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Course materials

• Page in the catalog: https://www.kursuskatalog.au.dk/en/course/
112277/Elliptic-Curves-Number-Theory-and-Cryptography
• Brightspace: https://brightspace.au.dk/d2l/home/55068
• Calendar: https://timetable.au.dk/schedule

• Add timetable → Module → search for Elliptiske kurver
• Full name is Elliptiske kurver - talteori og kryptografi F22 Aarhus -

550122U015
• Starts Week 5 (January 31)
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Course materials

Book: Elliptic curves, number theory and cryptography, Lawrence C. Washington
SageMath library: a mathematical software suite based on Python, open-source.
Additional references:
• Steven Galbraith’s book Mathematics of public key cryptography is freely available
at https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
• Joseph H. Silverman, John Tate, Rational points on elliptic curves

https://link.springer.com/book/10.1007/978-3-319-18588-0
also available in PDF at https://www.kb.dk/en
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SageMath installation
Download at https://www.sagemath.org/download.html There is a mirror at
https://mirror.dogado.de/sage/index.html
Windows:
Download SageMath-9.3-Installer-v0.6.3.exe (820.72MB) from either the
mirror https://mirror.dogado.de/sage/win/index.html or the main server
https://github.com/sagemath/sage-windows/releases

MacOS:
What does About this Mac says?
• Intel: Download sage-9.4-OSX_11.2.3-x86_64.tar.bz2 from

https://mirror.dogado.de/sage/osx/intel/index.html
• PowerPC: Download one of the files from

https://mirror.dogado.de/sage/osx/powerpc/index.html
Linux:
Choose the file according to your architecture and Linux distribution and version at
https://mirror.dogado.de/sage/linux/index.html
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Course Schedule
Lectures on Tuesdays 08:00 – 10:00, building 1532 room 314
Tutorials on Thursdays, 15:00 – 17:00, building 1532 room 314
Guidance (office hours) on Tuesdays, 13:00 – 14:00 at the CS building (Nygaard 1553)
3rd floor, room 395 (or 387)

From Week 5 (January 31) to Week 14 (April 7)
Break on week 15 (April 11 & April 14)
Then from Week 16 (April 18) to Week 20 (May 19)

By-weekly handins are mandatory to take the final exam

Oral exam in June
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The instructors
Aurore and Diego are cryptographers at the department of Computer Science

Diego F. Aranha, associate professor
dfaranha@cs.au.dk

Aurore Guillevic, visiting researcher from France
aurore.guillevic@inria.fr

Survey

• who is from Maths?
• who is from Computer Science?
• who took Ivan Damgård’s course on Cryptography?
• who has a laptop? Windows? Mac? Linux?
• who already succeeded in installing SageMath?
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Content of this course

• Elliptic curves over a field K , from group law to pairings
• Elliptic curves over finite fields: Frobenius, point counting, supersingular curves
• Elliptic curves in cryptography
• Other number-theoretic hard problems in crypto:
integer factorization, discrete logarithm computation
• pairings on elliptic curves for crypto
• Guest lecture: elliptic curves over binary fields
• Elliptic curves over Q
• Guest lecture: pairing-based cryptography
• hot topic in cryptography: isogenies, post-quantum crypto
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Elliptic curves in cryptography
• 1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method
(ECM) for integer factoring
• 1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for
Diffie–Hellman key exchange
• 1985, Certicom: company owning patents on ECC
• 2000 Elliptic curves in IEEE P1363 standard
• 2000 Bilinear pairings over elliptic curves
• NSA cipher suite B, elliptic curves for public-key crypto
• 2014: Quasi-polynomial-time algorithm
for discrete log computation in GF(2n), GF(3m)
No more pairings on elliptic curves over these fields
• 2015: Tower Number Field Sieve in GF(pn)
Pairing-friendly curves should have larger key sizes
• 2016: NIST Post-Quantum competition
Isogenies on elliptic curves
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Widely deployed elliptic curves in cryptosystems

• elliptic curve over the prime field 2255 − 19 of order 8r where r is prime
• Curve25519 in Montgomery form E : y2 = x3 + 48662x2 + x
• Ed25519 in twisted Edwards form E : − x2 + y2 = 1− 121665

121666 x2y2

• NIST P-xxx curves
• . . .

Usage:
• Digital signatures (ECDSA): Play Station, EU Covid Certificate...
• Diffie–Hellman key exchange: open-ssl, TLS...
• Encryption: PGP, ...
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Why elliptic curves?

Diophantine equations
From Diophantus of Alexandria, mathematician
Finding integer or rational solutions to polynomial equations

Bachet equation y 2 − x3 = c
given an integer c, find a cube x3 and a square y2 whose difference is c
Claude-Gaspard Bachet de Méziriac (1581–1638)
Translated Diophantus’ Arithmetica from Greek to latin.

Fermat’s conjecture, a.k.a. Fermat’s Last Theorem
Pierre de Fermat (1601–1665)
For n ≥ 3, the equation Xn + Y n = Zn has no solutions in
non-zero integers X ,Y ,Z .
Actually not proven by Fermat

https://www.wikitimbres.fr/
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Bachet’s equation y 2 − x 3 = c
Bachet discovered in 1621 this
duplication formula
If (x , y) is a rational solution, then(

x4 − 8cx
4y2 ,

−x6 − 20cx3 + 8c2

8y3

)

is another solution in rational numbers.
If xy 6= 0 and c 6= 1,−432, it gives infinitely many distinct solutions.
y 2 − x3 = −2
Start from 52 − 33 = 25− 27 = −2. One obtains

(3, 5) ,
(129
100 ,

383
1000

)
,

(2340922881
58675600 ,

113259286337279
449455096000

)
In the 1st tutorial we will program in Python this replication formula.
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Example in Washington’s book

Volume and surface
Rearrange a pyramid of height x layers of fruits into a flat square:
solve y2 = x(x + 1)(2x + 1)/6 with integer solutions
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Conic sections

Ellipses are conic sections defined by x2

a2 + y2

b2 = 1

a b

Ellipses are not elliptic curves.
This ellipse has area πab. What is the circumference? → complicated formula with
elliptic integral.
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Bachet’s equation is an elliptic curve
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Curves with singularities are not elliptic curves
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The curve is smooth

Let E : f (x , y) = 0 over a field K .
There is no singular point (x0, y0) such that

f (x0, y0) = 0

∂f
∂x (x0, y0) = 0

∂f
∂y (x0, y0) = 0

where ∂f /∂x , ∂f /∂y are the partial derivatives.
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Definitions

Elliptic Curve
An Elliptic Curve over a field K is a smooth curve of genus 1 with a K -rational point.

Genus 1
A curve given by an equation

y2 = f (x), where deg f ∈ {3, 4}

has genus 1.

Structure of Group
Given two points P(x , y), Q(x ′, y ′), one can add two points P + Q and double a point
P + P (algebraic point of view) ans the group law has a geometric meaning.
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Weierstrass model

• An elliptic curve over a field K of characteristic 6= 2, 3 is given by an equation of
the form

E : y2 = x3 + ax + b, with a, b ∈ K

and ∆ = −16(4a3 + 27b2) 6= 0 so that E is smooth
(the cubic x3 + ax + b has simple roots)
• The set of K -rational points of an elliptic curve is

E (K ) =
{

(x , y) ∈ K × K ; y2 = x3 + ax + b
}
∪ {O}

• In the general case, one considers the long Weierstrass form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K .
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Chord and tangent rule

`P,Q(x , y)

P
Q

R

P + Q

P(x1, y1), Q(x2, y2), x1 6= x2

slope λ = ∆y
∆x = y2 − y1

x2 − x1
line L through P and Q has equation
L : y = λ(x − x1) + y1
→ check that (x1, y1) ∈ L, (x2, y2) ∈ L
compute L ∩ E (x , y) ∈ L and ∈ E ⇒{

L : y = λ(x − x1) + y1
E : y2 = x3 + ax + b ⇒(
λ(x − x1) + y1

)2 = x3 + ax + b
Solve with SageMath to avoid mistakes
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# define a polynomial ring for the variables
QQx.<a,b,l,x_1,y_1,x_2,y_2> = QQ[]
QQE.<X,Y> = QQx[]
L = Y - (l*(X-x_1) + y_1); Lx = Y - L
E = Y^2 - X^3 - a*X - b
Eq = E(Y=Lx); Eq # evaluate E at Y = Lx

−X 3 + λ2X 2 + (−2x1λ
2 + 2y1λ− a)X + x2

1λ
2 − 2x1y1λ+ y2

1 − b
We know that x1, x2 are solutions to Eq
Eq % (X-x_1) gives y2

1 − x3
1 − ax1 − b this is E (x1, y1)

(Eq % (X-x_1)) % E(x_1,y_1) == 0
Eq2 = Eq // (X-x_1)
Eq3 = Eq2 % (X-x_2); Eq3
−λ2x1 + λ2x2 + 2λy1 − x2

1 − x1x2 − x2
2 − a

Substitute λ = (y2 − y1)/(x2 − x1)
N=QQx(Eq3)(l=(y_2-y_1)/(x_2-x_1)).numerator(); N
x3

1 + ax1 − y2
1 − x3

2 − ax2 + y2
2

(N % (E(x_1,y_1))) % E(x_2,y_2) == 0
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Chord and tangent rule

Eq4 = Eq2 // (X-x_2); Eq4
This is −X + λ2 − x1 − x2 = 0⇒ x3 = λ2 − x1 − x2
Now ỹ3: L(x3, y3) : ỹ3 = λ(x3 − x1) + y1
Reflect the point y3 = −ỹ3 = −λ(x3 − x1)− y1 Finally,{

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1
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Doubling a point in affine coordinates (x , y)

`P,P(x , y)
P

R

2P
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Doubling a point in affine coordinates (x , y)
The line L tangent at the curve E : f (x , y) = y2 − x3 − ax − b = 0
at P(x1, y1) has equation

∂f
∂x (x1, y1) + ∂f

∂y (x1, y1)dy
dx = 0

(−3x2
1 − a) + 2y1

y − y1
x − x1

= 0

(−3x2
1 − a)(x − x1) + 2y1(y − y1) = 0

−3x2
1 + a
2y1

(x − x1) + (y − y1) = 0 if y1 6= 0

The slope is λ = −∂f /∂x
∂f /∂y (x1, y1) = 3x2

1 + a
2y1

Again L has equation λ(x − x1) + (y − y1) = 0
This time we know that x1 is a double root of E ∩ L
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Doubling a point

Eq5 = Eq2 % (X-x_1); Eq5
−3x2

1 + 2λy1 − a
lambda_dbl = (3*x_1^2 + a)/(2*y_1)
QQx(Eq5)([l=lambda_dbl) == 0
Eq6 = Eq2 // (X-x_1) ; Eq6
−X + λ2 − 2x1 ⇒ x4 = λ2 − 2x1

x4 = -Eq6.coefficient({X:0,Y:0})/Eq6.coefficient({X:1,Y:0})
Lx([x3,Y])
y4 = λ(x4 − x1) + y1

See group_law_short_weierstrass_affine.sage
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Algebraic description of the addition operation

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on

E : y2 = x3 + ax + b .

The slope of the line (P1,P2) is given by

λ =


y2 − y1
x2 − x1

if P1 6= ±P2

3x1 + a
2y1

if P1 = P2 and y1 6= 0

The sum of P and Q is the point

P + Q = (x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1) .

28/66



Points of order 2, points of order 3

Points of order 2 are such that P + P = O, that is P = −P and P = (x0, 0).
At P the tangent is a vertical.

Points of order 3 are inflexion points.
2P = −P that is the intersection of the tangent at P with the curve is again at P, is
has multiplicity 3.
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Associativity

Lecture 2.
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Main questions on curves over Q

Given a bivariate polynomial equation y2 = f (x) with integer coefficients,
1. Are there any solutions in integers?
2. Are there any solutions in rational numbers?
3. Are there infinitely many solutions in integers?
4. Are there infinitely many solutions in rational numbers?

We will concentrate on these questions for elliptic curves, where

y2 = x3 + a2x2 + a4x + a6
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Main theorems on curves over Q

A non-singular cubic equation has only finitely many integer solutions (Siegel 1920),
bound on the coefficients: Baker–Coates, 1970.

Nagell–Lutz: Points of finite order on an elliptic curve have integer coordinates.

Mordell: the group of points is finitely generated.

Mazur: structure of the group of torsion points (points of finite order)
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Main theorems on curves over Q

Nagell–Lutz Theorem
Let

y2 = f (x) = x3 + ax2 + bx + c

be a non-singular cubic curve with integer coefficients a, b, c; and let D be the
discriminant of the cubic polynomial f (x),

= −4a3c + a2b2 + 18abc − 4b3 − 27c2 .

Let P = (x , y) be a rational point of finite order. Then x and y are integers; and
either y = 0, in which case P has order two, or else y divides D.
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Main theorems on curves over Q

Mazur’s theorem
Let C be a non-singular rational cubic curve, and suppose that C(Q) contains a point
of finite order m. Then either

1 ≤ m ≤ 10 or m = 12 .

More precisely, the set of all points of finite order in C(Q) forms a subgroup which has
one of the following two forms:
1. Z/nZ A cyclic group of order n with 1 ≤ n ≤ 10 or n = 12.
2. Z/2Z× Z/2nZ The product of a cyclic group of order two and a cyclic group of

order 2n with 1 ≤ n ≤ 4.
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Main theorems on curves over Q

Mordell’s theorem (Mordell–Weil)
If a non-singular rational plane cubic curve has a rational point, then the group of
rational points is finitely generated.
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Finite field
Prime finite field: a finite field of prime order.
(a prime field F has no proper non-trivial subfield K ( F )

Notation:
• Z/pZ: the integers modulo p,
• GF(p) for Galois Field,
• Fp (the field of p elements).

Representation: the integers {0, 1, 2, . . . , p − 1}
or the centered set {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}.

The prime number p is the characteristic of the finite field.
Field with p = 2: {0, 1}, where 1 + 1 = 0 mod 2
Field with p = 3: {0, 1, 2} where 1 + 1 = 2, 1 + 2 = 0 mod 3, 2 + 2 = 1 mod 3
or {−1, 0, 1} where 1 + 1 = −1, −1− 1 = 1, 1− 1 = −1 + 1 = 0
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Arithmetic in a prime finite field Fp
reduction mod p
for x ∈ Z, compute the Euclidean division x = bp + r where 0 ≤ r < p. Then
x mod p = r .

neutral elements
0 is the neutral element for addition, 1 is the neutral element for multiplication

addition, subtraction x + y mod p, x − y mod p
compute x + y as integers, if x + y ≥ p, subtract p
Example: 3 + 5 mod 7 = 8 mod 7 = 1

multiplication: x · y mod p
Compute x · y like for integers then reduce modulo p

inversion
Because p is prime, its GCD with any integer 1 ≤ x < p is 1.
Compute Bézout’s identity ux + vp = 1 = gcd(x , p)
Then ux = 1 mod p and 1/x = u
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Extensions of prime fields
What does Fp2 mean? The field with p2 elements.
Analogy with the complex numbers C.

If p = 3 mod 4, −1 is not a square and X 2 + 1 is an irreducible polynomial in Fp[X ]
Define Fp2 as the quadratic extension Fp[X ]/(X 2 + 1)
This notation means: the quotient of all univariate polynomials a(X ) with coefficients
in Fp, modulo the polynomial X 2 + 1.

X + 5 mod (X 2 + 1) = X + 5
X 2 mod (X 2 + 1) = −1
3X 2 + 7X + 1 mod (X 2 + 1) = −3 + 7X + 1 = 7X − 2
(X + 3)× (2X − 1) = 2X 2 + 5X − 3 = −2 + 5X − 3 = 5X − 5

In general, Fpn is represented as Fp[X ]/(f (X )) where f (X ) is an irreducible polynomial
of degree n.

40/66



Elliptic curves over finite fields
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Elliptic curves over finite fields
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Python

How to generate the set of points (x , y) of the curves
• y2 = x3 + x + 7
• y2 = x3 + x + 1

over F17? Over F31?
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Correctness and Complexity of an algorithm

Two important properties of algorithms are correctness and complexity:
• Algorithms should only compute correct solutions of a problem.
To establish correctness, some relevant logic is introduced.
• What is the time complexity of an algorithm?
• Examples of asymptotic complexity classes of algorithms.
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Efficiency

Given a problem
• Does there exist an algorithm for solving it?
• Does there exist an efficient algorithm?
• Can I improve on a published algorithm for the problem?

Given an algorithm
• How efficient is it?
• Does a more efficient algorithm exist for the same problem?
• Which algorithm for a given problem is the best?
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Two algorithms for summing squares of numbers
def sum_square_numbers(n: int):

"""
Compute the sum of squares up to n
1^2 +2^2 + 3^2 + ... + n^2
INPUT:
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""
if n <= 0:

return 0
s = 1
i = 2
while i <= n:

s = s + i**2
i = i + 1

return s

def sum_square_numbers(n: int):
"""
Compute the sum of squares up to n
1^2 +2^2 + 3^2 + ... + n^2
INPUT:
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""
if n <= 0:

return 0
return n*(n+1)*(2*n+1)//6

Which one is more efficient?

47/66



Measuring efficiency of algorithms

• Cost of running an algorithm depends on size of input (usually)
• Efficiency of an algorithm is expressed as a cost function on the size of input
• Comparison between algorithms difficult to see when size of inputs are small
• Differences in efficiency become apparent as size of input get very large
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Measuring efficiency of algorithms
We need
• a measure on the size of inputs
• a measure of cost of running an algorithm

Size of inputs:
Dependent on type of data
• arrays: number of items
• lists: number of items
• numbers: often size of binary representation

Cost of running algorithm:
• time taken – we concentrate on this
• space required – less important these days on computers,
matters on embedded devices (smartphones)
• energy consumed – becoming important
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Measuring running time

• Difficult to use a stop watch
• Should not be influenced by speed of computer
• Should not be influenced by choice of programming language
• Should not be influenced by ability of programmer
• We count the number of significant actions

Significant actions:
Depends on problem area:
• sorting: count comparisons between items
• searching: count comparisons between items
• summing: count arithmetic operations

Sometimes difficult to decide
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Counting the number of operations
def sum_square_numbers(n: int):

"""
Compute the sum of squares up to n
1^2 +2^2 + 3^2 + ... + n^2
INPUT:
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""
if n <= 0:

return 0
s = 1; i = 2
while i <= n:

s = s + i**2
i = i + 1

return s
Operations: (n − 1) squares and add.

def sum_square_numbers(n: int):
"""
Compute the sum of squares up to n
1^2 +2^2 + 3^2 + ... + n^2
INPUT:
- `n`: positive integer
RETURN: the sum or 0 if n <= 0
"""
if n <= 0:

return 0
return n*(n+1)*(2*n+1)//6

Operations: 4
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Estimating growth functions

Constants don’t count:

Functions g larger than f
f g after

100n2 2n3 n > 50
1000n2 3n3 n > 350
1000n3 n4 n > 1000
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Estimating growth functions

Small terms get swamped:

Function Insignificant after
2n2 + 10n + 6 n > 10

n4 + 100n2 + 5n n > 10
2n5 + 1000n4 n > 500
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Approximating growth functions

Big Theta notation
Θ(f (n)): all functions which grow at the same rate as f (n)
g(n) is in Θ(f (n)) if
• there is a constant Kg such that g(n) ≤ Kg · f (n), once n gets sufficiently large
• there is a constant Kf such that f (n) ≤ Kf · g(n), once n gets sufficiently large

which means: once n gets big enough
• k1 · f (n) ≤ g(n) ≤ k2 · f (n)
• (and vice-versa)
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Important complexity classes

constant Θ(1)
logarithmic Θ(log n)
linear Θ(n)
n-log-n Θ(n log n)
quadratic Θ(n2)
cubic Θ(n3)
polynomial Θ(nk), for some k ≥ 1
exponential Θ(2n)
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Examples

• 2 · n + 6 is in Θ(n)
• 4 · n2 + 10 · n + 6 is NOT in Θ(n)
• 234 · n2 + 658 · n + 200 is in Θ(n2)
• 234 · n2 + 658 · n + 200 is NOT in Θ(n3)
• 78 · 10n + 34 · n27 is in Θ(2n)

Dominant exponent always wins out in the end
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Orders of Growth

n log n n n log n n2 n3 2n

10 3.3 10 33 100 1, 000 1, 000
100 6.6 100 660 104 106 1.3 · 1030

1, 000 10 1, 000 10, 000 106 109

10, 000 13 10, 000 130, 000 108 1012

100, 000 17 100, 000 1.7 million 1010 1015

1 million 20 1, 000, 000 20 million 1012 1018

Estimated age of the universe: 1014 seconds

57/66



Particles

n 2n Examples
32 232 = 109.6 number of humans on Earth
46 246 = 1013.8 distance Earth - Sun in millimeters

number of operations in one day on a processor at 1 GHz
55 255 = 1016.6 number of operations in one year on a processor at 1 GHz
82 282 = 1024.7 mass of Earth in kilograms
90 290 = 1027.1 number of operations in 15 ·109 years (age of the universe) on

a processor at 1 GHz
155 2155 = 1046.7 number of molecules of water on Earth
256 2256 = 1077.1 number of electrons in universe
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Boiling water

Universal Security; From bits and mips to pools, lakes – and beyond
Arjen Lenstra, Thorsten Kleinjung, and Emmanuel Thomé
https://hal.inria.fr/hal-00925622
• 290 operations require enough energy to boil the lake of Genève
• 2114 operations: boiling all the water on Earth
• 2128 operations: boiling 16000 planets like the Earth
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Why buying a new computer will not help

Running an exponential algorithm

Current computer: 10,000 instructions per second
problem size time
10 0.1 sec
20 2 mins approx.
30 > 24 hours
38 > one year
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Why buying a new computer will not help

Running an exponential algorithm

New computer: 100 times faster
problem size time
10 0.1 sec
20 1 minute approx
37 > 24 hours
45 > one year

Only minimal increase in effectiveness:
time T problem size
old computer n
new computer n + 7

Similar phenomenon for polynomial algorithms – But less pronounced
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Algorithms v. fast computers

More efficient algorithms better than faster computers

Setup A:
• slow sorting algorithm: Θ(n2)
• crafty programmer: constant factor 2
• fast machine: 1 billion instructions per second

Setup B:
• fast sorting algorithm: Θ(n log(n))
• rubbish programmer: constant factor 50
• slow machine: 10 million instructions per second (100 times slower)
setup 1 million numbers 10 million numbers
A > 30 mins > 2 days
B < 2 mins < 20 mins
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Comparing complexity classes

Complexity class Extra time required when doubling the size of input
Θ(1) none
Θ(log n) marginal increase
Θ(n) double
Θ(n log n) double + tiny
Θ(n2) four times longer
Θ(n3) eight times longer
Θ(2n) square of time
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Characteristics

Class Name Characteristics
Θ(1) constant few interesting algorithms
Θ(log n) logarithmic result of cutting problem size in half each time round a

loop
Θ(n) linear Algorithms which scan an array/list
Θ(n log n) n-log-n Many divide-and-conquer algorithms
Θ(n2) quadratic Algorithms with two embedded loops
Θ(n3) cubic Algorithms with three embedded loops
Θ(2n) exponential Many important problems
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Next Lectures

Office hours, Tuesday, February 1, room 5335-395 at Nygaard building (CS)
• Help on Installing SageMath

Tutorial 1, Thursday, February 3, room 1532-314 (Maths)
• Installing SageMath, starting to run small programs
• Bachet replication formula with SageMath

Lecture 2, Tuesday, February 8
• Projective space P3 and the point at infinity
• Addition law in projective coordinates
• The law is associative
• Intersection multiplicity and Bézout’s theorem
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Credits

• Jérémie Detrey for many slides and support from ARCHI’2017 summer school
• Laurent Imbert for slides from ECC’11 summer school
• Ian Mackie and Marine Minier for the recap on complexity of algorithms
• Simon Masson for the graph on page 22 from his PhD thesis
• Christophe Ritzenthaler for ressources at his webpage
• Emmanuel Thomé en Cyril Bouvier for slides from a winter school at ISI Delhi in
2017
• Ben Smith for his slides from MPRI
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https://perso.univ-rennes1.fr/christophe.ritzenthaler/teaching.html
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