Elliptic curves, number theory and cryptography Week 1, Lecture 1

Aurore Guillevic

Aarhus University

Spring semester, 2022

These slides at

https://members.loria.fr/AGuillevic/files/Enseignements/AU/lectures/lecture01.pdf

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Course materials

- Page in the catalog: https://www.kursuskatalog.au.dk/en/course/ 112277/Elliptic-Curves-Number-Theory-and-Cryptography
- Brightspace: https://brightspace.au.dk/d21/home/55068
- Calendar: https://timetable.au.dk/schedule
 - Add timetable \rightarrow Module \rightarrow search for Elliptiske kurver
 - Full name is Elliptiske kurver talteori og kryptografi F22 Aarhus 550122U015
 - Starts Week 5 (January 31)

Book: **Elliptic curves, number theory and cryptography**, Lawrence C. Washington SageMath library: a mathematical software suite based on Python, open-source. Additional references:

- Steven Galbraith's book *Mathematics of public key cryptography* is freely available at https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
- Joseph H. Silverman, John Tate, *Rational points on elliptic curves* https://link.springer.com/book/10.1007/978-3-319-18588-0 also available in PDF at https://www.kb.dk/en

SageMath installation

Download at https://www.sagemath.org/download.html There is a *mirror* at https://mirror.dogado.de/sage/index.html

Windows:

Download SageMath-9.3-Installer-v0.6.3.exe (820.72MB) from either the mirror https://mirror.dogado.de/sage/win/index.html or the main server https://github.com/sagemath/sage-windows/releases

MacOS:

What does About this Mac says?

- Intel: Download sage-9.4-OSX_11.2.3-x86_64.tar.bz2 from https://mirror.dogado.de/sage/osx/intel/index.html
- PowerPC: Download one of the files from

https://mirror.dogado.de/sage/osx/powerpc/index.html Linux:

Choose the file according to your architecture and Linux distribution and version at https://mirror.dogado.de/sage/linux/index.html

Course Schedule

Lectures on Tuesdays 08:00 - 10:00, building 1532 room 314 Tutorials on Thursdays, 15:00 - 17:00, building 1532 room 314 Guidance (office hours) on Tuesdays, 13:00 - 14:00 at the CS building (Nygaard 1553) 3rd floor, room 395 (or 387)

From Week 5 (January 31) to Week 14 (April 7) Break on week 15 (April 11 & April 14) Then from Week 16 (April 18) to Week 20 (May 19)

By-weekly handins are mandatory to take the final exam

Oral exam in June

The instructors

Aurore and Diego are cryptographers at the department of Computer Science

Diego F. Aranha, associate professor dfaranha@cs.au.dk

Aurore Guillevic, visiting researcher from France aurore.guillevic@inria.fr

Survey

- who is from Maths?
- who is from Computer Science?
- who took Ivan Damgård's course on Cryptography?
- who has a laptop? Windows? Mac? Linux?
- who already succeeded in installing SageMath?

Content of this course

- Elliptic curves over a field K, from group law to pairings
- Elliptic curves over finite fields: Frobenius, point counting, supersingular curves
- Elliptic curves in cryptography
- Other number-theoretic hard problems in crypto: integer factorization, discrete logarithm computation
- pairings on elliptic curves for crypto
- Guest lecture: elliptic curves over binary fields
- Elliptic curves over \mathbb{Q}
- Guest lecture: pairing-based cryptography
- hot topic in cryptography: isogenies, post-quantum crypto

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Elliptic curves in cryptography

- 1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method (ECM) for integer factoring
- 1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for Diffie–Hellman key exchange
- 1985, Certicom: company owning patents on ECC
- 2000 Elliptic curves in IEEE P1363 standard
- 2000 Bilinear pairings over elliptic curves
- NSA cipher suite B, elliptic curves for public-key crypto
- 2014: Quasi-polynomial-time algorithm for discrete log computation in GF(2ⁿ), GF(3^m) No more pairings on elliptic curves over these fields
- 2015: Tower Number Field Sieve in GF(*pⁿ*) Pairing-friendly curves should have larger key sizes
- 2016: NIST Post-Quantum competition lsogenies on elliptic curves

Widely deployed elliptic curves in cryptosystems

- elliptic curve over the prime field $2^{255} 19$ of order 8r where r is prime
 - Curve25519 in Montgomery form $E: y^2 = x^3 + 48662x^2 + x$
 - Ed25519 in twisted Edwards form $E: -x^2 + y^2 = 1 \frac{121665}{121666}x^2y^2$
- NIST P-xxx curves
- . . .

Usage:

- Digital signatures (ECDSA): Play Station, EU Covid Certificate...
- Diffie-Hellman key exchange: open-ssl, TLS...
- Encryption: PGP, ...

Why elliptic curves?

Diophantine equations

From Diophantus of Alexandria, mathematician Finding integer or rational solutions to polynomial equations

Bachet equation $y^2 - x^3 = c$

given an integer c, find a cube x^3 and a square y^2 whose difference is cClaude-Gaspard Bachet de Méziriac (1581–1638) Translated Diophantus' *Arithmetica* from Greek to latin.

Fermat's conjecture, a.k.a. Fermat's Last Theorem

Pierre de Fermat (1601–1665) For $n \ge 3$, the equation $X^n + Y^n = Z^n$ has no solutions in non-zero integers X, Y, Z. Actually not proven by Fermat

https://www.wikitimbres.fr/

Bachet's equation $y^2 - x^3 = c$

Bachet discovered in 1621 this

duplication formula

If (x, y) is a rational solution, then

$$\left(\frac{x^4 - 8cx}{4y^2}, \frac{-x^6 - 20cx^3 + 8c^2}{8y^3}\right)$$

is another solution in rational numbers.

If $xy \neq 0$ and $c \neq 1, -432$, it gives infinitely many distinct solutions. $y^2 - x^3 = -2$ Start from $5^2 - 3^3 = 25 - 27 = -2$. One obtains $(3,5), \left(\frac{129}{100}, \frac{383}{1000}\right), \left(\frac{2340922881}{58675600}, \frac{113259286337279}{449455096000}\right)$

In the 1st tutorial we will program in Python this replication formula.

Example in Washington's book

Volume and surface

Rearrange a pyramid of height x layers of fruits into a flat square: solve $y^2 = x(x+1)(2x+1)/6$ with integer solutions

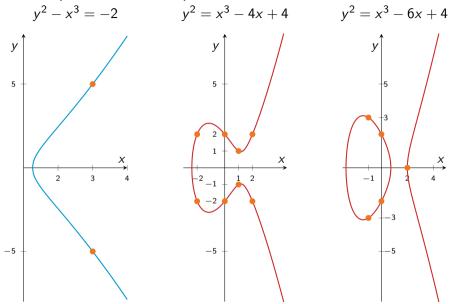
Conic sections

Ellipses are conic sections defined by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

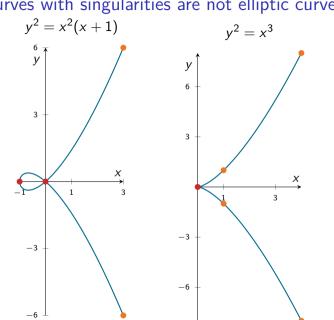
Ellipses are not elliptic curves.

This ellipse has **area** πab . What is the **circumference**? \rightarrow complicated formula with *elliptic integral*.

Bachet's equation is an elliptic curve



16/66



Curves with singularities are not elliptic curves

The curve is smooth

Let E: f(x, y) = 0 over a field K. There is no singular point (x_0, y_0) such that

$$\begin{cases} f(x_0, y_0) = 0\\\\ \frac{\partial f}{\partial x}(x_0, y_0) = 0\\\\ \frac{\partial f}{\partial y}(x_0, y_0) = 0 \end{cases}$$

where $\partial f / \partial x$, $\partial f / \partial y$ are the partial derivatives.

Definitions

Elliptic Curve

An **Elliptic Curve** over a field K is a smooth curve of *genus* 1 with a K-rational point.

Genus 1

A curve given by an equation

$$y^2 = f(x)$$
, where deg $f \in \{3, 4\}$

has genus 1.

Structure of Group

Given two points P(x, y), Q(x', y'), one can *add* two points P + Q and double a point P + P (algebraic point of view) and the group law has a geometric meaning.

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Weierstrass model

 An elliptic curve over a field K of characteristic ≠ 2,3 is given by an equation of the form

$$E: y^2 = x^3 + ax + b$$
, with $a, b \in K$

and $\Delta = -16(4a^3 + 27b^2) \neq 0$ so that *E* is smooth (the cubic $x^3 + ax + b$ has simple roots)

• The set of K-rational points of an elliptic curve is

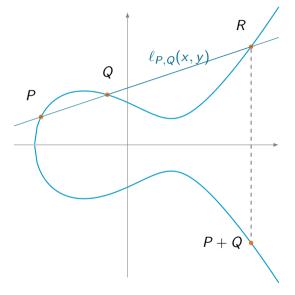
$$E(\mathcal{K}) = \left\{ (x, y) \in \mathcal{K} imes \mathcal{K}; \ y^2 = x^3 + ax + b
ight\} \cup \{\mathcal{O}\}$$

• In the general case, one considers the long Weierstrass form

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where $a_1, a_2, a_3, a_4, a_6 \in K$.

Chord and tangent rule



 $P(x_1, y_1), Q(x_2, y_2), x_1 \neq x_2$ slope $\lambda = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ line L through P and Q has equation L: $\mathbf{v} = \lambda(\mathbf{x} - \mathbf{x}_1) + \mathbf{v}_1$ \rightarrow check that $(x_1, y_1) \in L$, $(x_2, y_2) \in L$ compute $\boldsymbol{L} \cap \boldsymbol{E}$ $(x, y) \in L$ and $\in E \Rightarrow$ $\begin{cases} L: y = \lambda(x - x_1) + y_1 \\ E: y^2 = x^3 + ax + b \end{cases} \Rightarrow$ $(\lambda(x-x_1)+y_1)^2 = x^3 + ax + b$ Solve with SageMath to avoid mistakes # define a polynomial ring for the variables QQx.<a,b,l,x_1,y_1,x_2,y_2> = QQ[] QQE.<X,Y> = QQx[] L = Y - (l*(X-x_1) + y_1); Lx = Y - L E = Y^2 - X^3 - a*X - b Eq = E(Y=Lx); Eq # evaluate E at Y = Lx

define a polynomial ring for the variables

$$QQx. < a, b, 1, x_1, y_1, x_2, y_2 > = QQ[]$$

 $QQE. < X, Y > = QQx[]$
 $L = Y - (1*(X-x_1) + y_1); Lx = Y - L$
 $E = Y^2 - X^3 - a*X - b$
 $Eq = E(Y=Lx); Eq$ # evaluate E at Y = Lx
 $-X^3 + \lambda^2 X^2 + (-2x_1\lambda^2 + 2y_1\lambda - a)X + x_1^2\lambda^2 - 2x_1y_1\lambda + y_1^2 - b$
We know that x_1, x_2 are solutions to Eq

define a polynomial ring for the variables
QQx. = QQ[]
QQE. = QQx[]
L = Y - (1*(X-x_1) + y_1); Lx = Y - L
E = Y^2 - X^3 - a*X - b
Eq = E(Y=Lx); Eq # evaluate E at Y = Lx
$$-X^3 + \lambda^2 X^2 + (-2x_1\lambda^2 + 2y_1\lambda - a)X + x_1^2\lambda^2 - 2x_1y_1\lambda + y_1^2 - b$$

We know that x_1, x_2 are solutions to Eq
Eq % (X-x_1) gives $y_1^2 - x_1^3 - ax_1 - b$ this is $E(x_1, y_1)$
(Eq % (X-x_1)) % $E(x_1, y_2) = 0$
Eq2 = Eq // (X-x_1)
Eq3 = Eq2 % (X-x_2); Eq3
 $-\lambda^2 x_1 + \lambda^2 x_2 + 2\lambda y_1 - x_1^2 - x_1 x_2 - x_2^2 - a$

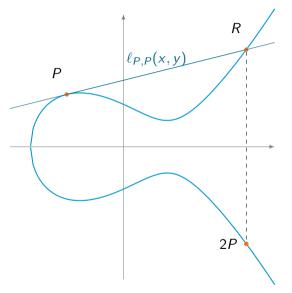
define a polynomial ring for the variables QQx. < a, b, l, x 1, y 1, x 2, y 2 > = QQ[] $QOE. \langle X, Y \rangle = QOx[]$ L = Y - (1*(X-x 1) + v 1); Lx = Y - L $E = Y^2 - X^3 - a X - b$ Eq = E(Y=Lx); Eq # evaluate E at Y = Lx $-X^{3} + \lambda^{2}X^{2} + (-2x_{1}\lambda^{2} + 2v_{1}\lambda - a)X + x_{1}^{2}\lambda^{2} - 2x_{1}v_{1}\lambda + v_{1}^{2} - b$ We know that x_1, x_2 are solutions to Eq. Eq % (X-x 1) gives $v_1^2 - x_1^3 - ax_1 - b$ this is $E(x_1, v_1)$ (Eq % (X-x 1)) % E(x 1, y 1) == 0Eq2 = Eq // (X-x 1)Ea3 = Ea2 % (X-x 2); Ea3 $-\lambda^2 x_1 + \lambda^2 x_2 + 2\lambda v_1 - x_1^2 - x_1 x_2 - x_2^2 - a$ Substitute $\lambda = (y_2 - y_1)/(x_2 - x_1)$ N=QQx(Eq3)(1=(y 2-y 1)/(x 2-x 1)).numerator(); N $x_1^3 + ax_1 - y_1^2 - x_2^3 - ax_2 + y_2^2$ (N % (E(x 1, y 1))) % E(x 2, y 2) == 0

Chord and tangent rule

Eq4 = Eq2 //
$$(X-x_2)$$
; Eq4
This is $-X + \lambda^2 - x_1 - x_2 = 0 \Rightarrow x_3 = \lambda^2 - x_1 - x_2$
Now \tilde{y}_3 : $L(x_3, y_3)$: $\tilde{y}_3 = \lambda(x_3 - x_1) + y_1$
Reflect the point $y_3 = -\tilde{y}_3 = -\lambda(x_3 - x_1) - y_1$ Finally,

$$\begin{cases} x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = \lambda(x_1 - x_3) - y_1 \end{cases}$$

Doubling a point in affine coordinates (x, y)



Doubling a point in affine coordinates (x, y)

The line *L* tangent at the curve $E: f(x, y) = y^2 - x^3 - ax - b = 0$ at $P(x_1, y_1)$ has equation

$$\frac{\partial f}{\partial x}(x_1, y_1) + \frac{\partial f}{\partial y}(x_1, y_1)\frac{dy}{dx} = 0$$

$$(-3x_1^2 - a) + 2y_1\frac{y - y_1}{x - x_1} = 0$$

$$(-3x_1^2 - a)(x - x_1) + 2y_1(y - y_1) = 0$$

$$-\frac{3x_1^2 + a}{2y_1}(x - x_1) + (y - y_1) = 0 \text{ if } y_1 \neq 0$$

The slope is $\lambda = \frac{-\partial f/\partial x}{\partial f/\partial y}(x_1, y_1) = \frac{3x_1^2 + a}{2y_1}$ Again *L* has equation $\lambda(x - x_1) + (y - y_1) = 0$ This time we know that x_1 is a double root of $E \cap L$

Doubling a point

Eq5 = Eq2 % (X-x 1); Eq5 $-3x_1^2 + 2\lambda y_1 - a$ lambda dbl = $(3*x 1^2 + a)/(2*y 1)$ QQx(Eq5)([l=lambda dbl) == 0Eq6 = Eq2 // (X-x 1); Eq6 $-X + \lambda^2 - 2x_1 \Rightarrow x_4 = \lambda^2 - 2x_1$ $x4 = -Eq6.coefficient({X:0,Y:0})/Eq6.coefficient({X:1,Y:0}))$ Lx([x3,Y]) $y_4 = \lambda(x_4 - x_1) + y_1$

See group_law_short_weierstrass_affine.sage

Algebraic description of the addition operation

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points on

$$E: y^2 = x^3 + ax + b \; .$$

The slope of the line (P_1, P_2) is given by

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq \pm P_2 \\\\ \frac{3x_1 + a}{2y_1} & \text{if } P_1 = P_2 \text{ and } y_1 \neq 0 \end{cases}$$

The sum of P and Q is the point

$$P + Q = (x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1)$$

Points of order 2, points of order 3

Points of order 2 are such that P + P = O, that is P = -P and $P = (x_0, 0)$. At P the tangent is a vertical.

Points of order 3 are **inflexion points**.

2P = -P that is the intersection of the tangent at P with the curve is again at P, is has multiplicity 3.

Associativity

Lecture 2.

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Main questions on curves over $\ensuremath{\mathbb{Q}}$

Given a bivariate polynomial equation $y^2 = f(x)$ with integer coefficients,

- 1. Are there any solutions in integers?
- 2. Are there any solutions in rational numbers?
- 3. Are there infinitely many solutions in integers?
- 4. Are there infinitely many solutions in rational numbers?

We will concentrate on these questions for elliptic curves, where

$$y^2 = x^3 + a_2 x^2 + a_4 x + a_6$$

A non-singular cubic equation has only finitely many integer solutions (Siegel 1920), bound on the coefficients: Baker–Coates, 1970.

Nagell-Lutz: Points of finite order on an elliptic curve have integer coordinates.

Mordell: the group of points is finitely generated.

Mazur: structure of the group of torsion points (points of finite order)

Main theorems on curves over \mathbb{Q}

Nagell–Lutz Theorem

Let

$$y^2 = f(x) = x^3 + ax^2 + bx + c$$

be a non-singular cubic curve with integer coefficients a, b, c; and let D be the discriminant of the cubic polynomial f(x),

$$= -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$$
.

Let P = (x, y) be a rational point of finite order. Then x and y are integers; and either y = 0, in which case P has order two, or else y divides D.

Mazur's theorem

Let C be a non-singular rational cubic curve, and suppose that $C(\mathbb{Q})$ contains a point of finite order m. Then either

 $1 \leq m \leq 10$ or m=12 .

More precisely, the set of all points of finite order in $\mathcal{C}(\mathbb{Q})$ forms a subgroup which has one of the following two forms:

- 1. $\mathbb{Z}/n\mathbb{Z}$ A cyclic group of order *n* with $1 \le n \le 10$ or n = 12.
- 2. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$ The product of a cyclic group of order two and a cyclic group of order 2n with $1 \le n \le 4$.

Mordell's theorem (Mordell-Weil)

If a non-singular rational plane cubic curve has a rational point, then the group of rational points is finitely generated.

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Finite field

Prime finite field: a finite field of prime order.

(a *prime* field F has no proper non-trivial subfield $K \subsetneq F$)

Notation:

- $\mathbb{Z}/p\mathbb{Z}$: the integers modulo p,
- GF(p) for Galois Field,
- \mathbb{F}_p (the field of p elements).

Representation: the integers $\{0, 1, 2, ..., p-1\}$ or the *centered* set $\{-(p-1)/2, ..., -1, 0, 1, ..., (p-1)/2\}$.

The prime number *p* is the **characteristic** of the finite field. Field with p = 2: $\{0, 1\}$, where $1 + 1 = 0 \mod 2$ Field with p = 3: $\{0, 1, 2\}$ where 1 + 1 = 2, $1 + 2 = 0 \mod 3$, $2 + 2 = 1 \mod 3$ or $\{-1, 0, 1\}$ where 1 + 1 = -1, -1 - 1 = 1, 1 - 1 = -1 + 1 = 0

Arithmetic in a prime finite field \mathbb{F}_p

reduction mod p

for $x \in \mathbb{Z}$, compute the **Euclidean** division x = bp + r where $0 \le r < p$. Then $x \mod p = r$.

neutral elements

 $\mathbf{0}$ is the neutral element for addition, $\mathbf{1}$ is the neutral element for multiplication

```
addition, subtraction x + y \mod p, x - y \mod p
```

```
compute x + y as integers, if x + y \ge p, subtract p
Example: 3 + 5 \mod 7 = 8 \mod 7 = 1
```

multiplication: $x \cdot y \mod p$

Compute $x \cdot y$ like for integers then *reduce* modulo p

inversion

Because p is prime, its **GCD** with any integer $1 \le x < p$ is 1. Compute Bézout's identity ux + vp = 1 = gcd(x, p)Then $ux = 1 \mod p$ and 1/x = u

Extensions of prime fields

What does \mathbb{F}_{p^2} mean? **The** field with p^2 elements. Analogy with the complex numbers \mathbb{C} .

If $p = 3 \mod 4$, -1 is not a square and $X^2 + 1$ is an irreducible polynomial in $\mathbb{F}_p[X]$ Define \mathbb{F}_{p^2} as the quadratic extension $\mathbb{F}_p[X]/(X^2 + 1)$ This notation means: the quotient of all univariate polynomials a(X) with coefficients

in \mathbb{F}_p , modulo the polynomial $X^2+1.$

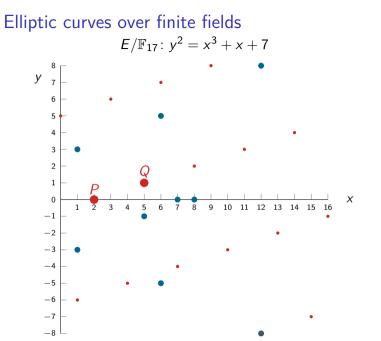
$$\begin{array}{l}X+5 \mod (X^2+1)=X+5\\X^2 \mod (X^2+1)=-1\\3X^2+7X+1 \mod (X^2+1)=-3+7X+1=7X-2\\(X+3)\times (2X-1)=2X^2+5X-3=-2+5X-3=5X-5\end{array}$$

In general, \mathbb{F}_{p^n} is represented as $\mathbb{F}_p[X]/(f(X))$ where f(X) is an irreducible polynomial of degree *n*.

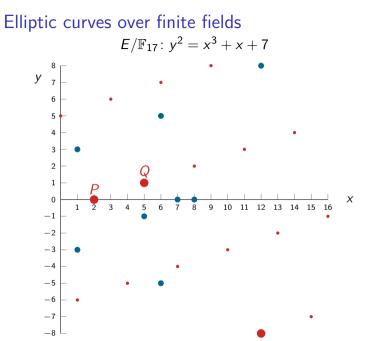
Elliptic curves over finite fields E/\mathbb{F}_{17} : $y^2 = x^3 + x + 7$ 8 y 7 6 5 4 3 2 1 х 0 12 13 14 15 16 11 1 2 3 4 5 6 7 8 9 10 -1 $^{-2}$ -3 -4 -5-6-7-8 L

41/66

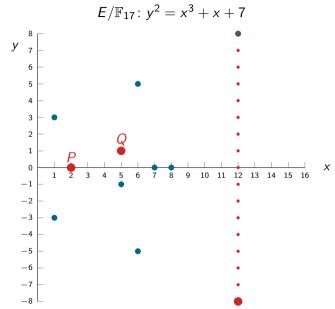
Elliptic curves over finite fields E/\mathbb{F}_{17} : $y^2 = x^3 + x + 7$ 8 y 7 6 5 4 3 2 1 0 х 13 14 15 16 11 12 З 4 5 6 ž 8 9 10 -1 $^{-2}$ -3 -4 -5-6-7-8 L



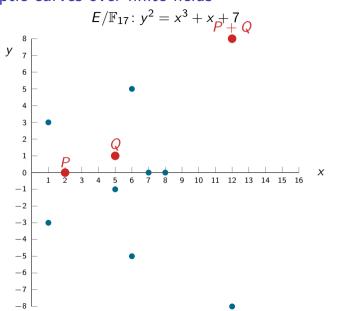
41/66



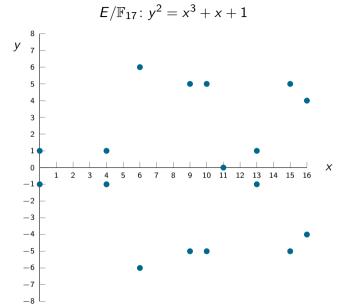
Elliptic curves over finite fields



Elliptic curves over finite fields



Elliptic curves over finite fields



Python

How to generate the set of points (x, y) of the curves

•
$$y^2 = x^3 + x + 7$$

•
$$y^2 = x^3 + x + 1$$

over \mathbb{F}_{17} ? Over \mathbb{F}_{31} ?

Outline

Administrative info

Introduction

Addition Law

Main results

Recap on finite fields

Recap on complexity

Correctness and Complexity of an algorithm

Two important properties of algorithms are correctness and complexity:

- Algorithms should only compute correct solutions of a problem. To establish correctness, some relevant logic is introduced.
- What is the time complexity of an algorithm?
- Examples of asymptotic complexity classes of algorithms.

Efficiency

Given a problem

- Does there exist an algorithm for solving it?
- Does there exist an efficient algorithm?
- Can I improve on a published algorithm for the problem?

Given an algorithm

- How efficient is it?
- Does a more efficient algorithm exist for the same problem?
- Which algorithm for a given problem is the best?

Two algorithms for summing squares of numbers

```
def sum_square_numbers(n: int):
    """
```

```
Compute the sum of squares up to n

1^2 + 2^2 + 3^2 + \ldots + n^2

INPUT:
```

```
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""</pre>
```

```
if n \le 0:
```

```
return <mark>0</mark>
```

```
s = 1
i = 2
while i <= n:
    s = s + i**2
    i = i + 1
return s</pre>
```

```
def sum_square_numbers(n: int):
    """
```

Compute the sum of squares up to n 1^2 +2^2 + 3^2 + ... + n^2 INPUT: - `n`: positive integer RETURN: the sum or 0 if n <= 0 """

```
if n <= 0:
    return 0
return n*(n+1)*(2*n+1)//6</pre>
```

Which one is more efficient?

Measuring efficiency of algorithms

- Cost of running an algorithm depends on size of input (usually)
- Efficiency of an algorithm is expressed as a cost function on the size of input
- Comparison between algorithms difficult to see when size of inputs are small
- Differences in efficiency become apparent as size of input get very large

Measuring efficiency of algorithms

We need

- a measure on the size of inputs
- a measure of cost of running an algorithm

Size of inputs:

Dependent on type of data

- arrays: number of items
- lists: number of items
- numbers: often size of binary representation

Cost of running algorithm:

- time taken we concentrate on this
- space required less important these days on computers, matters on embedded devices (smartphones)
- energy consumed becoming important

Measuring running time

- Difficult to use a stop watch
- Should not be influenced by speed of computer
- Should not be influenced by choice of programming language
- Should not be influenced by ability of programmer
- We count the number of significant actions

Significant actions:

Depends on problem area:

- sorting: count comparisons between items
- searching: count comparisons between items
- summing: count arithmetic operations

Sometimes difficult to decide

Counting the number of operations

```
Compute the sum of squares up to n 1^2 + 2^2 + 3^2 + \ldots + n^2
INPUT:
```

```
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""</pre>
```

```
if n <= 0:
    return 0
    s = 1; i = 2
    while i <= n:
        s = s + i**2
        i = i + 1
    return s
Operations: (n-1) squares and add.
```

```
......
    Compute the sum of squares up to n
    1^{2} + 2^{2} + 3^{2} + \dots + n^{2}
    TNPUT:
    - `n`: positive integer
    RETURN: the sum or 0 if n \le 0
    0.0.0
    if n \le 0:
        return 0
    return n*(n+1)*(2*n+1)//6
Operations: 4
```

Estimating growth functions

Constants don't count:

Functions		g larger than f
f	g	after
$100n^{2}$	2 <i>n</i> ³	<i>n</i> > 50
1000 <i>n</i> ²	3 <i>n</i> 3	<i>n</i> > 350
1000 <i>n</i> ³	n ⁴	n > 1000

Estimating growth functions

Small terms get swamped:

Function	Insignificant after
$2n^2 + 10n + 6$	n > 10
$n^4 + 100n^2 + 5n$	n > 10
$2n^{5} + 1000n^{4}$	n > 500

Approximating growth functions

Big Theta notation

 $\Theta(f(n))$: all functions which grow at the same rate as f(n)g(n) is in $\Theta(f(n))$ if

- there is a constant K_g such that $g(n) \leq Kg \cdot f(n)$, once n gets sufficiently large
- there is a constant K_f such that $f(n) \leq K_f \cdot g(n)$, once n gets sufficiently large which means: once n gets big enough
 - $k_1 \cdot f(n) \leq g(n) \leq k_2 \cdot f(n)$
 - (and vice-versa)

Important complexity classes

```
constant\Theta(1)logarithmic\Theta(\log n)linear\Theta(n)n-log-n\Theta(n \log n)quadratic\Theta(n^2)cubic\Theta(n^3)polynomial\Theta(n^k), for some k \ge 1exponential\Theta(2^n)
```

Examples

- $2 \cdot n + 6$ is in $\Theta(n)$
- $4 \cdot n^2 + 10 \cdot n + 6$ is NOT in $\Theta(n)$
- $234 \cdot n^2 + 658 \cdot n + 200$ is in $\Theta(n^2)$
- $234 \cdot n^2 + 658 \cdot n + 200$ is NOT in $\Theta(n^3)$
- $78 \cdot 10^{n} + 34 \cdot n^{27}$ is in $\Theta(2^{n})$

Dominant exponent always wins out in the end

Orders of Growth

п	log n	п	n log n	n^2	n ³	2 ⁿ
10	3.3	10	33	100	1,000	1,000
100	6.6	100	660	10^{4}	10^{6}	$1.3\cdot 10^{30}$
1,000	10	1,000	10,000	10^{6}	10^{9}	
10,000	13	10,000	130,000	10^{8}	10^{12}	
100,000	17	100,000	1.7 million	10^{10}	10^{15}	
1 million	20	1,000,000	20 million	10^{12}	10^{18}	

Estimated age of the universe: 10^{14} seconds

Particles

n	2 ⁿ	Examples
32	$2^{32} = 10^{9.6}$	number of humans on Earth
46	$2^{46} = 10^{13.8}$	distance Earth - Sun in millimeters
		number of operations in one day on a processor at 1 GHz
55	$2^{55} = 10^{16.6}$	number of operations in one year on a processor at 1 GHz
82	$2^{82} = 10^{24.7}$	mass of Earth in kilograms
90	$2^{90} = 10^{27.1}$	number of operations in $15\cdot 10^9$ years (age of the universe) on
		a processor at 1 GHz
155	$2^{155} = 10^{46.7}$	number of molecules of water on Earth
256	$2^{256} = 10^{77.1}$	number of electrons in universe

Universal Security; From bits and mips to pools, lakes – and beyond Arjen Lenstra, Thorsten Kleinjung, and Emmanuel Thomé https://hal.inria.fr/hal-00925622

- 2⁹⁰ operations require enough energy to boil the lake of Genève
- 2¹¹⁴ operations: boiling all the water on Earth
- 2^{128} operations: boiling 16000 planets like the Earth

Why buying a new computer will not help

Running an exponential algorithm

Current computer: 10,000 instructions per second	
--	--

problem size	time
10	0.1 sec
20	2 mins approx.
30	> 24 hours
38	> one year

Why buying a new computer will not help

Running an exponential algorithm

New computer	r: 100 times faster
problem size	time
10	0.1 sec
20	1 minute approx
37	> 24 hours
45	> one year

Only minimal increase in effectiveness:

time T problem size

old computer n

new computer n+7

Similar phenomenon for polynomial algorithms - But less pronounced

Algorithms v. fast computers

More efficient algorithms better than faster computers

Setup A:

- slow sorting algorithm: $\Theta(n^2)$
- crafty programmer: constant factor 2
- fast machine: 1 billion instructions per second

Setup B:

- fast sorting algorithm: $\Theta(n \log(n))$
- rubbish programmer: constant factor 50
- slow machine: 10 million instructions per second (100 times slower)

setup	1 million numbers	10 million numbers
A	> 30 mins	> 2 days
В	< 2 mins	< 20 mins

Comparing complexity classes

Complexity class	Extra time required when doubling the size of input
$\Theta(1)$	none
$\Theta(\log n)$	marginal increase
$\Theta(n)$	double
$\Theta(n \log n)$	double $+$ tiny
$\Theta(n^2)$	four times longer
$\Theta(n^3)$	eight times longer
$\Theta(2^n)$	square of time

Characteristics

Class	Name	Characteristics
$\Theta(1)$	constant	few interesting algorithms
$\Theta(\log n)$	logarithmic	result of cutting problem size in half each time round a loop
$\Theta(n)$	linear	Algorithms which scan an array/list
$\Theta(n \log n)$	<i>n</i> -log- <i>n</i>	Many divide-and-conquer algorithms
$\Theta(n^2)$	quadratic	Algorithms with two embedded loops
$\Theta(n^3)$	cubic	Algorithms with three embedded loops
$\Theta(2^n)$	exponential	Many important problems

Next Lectures

Office hours, Tuesday, February 1, room 5335-395 at Nygaard building (CS)

• Help on Installing SageMath

Tutorial 1, Thursday, February 3, room 1532-314 (Maths)

- Installing SageMath, starting to run small programs
- Bachet replication formula with SageMath

Lecture 2, Tuesday, February 8

- \bullet Projective space \mathbb{P}^3 and the point at infinity
- Addition law in projective coordinates
- The law is associative
- Intersection multiplicity and Bézout's theorem

Credits

- Jérémie Detrey for many slides and support from ARCHI'2017 summer school
- Laurent Imbert for slides from ECC'11 summer school
- Ian Mackie and Marine Minier for the recap on complexity of algorithms
- Simon Masson for the graph on page 22 from his PhD thesis
- Christophe Ritzenthaler for ressources at his webpage
- Emmanuel Thomé en Cyril Bouvier for slides from a winter school at ISI Delhi in 2017
- Ben Smith for his slides from MPRI