Elliptic curves, number theory and cryptography Week 2. Lecture 2

Aurore Guillevic

Aarhus University

Spring semester, 2022

These slides at

https://members.loria.fr/AGuillevic/files/Enseignements/AU/lectures/lecture02.pdf

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

$$E/K: y^2 = x^3 + Ax + B$$
 $Char(K) \neq 2, 3$

Affine plane (Euclidean plane) over a field K

$$\mathbb{A}^2(K) = \{(x,y) \colon x,y \in K\}$$

Group of points of *E* on *K*

The set of rational points on the curve E/K is

$$E(K) = \{(x, y) \in \mathbb{A}^2(K) \mid (x, y) \text{ satisfies } E\} \cup \{P_{\infty}\}$$

where P_{∞} is the *point at infinity*.

We cannot represent the point at infinity P_{∞} in the affine space \mathbb{A} : there is no (∞, ∞) . Intuition: store the denominator z of the coordinates (x, y) in a 3rd coord.

Elliptic curves are projective plane (smooth) curves

Projective plane

The **projective plane** of dimension 2 defined over a field K, denoted $\mathbb{P}^2(K)$ is

$$\mathbb{P}^2(K) = \left\{ (X,Y,Z) \in K^3 \mid (X,Y,Z) \neq (0,0,0) \right\} / \sim$$

with the equivalence relation $(X,Y,Z)\sim (X',Y',Z')\iff$ there exists $\lambda\neq 0\in K$ such that $(X,Y,Z)=(\lambda X',\lambda Y',\lambda Z')$.

The **equivalence class** w.r.t. \sim is denoted (X : Y : Z) with colons instead of commas.

Projective space

The **projective space** of dimension n defined over a field K, denoted $\mathbb{P}^n(K)$ is

$$\mathbb{P}^n(K) = \left\{ (X_0, X_1, \dots, X_n) \in K^{n+1} \mid (X_0, X_1, \dots, X_n) \neq \mathbf{0} = (0, 0, \dots, 0) \right\} / \sim$$

with the equivalence relation $(X_0, X_1, \dots, X_n) \sim (X'_0, X'_1, \dots, X'_n) \iff$ there exists $\lambda \neq 0 \in K$ such that $(X_0, X_1, \dots, X_n) = (\lambda X'_0, \lambda X'_1, \lambda \dots, X'_n)$.

The **equivalence class** w.r.t. \sim is denoted $(X_0 : X_1 : ... : X_n)$ with colons instead of commas.

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Homogenization

A polynomial $f \in K[x, y]$ defines a plane curve C_0 in $\mathbb{A}^2(K)$

- \rightarrow a homogeneous polynomial $F \in K[X, Y, Z]$ defines
- a projective plane curve $\mathcal C$ in $\mathbb P^2(K)$

Degree of a bivariate polynomial

Let the degree $d = \deg f$ to be the largest value i + j of the (non-zero) monomials $x^i y^j$ of f:

$$f = \sum_{i,j: a_{ij} \neq 0} a_{ij} x^i y^j, \quad d = \max_{i,j: a_{ij} \neq 0} i + j.$$

Homogenization

Homogenization of a polynomial

The **homogenization** of $f(x,y) = \sum_{i,j: a_{ii} \neq 0} a_{ij} x^i y^j \in K[x,y]$ is

Equivalently (Washington's book 2.3 page 19),

$$F(X, Y, Z) = Z^d f\left(\frac{X}{Z}, \frac{Y}{Z}\right)$$
, where $d = \deg(f)$.

From this definition we have

- F is homogeneous of degree d;
 - F(x, y, 1) = f(x, y);
 - $F(x, y, 0) \neq 0$, and
 - F(X, Y, Z) = 0 does not contain the line at infinity

Why homogenization?

(slide added to answer a question) In the projective space, a point $P(X_0, Y_0, Z_0)$ has many possible representations:

$$P = (\lambda X_0, \lambda Y_0, \lambda Z_0)$$
 for any scalar $\lambda \neq 0$

 $P \in \mathcal{C}$ a curve of $\mathbb{P}^2 \implies P$ is a zero of a polynomial F(X, Y, Z).

But then we require $F(\lambda X_0, \lambda Y_0, \lambda Z_0) = 0$ for all $\lambda \neq 0$.

Thanks to homogenization, we have

$$F(\lambda X_0, \lambda Y_0, \lambda Z_0) = \lambda^d F(X_0, Y_0, Z_0)$$

hence

$$P \in \mathcal{C} \iff F(X_0, Y_0, Z_0) = 0 \iff F(\lambda X_0, \lambda Y_0, \lambda Z_0) = 0 \ \forall \lambda \neq 0$$

A projective plane curve is smooth

Let E: F(X, Y, Z) = 0 over a field K, where F is a homogeneous polynomial. There is no singular point (X_0, Y_0, Z_0) such that

$$\begin{cases} \frac{\partial F}{\partial X}(X_0, Y_0, Z_0) = 0 \\ \frac{\partial F}{\partial Y}(X_0, Y_0, Z_0) = 0 \\ \frac{\partial F}{\partial Z}(X_0, Y_0, Z_0) = 0 \end{cases}$$

where $\partial F/\partial X$, $\partial F/\partial Y$, $\partial F/\partial Z$ are the partial derivatives.

A line in $\mathbb{P}^2(K)$

Affine plane (Euclidean plane) over a field K

$$\mathbb{A}^{2}(K) = \{(x, y) : x, y \in K\}$$

A line in the affine plane $\mathbb{A}^2(K)$ is defined by an equation of the form

$$\mathcal{L}$$
: $ax + by + c = 0$, with $(a, b, c) \neq (0, 0, 0)$.

Applying the homogenization formula, one has:

Projective Line

A **projective line** in $\mathbb{P}^2(K)$ has an equation of the form

$$\mathcal{L}: aX + bY + cZ = 0$$
, with $(a, b, c) \neq (0, 0, 0)$.

- Two distinct points of \mathbb{A}^2 determine a line in \mathbb{A}^2
- two lines of \mathbb{A}^2 determine one point in \mathbb{A}^2 unless they are parallel.

The projective plane will contain the intersection point of parallel lines at infinity.

Two parallel lines meet at infinity

At infinity is not a single point

Distinct pairs of parallel lines do not meet at the same point at infinity. $\mathcal{L}_1 \cap \mathcal{L}_2 = \{P\}$ in \mathbb{A}^2 so $\mathcal{L}_1, \mathcal{L}_2$ cannot share a 2nd point \mathcal{O}

Points at infinity

The **Points** at **infinity** in the projective plane $\mathbb{P}^2(K)$ correspond to **directions** of parallel lines in $\mathbb{A}^2(K)$

$$\mathbb{P}^2 = \mathbb{A}^2 \cup \{ \text{the directions in } \mathbb{A}^2 \}$$

where direction is not oriented, like the slope of a line.

The set of directions in \mathbb{A}^2 is

$$\{(x,y)\in K^2\}/\sim$$

where
$$(x,y) \sim (x',y') \iff \exists \lambda \neq 0 \in K$$
, $(x,y) = (\lambda x, \lambda y)$.

We have

$$\mathbb{P}^2(K) = \mathbb{A}^2(K) \cup \mathbb{P}^1(K)$$

Correspondence of $\mathbb{A}^2 \cup \mathbb{P}^1$ and \mathbb{P}^2

$$\mathbb{P}^{2}(K) = \left\{ (X,Y,Z) \in K^{3}, \ (X,Y,Z) \neq (0,0,0) \right\} / \sim$$
 $\mathbb{P}^{2}(K) \longleftrightarrow \mathbb{A}^{2}(K) \cup \mathbb{P}^{1}(K)$
 $(X,Y,Z) \mapsto \begin{cases} \left(\frac{X}{Z}, \frac{Y}{Z}\right) \in \mathbb{A}^{2}(K) & \text{if } Z \neq 0 \\ (X,Y) \in \mathbb{P}^{1}(K) & \text{if } Z = 0 \end{cases}$
 $(x,y,1) \longleftrightarrow (x,y) \in \mathbb{A}^{2}(K)$
 $(X,Y,0) \longleftrightarrow (X,Y) \in \mathbb{P}^{1}(K)$

Projective plane smooth curve

A projective plane cubic curve $\mathcal C$ in $\mathbb P^2(K)$ is given by an equation

$$C: F(X, Y, Z) = 0$$

where F is a homogeneous polynomial of degree 3.

An elliptic curve in $\mathbb{P}^2(K)$ is given by an equation

$$\mathcal{E}: Y^2Z = X^3 + aXZ^2 + bZ^3, \ 4a^3 + 27b^2 \neq 0$$

and the group of points on ${\mathcal E}$ is

$$\mathcal{E}(K) = \{(X, Y, Z) \in \mathbb{P}^2(K) \colon F_{\mathcal{E}}(X, Y, Z) = 0\}$$

Point at infinity in the Projective Plane

$$\mathcal{E}: Y^2 Z = X^3 + aXZ^2 + bZ^3, \ 4a^3 + 27b^2 \neq 0$$
$$Z = 0 \implies \mathcal{E}: 0 = X^3$$

The **Point at infinity** is

$$(X, Y, Z = 0) \in \mathcal{E}(K) \implies X = 0$$

There is no condition on Y except $Y \neq 0$ because $(0,0,0) \notin \mathbb{P}^2$. Then $(0,\lambda,0)$ for any $\lambda \neq 0$ is the direction of a vertical line in \mathbb{A}^2 .

Point at infinity on ${\cal E}$

The equivalence class of the point at infinity on \mathcal{E} is $\mathcal{O} = (0:1:0)$.

Projective coordinates

Washington's book section 2.6.1

Addition and doubling can be done without special treatment of points of order 2

$$P(x,0) \in \mathbb{A}^2 \mapsto (X,0,1) \in \mathbb{P}^2$$

$$P(X_1, Y_1, Z_1) + Q(X_2, Y_2, Z_2)$$

Suppose that none is \mathcal{O} , then $Z_1 \neq 0$, $Z_2 \neq 0$.

Their affine part is $P(x_1, y_1) = (X_1/Z_1, Y_1/Z_1)$ and $Q(x_2, y_2) = (X_2/Z_2, Y_2/Z_2)$.

$$\mathcal{L} \text{ through } P \text{ and } Q \text{ has slope } \lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{Y_2/Z_2 - Y_1/Z_1}{X_2/Z_2 - X_1/Z_1} = \frac{Y_2Z_1 - Y_1Z_2}{X_2Z_1 - X_1Z_2}$$

If
$$P = Q$$
 then $\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3X_1^2/Z_1^2 + a}{2Y_1/Z_1} = \frac{3X_1^2 + aZ_1^2}{2Y_1Z_1}$

Addition law in projective coordinates (in $\mathbb{P}^2(K)$)

See the Elliptic Curve Formula Database (EFD) by Tanja Lange: www.hyperelliptic.org/EFD/g1p/auto-shortw-projective.html Let $P_1=(X_1,\,Y_1,\,Z_1)$ and $P_2=(X_2,\,Y_2,\,Z_2)$ be two points on

$$E\colon Y^2Z=X^3+aXZ^2+bZ^3\ .$$

Adapting directly the formula $\lambda = (y_2 - y_1)/(x_2 - x_1)$, resp. $\lambda = (3x_1^2 + a)/(2y_1)$ to projective coordinates with $x_i = X_i/Z_i$, $y_i = Y_i/Z_i$, the slope of the line (P_1, P_2) is given by

$$\lambda = \left\{ egin{array}{ll} rac{Y_2 Z_1 - Y_1 Z_2}{X_2 Z_1 - X_1 Z_2} & ext{if } P_1
eq \pm P_2 \ \\ rac{3 X_1^2 + a Z_1^2}{2 Y_1 Z_1} & ext{if } P_1 = P_2 ext{ and } Y_1
eq 0 \end{array}
ight.$$

Addition law in projective coordinates in $\mathbb{P}^2(K)$

Cohen, Miyaji and Ono published at Asiacrypt'1998 the formulas

$$u = Y_2 \cdot Z_1 - Y_1 \cdot Z_2$$

$$v = X_2 \cdot Z_1 - X_1 \cdot Z_2$$

$$A = u^2 \cdot Z_1 \cdot Z_2 - v^3 - 2v^2 \cdot X_1 Z_2$$

$$X_3 = v \cdot A$$

$$Y_3 = u \cdot (v^2 X_1 Z_2 - A) - v^3 \cdot Y_1 Z_2$$

$$Z_3 = v^3 \cdot Z_1 Z_2$$

this costs 11 Mult., the squares u^2 , v^2 , then $v^3 = v^2 \cdot v$, hence 12 Mult. + 2 Squares and negligible additions and subtractions.

Addition law in projective coordinates in $\mathbb{P}^2(K)$

For doubling, Cohen, Miyaji and Ono have

$$w = aZ_1^2 + 3X_1^2$$

$$s = Y_1 \cdot Z_1$$

$$B = X_1 \cdot Y_1 \cdot s$$

$$h = w^2 - 8B$$

$$X_3 = 2h \cdot s$$

$$Y_3 = w \cdot (4B - h) - 8 \cdot (Y_1 s)^2$$

$$Z_3 = 8s^3$$

this costs 6 Mult., 5 Squares and $w^3 = w^2 \cdot w$, hence 7 Mult. + 5 Squares and negligible additions, subtractions and a multiplication by a.

Corner cases of addition law in projective coordinates in $\mathbb{P}^2(K)$

If $P(X_1, Y_1, Z_1)$ and $Q = -P_1 = (X_1, -Y_1, Z_1)$ with $Y_1 \neq 0$ then the addition formula computes $(X_3, Y_3, Z_3) = (0, Y_3, 0)$ and $Y_3 = 8Y_1^3Z_1^5 \neq 0$ This is the point at infinity \mathcal{O} , without division by 0.

If $P_1(X_1, 0, Z_1)$ has order 2, the doubling formula computes $(0, Y_3, 0) = \mathcal{O}$ without a division by 0.

Other coordinate systems and forms of elliptic curves

There are many other coordinate systems:

- affine (x, y)
- projective $(X, Y, Z) \mapsto (X/Z, Y/Z)$
- Jacobian $(X, Y, Z) \mapsto (X/Z^2, Y/Z^3)$
- extended Jacobian $(X, Y, Z, Z^2) \mapsto (X/Z^2, Y/Z^3)$
- . . .

that can be combined with different forms of curves:

- Short Weierstrass with a = -3, a = 1, a = 0, b = 0, etc
- Specificities: points of order 2 or 4 available
- Montgomery form
- Edwards, twisted Edwards form
- Jacobi Quartic
- Huff form
- •
- \rightarrow EFD contains almost all of them.

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Étienne Bézout

French mathematician (1730 - 1783)Scientist in the Navy

You can read about Bézout's theorem on Wikipedia at this link:

https://en.wikipedia.org/wiki/B%C3%

A9zout%27s_theorem

https://mathshistory.st-andrews.ac.uk/Biographies/Bezout/pictdisplay/

Multiplicity of intersection

Let $\mathcal C$ and $\mathcal C'$ be two projective plane curves with no common component, that is they are defined by homogeneous polynomials F and G with no common factor. the **Multiplicity of intersection** of $\mathcal C$ and $\mathcal C'$ at $P\in\mathbb P^2$ is the unique integer $I_P(\mathcal C,\mathcal C')\geq 0$ such that

- 1. $I_P(\mathcal{C}, \mathcal{C}') = 0 \iff P \notin \mathcal{C} \cap \mathcal{C}'$
- 2. If $P \in \mathcal{C}_1 \cap \mathcal{C}_2$, if P is a non-singular point of \mathcal{C}_1 and \mathcal{C}_2 , and if \mathcal{C}_1 and \mathcal{C}_2 have different tangent directions at P, then $I_P(\mathcal{C}_1,\mathcal{C}_2)=1$ One often says in this case that \mathcal{C}_1 and \mathcal{C}_2 intersect transversally at P.
- 3. If $P \in \mathcal{C}_1 \cap \mathcal{C}_2$ and if \mathcal{C}_1 and \mathcal{C}_2 do not intersect transversally at P, then $I_P(\mathcal{C}_1, \mathcal{C}_2) \geq 2$.

Bézout's theorem

Silverman–Tate book appendix A.

Let C_1 and C_2 be projective curves with no common component. Then

$$\sum_{P\in\mathcal{C}_1\cap\mathcal{C}_2} I_P(\mathcal{C}_1,\mathcal{C}_2) = (\deg\mathcal{C}_1)(\deg\mathcal{C}_2)\;,$$

where the sum is over all points of $C_1 \cap C_2$ in the algebraically closed field K (e.g. \mathbb{C} or $\overline{\mathbb{F}_p}$).

In particular, if \mathcal{C}_1 and \mathcal{C}_2 are smooth curves with only transversal intersections, then $\#\mathcal{C}_1\cap\mathcal{C}_2=(\deg\mathcal{C}_1)(\deg\mathcal{C}_2)$; and in all cases there is an inequality

$$\#(\mathcal{C}_1\cap\mathcal{C}_2)\leq (\deg\mathcal{C}_1)(\deg\mathcal{C}_2)$$

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

This will NOT be in the exam

Silverman-Tate book pages 16-21 and 238-240.

From Bézout's theorem, two distinct cubic projective plane curves without a common component have exactly 9 intersection points.

Theorem A

Let \mathcal{C} , \mathcal{C}_1 and \mathcal{C}_2 be three cubic curves. Suppose \mathcal{C} goes through eight of the nine intersection points of \mathcal{C}_1 and \mathcal{C}_2 . Then \mathcal{C} goes through the ninth intersection point.

Let's consider an elliptic curve $\mathcal C$ and the eight points

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}$$
.

To show associativity, we need to show that there is a unique ninth point:

$$-((P+Q)+R)=-(P+(Q+R))$$
.

Let \mathcal{C}_1 be defined by the equations of the three lines through the nine distinct points $P,Q,-(P+Q)\in\ell_{P,Q}$, the vertical $-(Q+R),Q+R,\mathcal{O}\in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R)\in\ell_{P+Q,R}$ multiplied together:

$$C_1 \colon F_1(X,Y,Z) = \ell_{P,Q} \cdot \nu_{Q+R} \cdot \ell_{P+Q,R} = 0$$

Let \mathcal{C}_1 be defined by the equations of the three lines through the nine distinct points $P,Q,-(P+Q)\in\ell_{P,Q}$, the vertical $-(Q+R),Q+R,\mathcal{O}\in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R)\in\ell_{P+Q,R}$ multiplied together:

$$C_1: F_1(X, Y, Z) = \ell_{P,Q} \cdot v_{Q+R} \cdot \ell_{P+Q,R} = 0$$

Let \mathcal{C}_2 be defined by the equations of the three lines through the nine distinct points $Q, R, -(Q+R) \in \ell_{Q,R}$, the vertical $P+Q, -(P+Q), \mathcal{O} \in v_{P+Q}$, and $P, Q+R, -(P+(Q+R)) \in \ell_{P,Q+R}$ multiplied together:

$$C_2 \colon F_2(X,Y,Z) = \ell_{Q,R} \cdot v_{P+Q} \cdot \ell_{P,Q+R} = 0$$

Let \mathcal{C}_1 be defined by the equations of the three lines through the nine distinct points $P,Q,-(P+Q)\in\ell_{P,Q}$, the vertical $-(Q+R),Q+R,\mathcal{O}\in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R)\in\ell_{P+Q,R}$ multiplied together:

$$C_1: F_1(X, Y, Z) = \ell_{P,Q} \cdot v_{Q+R} \cdot \ell_{P+Q,R} = 0$$

Let C_2 be defined by the equations of the three lines through the nine distinct points $Q, R, -(Q+R) \in \ell_{Q,R}$, the vertical $P+Q, -(P+Q), \mathcal{O} \in v_{P+Q}$, and $P, Q+R, -(P+(Q+R)) \in \ell_{P,Q+R}$ multiplied together:

$$C_2: F_2(X, Y, Z) = \ell_{Q,R} \cdot \nu_{P+Q} \cdot \ell_{P,Q+R} = 0$$

Then C_1 and C_2 are two cubic curves of \mathbb{P}^2 that intersect at nine distinct points, namely the known

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}_1 \cap \mathcal{C}_2$$

and a ninth intersection point $P_9 \in \mathcal{C}_1 \cap \mathcal{C}_2$.

Now C is a curve that goes to the first eight points

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}$$

Hence by Theorem A it also goes through the 9-th point of $C_1 \cap C_2$. Thus the ninth intersection point of C_1 and C_2 lies on $C: P_9 \in C_1 \cap C_2$, $P_9 \in C$.

Now C is a curve that goes to the first eight points

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}$$

Hence by Theorem A it also goes through the 9-th point of $C_1 \cap C_2$. Thus the ninth intersection point of C_1 and C_2 lies on C: $P_9 \in C_1 \cap C_2$, $P_9 \in C$.

Both
$$-((P+Q)+R) \in \mathcal{C}_1$$
 and $-(P+(Q+R)) \in \mathcal{C}_2$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_9 \in \mathcal{C} \cap \mathcal{C}_1$ and $-(P+(Q+R)), P_9 \in \mathcal{C} \cap \mathcal{C}_2$

Now C is a curve that goes to the first eight points

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}$$

Hence by Theorem A it also goes through the 9-th point of $C_1 \cap C_2$. Thus the ninth intersection point of C_1 and C_2 lies on $C: P_9 \in C_1 \cap C_2$, $P_9 \in C$.

Both
$$-((P+Q)+R) \in \mathcal{C}_1$$
 and $-(P+(Q+R)) \in \mathcal{C}_2$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_9 \in \mathcal{C} \cap \mathcal{C}_1$ and $-(P+(Q+R)), P_9 \in \mathcal{C} \cap \mathcal{C}_2$

But by Bézout's theorem, $\#(\mathcal{C} \cap \mathcal{C}_1) \leq 9$ and $\#(\mathcal{C} \cap \mathcal{C}_2) \leq 9$ as cubic curves,

Now C is a curve that goes to the first eight points

$$P, Q, R, \mathcal{O}, -(P+Q), P+Q, -(Q+R), (Q+R) \in \mathcal{C}$$

Hence by Theorem A it also goes through the 9-th point of $C_1 \cap C_2$. Thus the ninth intersection point of C_1 and C_2 lies on $C: P_9 \in C_1 \cap C_2$, $P_9 \in C$.

Both
$$-((P+Q)+R) \in \mathcal{C}_1$$
 and $-(P+(Q+R)) \in \mathcal{C}_2$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_9 \in \mathcal{C} \cap \mathcal{C}_1$ and $-(P+(Q+R)), P_9 \in \mathcal{C} \cap \mathcal{C}_2$

But by Bézout's theorem, $\#(\mathcal{C}\cap\mathcal{C}_1)\leq 9$ and $\#(\mathcal{C}\cap\mathcal{C}_2)\leq 9$ as cubic curves, so finally

$$P_9 = -(P + (Q + R)) = -((P + Q) + R)$$
.

Theorem A

Let \mathcal{C} , \mathcal{C}_1 and \mathcal{C}_2 be three cubic curves. Suppose \mathcal{C} goes through eight of the nine intersection points of \mathcal{C}_1 and \mathcal{C}_2 . Then \mathcal{C} goes through the ninth intersection point.

This will NOT be in the exam

Let \mathcal{C}_1 and \mathcal{C}_2 be two distinct cubic smooth plane curves without a common component.

By Bézout's theorem, C_1 and C_2 intersect at exactly 9 points P_1, \ldots, P_9 . Consider the 9 distinct points P_1, \ldots, P_9 in $\mathbb{P}^2(K)$.

Let C' be another cubic smooth plane curve going through the first eight points P_1, \ldots, P_8 .

We will show that C' also goes through P_9 .

Consider a generic cubic projective plane curve C: F(X, Y, Z) = 0 given by a homogeneous irreducible degree 3 polynomial

$$F = a_0 + a_1 X Z^2 + a_2 X^2 Z + a_3 X^3 + a_4 Y Z^2 + a_5 Y^2 Z + a_6 Y^3 + a_7 X Y Z + a_8 X^2 Y + a_9 X Y^2$$

with 10 parameters $\{a_i\}_{0 \le i \le 9}$.

Consider a generic cubic projective plane curve C: F(X, Y, Z) = 0 given by a homogeneous irreducible degree 3 polynomial

$$F = a_0 + a_1 X Z^2 + a_2 X^2 Z + a_3 X^3 + a_4 Y Z^2 + a_5 Y^2 Z + a_6 Y^3 + a_7 X Y Z + a_8 X^2 Y + a_9 X Y^2$$
with 10 parameters $\{a_i\}_{0 \le i \le 9}$.

 $P_1 \in \mathcal{C} \implies$ an equation $F(X_1, Y_1, Z_1)$ forces a condition on the a_i s.

Consider a generic cubic projective plane curve C: F(X, Y, Z) = 0 given by a homogeneous irreducible degree 3 polynomial

$$F = a_0 + a_1 XZ^2 + a_2 X^2 Z + a_3 X^3 + a_4 YZ^2 + a_5 Y^2 Z + a_6 Y^3 + a_7 XYZ + a_8 X^2 Y + a_9 XY^2$$

with 10 parameters $\{a_i\}_{0 \le i \le 9}$.

 $P_1 \in \mathcal{C} \implies$ an equation $F(X_1, Y_1, Z_1)$ forces a condition on the a_i s. Going through the 8 points P_1, \ldots, P_8 forces 8 conditions on the a_i s.

Consider a generic cubic projective plane curve C: F(X, Y, Z) = 0 given by a homogeneous irreducible degree 3 polynomial

$$F = a_0 + a_1 X Z^2 + a_2 X^2 Z + a_3 X^3 + a_4 Y Z^2 + a_5 Y^2 Z + a_6 Y^3 + a_7 X Y Z + a_8 X^2 Y + a_9 X Y^2$$

with 10 parameters $\{a_i\}_{0 \le i \le 9}$.

 $P_1 \in \mathcal{C} \implies$ an equation $F(X_1, Y_1, Z_1)$ forces a condition on the a_i s. Going through the 8 points P_1, \ldots, P_8 forces 8 conditions on the a_i s.

The set of $\{a_i\}_{0 \le i \le 9}$ is a K-vector space of dimension 10, and the 8 conditions $P_i \in \mathcal{C} \iff F(X_i, Y_i, Z_i) = 0$ make it a K-vector space of dim 2.

Let (F_{λ}, F_{μ}) a basis of this 2-dimensional vector space. F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents. They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ} .

Let (F_{λ}, F_{μ}) a basis of this 2-dimensional vector space. F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents. They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ} .

The former generic cubic curve \mathcal{C}' defined by F'(X,Y,Z) goes through P_1,\ldots,P_8 . We have $F'(X_i,Y_i,Z_i)=0$ for all $1\leq i\leq 8$.

We also have $F' = \lambda F_{\lambda} + \mu F_{\mu}$ for a choice of $\lambda, \mu \in K$ as F_{λ} , F_{μ} form a basis.

Let (F_{λ}, F_{μ}) a basis of this 2-dimensional vector space. F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents. They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ} .

The former generic cubic curve \mathcal{C}' defined by F'(X,Y,Z) goes through P_1,\ldots,P_8 . We have $F'(X_i,Y_i,Z_i)=0$ for all $1\leq i\leq 8$. We also have $F'=\lambda F_\lambda+\mu F_\mu$ for a choice of $\lambda,\mu\in K$ as F_λ , F_μ form a basis.

By Bézout's theorem, \mathcal{F}_{λ} and \mathcal{F}_{μ} being two general cubic curves, they have $(\deg \mathcal{F}_{\lambda})(\deg \mathcal{F}_{\mu})=9$ points of intersection, counting multiplicities.

But actually we know explicitly a basis for this 2-dim vector space: \mathcal{C}_1 and \mathcal{C}_2 that are distinct and go to P_1,\ldots,P_8 . So a basis is actually F_1,F_2 and $F=\nu_1F_1+\nu_2F_2$ with $\mathcal{C}_1\colon F_1(X,Y,Z)=0$ and $\mathcal{C}_2\colon F_2(X,Y,Z)=0$.

But actually we know explicitly a basis for this 2-dim vector space: \mathcal{C}_1 and \mathcal{C}_2 that are distinct and go to P_1,\ldots,P_8 . So a basis is actually F_1,F_2 and $F=\nu_1F_1+\nu_2F_2$ with $\mathcal{C}_1\colon F_1(X,Y,Z)=0$ and $\mathcal{C}_2\colon F_2(X,Y,Z)=0$.

And moreover $P_9 \in \mathcal{C}_1 \cap \mathcal{C}_2 \implies F_1(P_9) = 0 = F_2(P_9)$ Because \mathcal{C}' is defined by $F' = \nu_1 F_1 + \nu_2 F_2$, then evaluating at P_9 , we get $F'(P_9) = 0$ and \mathcal{C}' also goes through P_9 .

Other approaches

In Washington's book Section 2.4, looking carefully at polynomials and again intersection multiplicities. Alternatively: with *resultants* of polynomials.

Further optional reading on the topic:

- Washington's book Section 2.4 pages 20 to 32;
- Silverman–Tate book Appendix A.

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Scalar multiplication

With an addition law on E, the points on the curve form a group E(K).

Scalar multiplication (exponentiation)

The multiplication-by-m map, or scalar multiplication is

$$[m]: E \rightarrow E$$

$$P \mapsto \underbrace{P + \ldots + P}_{m \text{ copies of } P}$$

for any $m \in \mathbb{Z}$, with [-m]P = [m](-P) and $[0]P = \mathcal{O}$.

- a key-ingredient operation in public-key cryptography
- given m > 0, computing [m]P as P + P + ... P with m 1 additions is **exponential** in the size of m: $m = e^{\ln m}$
- we can compute [m]P in $O(\log m)$ operations on E.

Naive Scalar multiplication: Double-and-Add

```
Input: E defined over a field K, m > 0, P \in E(K)
  Output: [m]P \in E
1 if m=0 then return \mathcal{O}
2 Write m in binary expansion m = \sum_{i=0}^{n-1} b_i 2^i where b_i \in \{0,1\}
3 R \leftarrow P
                                                           loop invariant: R = [|m/2^i|]P
4 for i = n - 2 dowto 0 do
  R \leftarrow [2]R
6 if b_i = 1 then
   R \leftarrow R + P
8 return R
```

Question: What are the best- and worst-case costs of the algorithm? Question: Why is this algorithm dangerous if *m* is secret?

Naive Scalar multiplication: Double-and-Add

```
msb = most significant bits (highest powers)
```

Isb = least significant bits (units)

Pervious slide: Most Significant Bits First algorithm.

In Washington's book, §2.2 INTEGER TIMES A POINT p.18, the LSB-first algorithm is given, disadvantage: one extra temporary variable.

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Outline

Projective space and the point at infinity

Projective space \mathbb{P}^2 as $\mathbb{A}^2 \times \mathbb{P}^1$

Multiplicity of intersection and Bézout theorem

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Public-key cryptography

Introduced in 1976 (Diffie–Hellman, DH) and 1977 (Rivest–Shamir–Adleman, RSA) Asymmetric means distinct public and private keys

- encryption with a public key
- decryption with a private key
- deducing the private key from the public key is a very hard problem

Two hard problems:

- Integer factorization (for RSA)
- Discrete logarithm computation in a finite group (for Diffie–Hellman)

Discrete logarithm problem

```
G multiplicative group of order r g generator, \mathbf{G} = \{1, g, g^2, g^3, \dots, g^{r-2}, g^{r-1}\}
```

Given $h \in \mathbf{G}$, find integer $x \in \{0, 1, \dots, r-1\}$ such that $h = g^x$.

Exponentiation easy: $(g,x) \mapsto g^x$

Discrete logarithm hard in well-chosen groups ${\bf G}$

Choice of group

Prime finite field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ where p is a prime integer Multiplicative group: $\mathbb{F}_p^*=\{1,2,\ldots,p-1\}$ Multiplication $modulo\ p$

Finite field $\mathbb{F}_{2^n} = \mathsf{GF}(2^n)$, $\mathbb{F}_{3^m} = \mathsf{GF}(3^m)$ for efficient arithmetic, now broken

Elliptic curves $E: y^2 = x^3 + ax + b/\mathbb{F}_p$

Alice Bob

Alice Bob

$$(\mathbf{G},\cdot),g,r=\#\mathbf{G}$$
 public parameters $(\mathbf{G},\cdot),g,r=\#\mathbf{G}$

Alice $(\mathbf{G}, \cdot), g, r = \#\mathbf{G}$ secret key $\mathsf{sk}_{\mathcal{A}} = \mathsf{a} \leftarrow (\mathbb{Z}/r\mathbb{Z})^*$ public value $\mathsf{PK}_{\mathcal{A}} = \mathsf{g}^{\mathsf{a}}$

Bob $(\mathbf{G}, \cdot), g, r = \#\mathbf{G}$ secret key $\mathsf{sk}_B = b \leftarrow (\mathbb{Z}/r\mathbb{Z})^*$ public value $\mathsf{PK}_B = g^b$

Alice
$$(\mathbf{G},\cdot),g,r=\#\mathbf{G}$$
 $(\mathbf{G},\cdot),g,r=\#\mathbf{G}$ secret key $\mathsf{sk}_A=a\leftarrow(\mathbb{Z}/r\mathbb{Z})^*$ secret key $\mathsf{sk}_B=b\leftarrow(\mathbb{Z}/r\mathbb{Z})^*$ public value $\mathsf{PK}_A=g^a$ public value $\mathsf{PK}_B=g^b$ PK_A gets Bob's public key PK_B gets Alice's public key PK_A $sk=\mathsf{PK}_B{}^a=g^{ab}$ $sk=\mathsf{PK}_A{}^b=g^{ab}$

Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)

Given a finite cyclic group (\mathbf{G}, \cdot) , a generator g and $h \in \mathbf{G}$, compute x s.t. $h = g^x$.

 \rightarrow can we invert the exponentiation function $(g,x)\mapsto g^x$?

Common choice of G:

- prime finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (1976)
- characteristic 2 field \mathbb{F}_{2^n} (≈ 1979)
- elliptic curve $E(\mathbb{F}_p)$ (1985)

- $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms

- $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms
 - Shanks baby-step-giant-step (BSGS): $O(\sqrt{\#G})$, deterministic
 - random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\#G})$, probabilistic (the cycle path encodes the answer)
 - parallel search (parallel Pollard, Kangarous)

- $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms
 - Shanks baby-step-giant-step (BSGS): $O(\sqrt{\#G})$, deterministic
 - random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\#G})$, probabilistic (the cycle path encodes the answer)
 - parallel search (parallel Pollard, Kangarous)
- independent search in each distinct subgroup
 - + Chinese remainder theorem (Pohlig-Hellman)

- \rightarrow choose *G* of large prime order (no subgroup)
- ightarrow complexity of inverting exponentiation in $O(\sqrt{\#G})$
- ightarrow security level 128 bits means $\sqrt{\#G} \geq 2^{128}$ take $\#G = 2^{256}$ analogy with symmetric crypto, keylength 128 bits (16 bytes)

How fast can we invert the exponentiation function $(g, x) \mapsto g^x$?

- \rightarrow choose *G* of large prime order (no subgroup)
- ightarrow complexity of inverting exponentiation in $O(\sqrt{\#G})$
- ightarrow security level 128 bits means $\sqrt{\#G} \geq 2^{128}$ take $\#G = 2^{256}$ analogy with symmetric crypto, keylength 128 bits (16 bytes)

Use additional structure of G if any.

 \implies Number Field Sieve algorithms.

Credits

- Rémi Clarisse PhD thesis at tel-03506116
- Jérémie Detrey summer school lecture at ARCHI'2017 summer school