∏
i=1

xxi − 1

x− xi
.
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The `-isogeny with kernel 〈P 〉 is given by

φ` : EM : By2 = x3 +Ax2 + x → EM
` : B`y

2 = x3 +A`x
2 + x

(x, y) 7→ (f`(x), c0yf
′
`(x))

where A` = τ`(A− 3σ`) and c20 = τ`.
Compute τ3, σ3 and f3(x) for 〈R〉. Compute the curve coefficient A3 of the curve isogenous to
E0 under the 3-isogeny induced by R. What is the j-invariant of this isogenous curve? Check
that the A-coefficient of the isogenous curve (that is, A3) matches the subscript in Figure 3 in
the lecture notes of Pr. Tanja Lange at https://www.hyperelliptic.org/tanja/teaching/

isogeny-school21/csidh-sidh-week-3.pdf (look for a blue edge from E0).
(c) Compute the image P ′ = ϕ3(P ) under the 3-isogeny and verify that the resulting point P ′ has

order 35. Why does this happen?
(d) Compute 7P ′ and use it to compute the 5-isogeny, getting the curve parameter and the image

P ′′ = ϕ5(P ′). Check that P ′ has order 7 and that the curve coefficient matches the same Figure 3.
(e) Finally do the same for the 7-isogeny coming from P ′′.

Solution 3. See the SageMath code.

(a) Make sure to check that P has exactly order 105 by checking that any proper divisor of 105 does
not map P to O: 105P = O but 15P 6= O, 21P 6= O, and 35P 6= O. R = 35P should be one of
(178, 52), (178, 367).

(b) τ3 = 259, σ3 = 243, f3(x) = (259x3 + 63x2 + x)/(x2 + 63x+ 259). A3 = 158, j3 = 356.
(c) Note that ϕ3 commutes with multiplication by 35: [35]ϕ3(P ) = ϕ3([35]P ) = ϕ3(R) = O because

by definition of ϕ3, kerϕ3 = 〈R〉. But 5ϕ3(P ) = ϕ3(5P ) 6= 0 and 7ϕ3(P ) = ϕ3(7P ) 6= 0 because
5P, 7P /∈ kerϕ3. Hence ϕ3(P ) has order exactly 35.

(d) τ5 = 48, σ5 = 242, A5 = 390, f5 = (48x5 + 369x4 + 149x3 + 368x2 + x)/(x4 + 368x3 + 149x2 +
369x+ 48), j5 = 0.

(e) τ7 = 79, σ7 = 305, A7 = 6, f7 = (79x7 + 254x6 + 311x5 + 265x4 + 303x3 + 96x2 + x)/(x6 + 96x5 +
303x4 + 265x3 + 311x2 + 254x+ 79), j7 = 62.

Question 4. Let p be a prime with p = 3 mod 4. Show that E : y2 = x3 + x has p+ 1 points.

Solution 4. This exercise is taken from Wouter Castryck’s lectures at the online isogeny summer school
in 2021. Here is a solution.

Define the three sets

S1 =
{
x ∈ Fp|x3 + x is a non-zero square

}
S2 =

{
x ∈ Fp|x3 + x = 0

}
S3 =

{
x ∈ Fp|x3 + x is not a square

}
First note that the three sets define a partition of Fp, and

(1) #S1 + #S2 + #S3 = #Fp = p .

For each x ∈ S1, there are two points (x,±y) on E, where y =
√
x3 + x. For each x ∈ S2, there is

one point (x, 0) on E. For each x ∈ S3, there is no corresponding point on E. Hence the order of E is
#E(Fp) = 2#S1 + #S2 + 1, the +1 accounting for O.

The sets S1 and S3 are in bijection with the map x 7→ −x because −1 is not a square in Fp, for

p = 3 mod 4. Indeed, (−1)(p−1)/2 = −1 because (p − 1)/2 is odd. Thus #S1 = #S3. From (1),
2#S1 + #S2 = p. Finally #E(Fp) = 2#S1 + #S2 + 1 = p+ 1.
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