
Elliptic curves, number theory and cryptography
5. handin – Isogenies, Pairings

Aurore Guillevic and Diego F. Aranha

Aarhus University

April 21, 2022
Due date: May 6, 4pm GMT+2 (16:00 Aarhus time)

The corresponding lecture materials are at
https://www.hyperelliptic.org/tanja/teaching/isogeny-school21/

and Lorenz Panny materials at
https://yx7.cc/docs/misc/isog_bristol_notes.pdf

Question 1 is the follow-up of Question 5 in hand-in 4.

Question 1 (SIKE on a toy-example). Let p = 431 and note that p + 1 = 432 = 24 · 33. The curve
E0 : y2 = x3 + x is a supersingular curve over Fp and has p+ 1 points. Consider the curve over Fp2 where
it has (p+ 1)2 points.

p = 431

Fp = GF(p)

A = Fp(0)

E0 = EllipticCurve(Fp, [1, 0])

E0.is_supersingular()

Fpz.<z> = Fp[]

Fp2.<i> = Fp.extension(z^2+1)

E0p2 = E0.base_extend(Fp2)

r2 = 2^4

r3 = 3^3

assert r2 * r3 == p+1

(a) Find a basis of the 24-torsion and a basis of the 33-torsion subgroups, i.e., find points P ∈ E(Fp)
and Q ∈ E(Fp2) of order 24 such that 〈P 〉 ∩ 〈Q〉 = O and points R ∈ E(Fp) and S ∈ E(Fp2) of
order 33 such that 〈R〉 ∩ 〈S〉 = O.
Hint: You can check this as [8]P 6= [8]Q and [9]R 6= ±[9]S.
Hint: For the 33 torsion points, you can also use how the negative direction is defined for CSIDH
to find the independent points.

(b) Alice and Bob.
Compute a generator Pa ∈ E(Fp2) for the kernel of Alice’s isogeny, where Pa = P + [a]Q and a is
a random integer in {1, . . . , 24 − 1}.
Compute a generator Pb ∈ E(Fp2) for the kernel of Bob’s isogeny, where Pb = R+ [b]S and b is a
random integer in {1, . . . , 33 − 1}.
Check that Pa has order 24 and Pb has order 33 (without using .order()). If not, it means you
have a problem with your basis, go back to Question (a).

(c) Isogenies of Alice and Bob.
With the function phiA = E0p2.isogeny(Pa), compute Alice’s isogeny φa and the isogenous
curve Ea with phiA.codomain().
Do the same for Bob with Bob’s generator: compute Bob’s isogeny φb and the isogenous curve
Eb.

(d) Compute the image of P and Q under φb, then compute Alice’s φb(Pa) = φb(P) + [a]φb(Q) in Eb.
Compute the image of R and S under φa, then compute Bob’s φa(Pb) = φa(R) + [b]φa(S) in Ea.

(e) Compute the second part of the commutative diagram:
• compute an isogeny of kernel φb(Pa) from Eb, and the image curve Eba.
• compute an isogeny of kernel φa(Pb) from Ea, and the image curve Eab.

Check that the j-invariants of Eab and Eba are equal.
1

https://www.hyperelliptic.org/tanja/teaching/isogeny-school21/
https://yx7.cc/docs/misc/isog_bristol_notes.pdf

Solution 1. See the SageMath code.
In (a) it is important to cast P in E(Fp2) (the quadratic extension), with

E0p2(8*P2) != 8*Q2

E0p2(9*P3) != 9*Q3

In (d), it is important to note that Alice cannot compute Bob’s kernel directly with the formula
φa(Pb) because Pb is a secret value known of Bob only. On Bob’s side, he cannot compute Alice’s kernel
generator φb(Pa) because Bob doesn’t know Pa. That’s why the more compicated formulas of (d) are
required: Alice knows a, and Bob provides her with φb(P), φb(Q) (because Alice does not know φb so
she needs to receive the result from Bob). Then she can compute φb(P) + [a]φb(Q) which is equal to
φb(P + [a]Q) = φb(Pa) thanks to the homomorphism property of φb. Alice gives φa(P), φa(Q) to Bob so
that he can compute φa(P) + [b]φa(Q) = φa(P + [b]Q) = φa(Pb) on his side.

Question 2. The function cocks_pinch(l, n, D) is provided.
Use the Cocks-Pinch method to obtain a pairing-friendly curve of embedding degree n = 6 and D = −3

from a prime number ` of 256 bits.
Use the Cocks-Pinch method to obtain a pairing-friendly curve of embedding degree n = 8 and D = −4

from a prime number ` of 256 bits.
In both cases choose ` then run the method. Give `, p, the curve trace t and the curve equation such

that E has a subgroup of prime order ` and embedding degree n.
Hint: random_prime(2**256) returns a random-looking prime of 256 bits.

Solution 2. The SageMath code contains two solutions,

(1) With random_prime(2**256),
(2) With a way to reproduce the random-lookingness of the prime, starting from the decimals of

pi. A prime ` ≡ 1 mod 6 and such that −3 is a square modulo ` from the decimals of pi is
`1 =31415926535897932384626433832795028841971693993751058209749445923078164062963.

A prime ` ≡ 1 mod 8 and such that −1 is a square modulo ` from the decimals of pi is `2 =
31415926535897932384626433832795028841971693993751058209749445923078164063969.

The parameters a, b of the respective elliptic curves are also required. In these two cases it is easy: the
first curve has j-invariant 0 because D = −3, hence the curve equation is of the form y2 = x3 + b. The
second curve has j-invariant 1728 because D = −4, and the curve equation is of the form y2 = x3 + ax.

Observation: The questions below refer to the slides in Week 10 and SAGE code from Week 11.

Question 3. Using the file tate_pairing_supersingular_curve.py from Brightspace, implement
Joux’s tripartite key agreement in SAGE. The file defines pairing groups for a Type-1 setting using a
supersingular curve and a distortion map.

Solution 3. It’s about playing the role of Alice, Bob and Charlie. All three sample a random element
from Z/`Z where ` is the prime order of the groups G1,G2,GT , not the prime field characteristic p. Let
us denote the random elements a, b, and c respectively. Then Alice computes Pa = [a]P , Bob Pb = [b]P
and Charlie Pc = [c]P and exchange these values. From Pb and Pc, Alice computes e(Pb, Pc)

a (in theory)
but from an implementation perspective, we need to map Pc to G2 first. For that we use the distorsion
map ψ : (x, y) 7→ (ωx, y) provided in the SageMath code. Then Alice can compute e(Pb, ψ(Pc))

a. Some
students chose to compute e([a]Pb, ψ(Pc)) and this is correct too, if the choice of G1,G2,GT is so that the
scalar multiplication [a]Pb in G1 is faster than the exponentiation ea in GT , it is appropriate to choose
the second formula. Similarly, Bob computes e(Pa, ψ(Pc))

b and Charlie computes e(Pa, ψ(Pb))
c. Finally

we check that the three values are equal in Fp2 .

Question 4. Convert the AKE protocol due to Sakai et al. that we studied in class to the Type-3 setting.
Implement it in SAGE using the groups defined in the file ate_pairing.py from Brightspace. Hint: For
hashing to the pairing groups, in this question you can hash to a scalar and multiply the scalar by a
generator of the group. The next question will suggest something slightly more sophisticated.

The initial AKE protocol is the following.
Non-interactive identity-based AKE [Sakai et al, 2000]
Initialization: Central authority (PKG) generates master secret key s ∈ (Z/`Z)∗.
Key generation: User with identity IDi computes Pi = h(IDi). PKG generates private key Si = [s]Pi.
Key derivation: Users A and B compute shared key e(SA, PB) = e(SB , PA).

2

Solution 4. With a hash function H : {0, 1}∗ → Z/`Z where ` is the order of G1, G2, and GT , P a
generator of G1, Q of G2, we obtain
Initialization: Central authority (PKG) generates master secret key s ∈ Z/`Z∗

Key generation: User with identity IDi computes pi = h(IDi) then Pi = [pi]P and Qi = [pi]Q
PKG generates private key Si = [s]Pi

Key derivation: Users A and B compute shared key e(SA, QB) = e(SB , QA)

A possible attack (thanks to Mathias): What if a user j computes h(IDj), then invert the value modulo
`, and get [h(IDj)

−1 mod `]Pj = [s]P ? Then the user j can compute the secret key of another user i with
[h(IDi)][1/h(IDj) mod `]Pj = Pi.
A solution: asymetric protocol wih asymetric pairing (thanks to Marius).
Initialization: Central authority (PKG) generates master key s ∈ Z/`Z∗

Key generation: User A with identity IDA computes PA = H1(IDi) with a hash function H1 from {0, 1}∗
into G1. User B with identity IDB computes QB = H2(IDB) with a hash function H2 from {0, 1}∗ into
G2.
PKG generates private keys SA = [s]PA and SB = [s]QB

Key derivation: Users A and B compute shared key e(SA, QB) = e(PA, SB)

Question 5. Convert the BLS short signature scheme that we studied in class to the Type-3 setting and
implement it using file ate_pairing.py from Brightspace. What are the possible trade-offs in terms of
public key and signature size? For simplicity, assume that signed messages are integers in the base field
so you can encode them as points by encoding into the x-coordinate and incrementing it until a suitable
y satisfying the elliptic curve is found. Some helpful code can be found below:

import hashlib

def encode_msg(M, E, A, B, cofactor):

x = Fp(Integer(hashlib.sha256(M).hexdigest(), 16))

rhs = x**3 + A*x + B

while not(rhs.is_square()):

x += 1

rhs = x**3 + A*x + B

y = sqrt(rhs)

return cofactor * E(x, y)

Solution 5. See SageMath code.

3

