Elliptic curves, number theory and cryptography

Week 2, Lecture 2

Aurore Guillevic

Aarhus University

Spring semester, 2022

These slides at https://members.loria.fr/AGuillevic/files/Enseignements/AU/lectures/lecture02.pdf

Outline

Projective space and the point at infinity

```
Projective space }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ as }\mp@subsup{\mathbb{A}}{}{2}\times\mp@subsup{\mathbb{P}}{}{1
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
Scalar multiplication on elliptic curves
Recap on complexity
The Discrete Log Problem in cryptography
```

$P+(-P)$

$P+(-P)$

$P+(-P)$

$P+(-P)$

$P+(-P)$

$P+(-P)$

Projective space and point at infinity

$$
E / \mathbb{R}: y^{2}=x^{3}-3 x+1
$$

Projective space and point at infinity
$E / \mathbb{R}: y^{2}=x^{3}-3 x+1$

Projective space and point at infinity
$E / \mathbb{R}: y^{2}=x^{3}-3 x+1$

Projective space and point at infinity

$$
E / \mathbb{R}: y^{2}=x^{3}-3 x+1
$$

Projective space and point at infinity

$$
E / K: y^{2}=x^{3}+A x+B \quad \operatorname{Char}(K) \neq 2,3
$$

Affine plane (Euclidean plane) over a field K

$$
\mathbb{A}^{2}(K)=\{(x, y): x, y \in K\}
$$

Group of points of E on K
The set of rational points on the curve E / K is

$$
E(K)=\left\{(x, y) \in \mathbb{A}^{2}(K) \mid(x, y) \text { satisfies } E\right\} \cup\left\{P_{\infty}\right\}
$$

where P_{∞} is the point at infinity.
We cannot represent the point at infinity P_{∞} in the affine space \mathbb{A} : there is no (∞, ∞). Intuition: store the denominator z of the coordinates (x, y) in a 3rd coord.

Projective space and point at infinity

Elliptic curves are projective plane (smooth) curves

Projective plane

The projective plane of dimension 2 defined over a field K, denoted $\mathbb{P}^{2}(K)$ is

$$
\mathbb{P}^{2}(K)=\left\{(X, Y, Z) \in K^{3} \mid(X, Y, Z) \neq(0,0,0)\right\} / \sim
$$

with the equivalence relation $(X, Y, Z) \sim\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) \Longleftrightarrow$ there exists $\lambda \neq 0 \in K$ such that $(X, Y, Z)=\left(\lambda X^{\prime}, \lambda Y^{\prime}, \lambda Z^{\prime}\right)$.

The equivalence class w.r.t. \sim is denoted $(X: Y: Z)$ with colons instead of commas.

Projective space and point at infinity

Projective space

The projective space of dimension n defined over a field K, denoted $\mathbb{P}^{n}(K)$ is

$$
\mathbb{P}^{n}(K)=\left\{\left(X_{0}, X_{1}, \ldots, X_{n}\right) \in K^{n+1} \mid\left(X_{0}, X_{1}, \ldots, X_{n}\right) \neq \mathbf{0}=(0,0, \ldots, 0)\right\} / \sim
$$

with the equivalence relation $\left(X_{0}, X_{1}, \ldots, X_{n}\right) \sim\left(X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right) \Longleftrightarrow$ there exists $\lambda \neq 0 \in K$ such that $\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\left(\lambda X_{0}^{\prime}, \lambda X_{1}^{\prime}, \lambda \ldots, X_{n}^{\prime}\right)$.

The equivalence class w.r.t. \sim is denoted $\left(X_{0}: X_{1}: \ldots: X_{n}\right)$ with colons instead of commas.

Outline

Projective space and the point at infinity
Projective space \mathbb{P}^{2} as $\mathbb{A}^{2} \times \mathbb{P}^{1}$
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
Scalar multiplication on elliptic curves
Recap on complexity
The Discrete Log Problem in cryptography

Homogenization

A polynomial $f \in K[x, y]$ defines a plane curve \mathcal{C}_{0} in $\mathbb{A}^{2}(K)$
\rightarrow a homogeneous polynomial $F \in K[X, Y, Z]$ defines
a projective plane curve \mathcal{C} in $\mathbb{P}^{2}(K)$
Degree of a bivariate polynomial
Let the degree $d=\operatorname{deg} f$ to be the largest value $i+j$ of the (non-zero) monomials $x^{i} y^{j}$ of f :

$$
f=\sum_{i, j: a_{i j} \neq 0} a_{i j} x^{i} y^{j}, \quad d=\max _{i, j: a_{j} \neq 0} i+j .
$$

Homogenization

Homogenization of a polynomial
The homogenization of $f(x, y)=\sum_{i, j:} a_{i j} \neq 0 a_{i j} x^{i} y^{j} \in K[x, y]$ is

$$
F(X, Y, Z)=\sum_{i, j: a_{i j} \neq 0} a_{i j} X^{i} Y^{j} Z^{d-i-j}, \text { where } d=\operatorname{deg}(f) .
$$

Equivalently (Washington's book 2.3 page 19),

$$
F(X, Y, Z)=Z^{d} f\left(\frac{X}{Z}, \frac{Y}{Z}\right), \text { where } d=\operatorname{deg}(f) .
$$

From this definition we have

- F is homogeneous of degree d;
- $F(x, y, 1)=f(x, y)$;
- $F(x, y, 0) \neq 0$, and
- $F(X, Y, Z)=0$ does not contain the line at infinity

Why homogenization?

(slide added to answer a question)
In the projective space, a point $P\left(X_{0}, Y_{0}, Z_{0}\right)$ has many possible representations:

$$
P=\left(\lambda X_{0}, \lambda Y_{0}, \lambda Z_{0}\right) \text { for any scalar } \lambda \neq 0
$$

$P \in \mathcal{C}$ a curve of $\mathbb{P}^{2} \Longrightarrow P$ is a zero of a polynomial $F(X, Y, Z)$.
But then we require $F\left(\lambda X_{0}, \lambda Y_{0}, \lambda Z_{0}\right)=0$ for all $\lambda \neq 0$.
Thanks to homogenization, we have

$$
F\left(\lambda X_{0}, \lambda Y_{0}, \lambda Z_{0}\right)=\lambda^{d} F\left(X_{0}, Y_{0}, Z_{0}\right)
$$

hence

$$
P \in \mathcal{C} \Longleftrightarrow F\left(X_{0}, Y_{0}, Z_{0}\right)=0 \Longleftrightarrow F\left(\lambda X_{0}, \lambda Y_{0}, \lambda Z_{0}\right)=0 \forall \lambda \neq 0
$$

A projective plane curve is smooth

Let $E: F(X, Y, Z)=0$ over a field K, where F is a homogeneous polynomial. There is no singular point $\left(X_{0}, Y_{0}, Z_{0}\right)$ such that

$$
\left\{\begin{aligned}
\frac{\partial F}{\partial X}\left(X_{0}, Y_{0}, Z_{0}\right) & =0 \\
\frac{\partial F}{\partial Y}\left(X_{0}, Y_{0}, Z_{0}\right) & =0 \\
\frac{\partial F}{\partial Z}\left(X_{0}, Y_{0}, Z_{0}\right) & =0
\end{aligned}\right.
$$

where $\partial F / \partial X, \partial F / \partial Y, \partial F / \partial Z$ are the partial derivatives.

A line in $\mathbb{P}^{2}(K)$

Affine plane (Euclidean plane) over a field K

$$
\mathbb{A}^{2}(K)=\{(x, y): x, y \in K\}
$$

A line in the affine plane $\mathbb{A}^{2}(K)$ is defined by an equation of the form

$$
\mathcal{L}: a x+b y+c=0, \text { with }(a, b, c) \neq(0,0,0)
$$

Applying the homogenization formula, one has:

Projective Line

A projective line in $\mathbb{P}^{2}(K)$ has an equation of the form

$$
\mathcal{L}: a X+b Y+c Z=0, \text { with }(a, b, c) \neq(0,0,0)
$$

- Two distinct points of \mathbb{A}^{2} determine a line in \mathbb{A}^{2}
- two lines of \mathbb{A}^{2} determine one point in \mathbb{A}^{2} unless they are parallel.

The projective plane will contain the intersection point of parallel lines at infinity.

Two parallel lines meet at infinity

At infinity is not a single point

Distinct pairs of parallel lines do not meet at the same point at infinity. $\mathcal{L}_{1} \cap \mathcal{L}_{2}=\{P\}$ in \mathbb{A}^{2} so $\mathcal{L}_{1}, \mathcal{L}_{2}$ cannot share a 2 nd point \mathcal{O}

Points at infinity

The Points at infinity in the projective plane $\mathbb{P}^{2}(K)$ correspond to directions of parallel lines in $\mathbb{A}^{2}(K)$

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \cup\left\{\text { the directions in } \mathbb{A}^{2}\right\}
$$

where direction is not oriented, like the slope of a line.
The set of directions in \mathbb{A}^{2} is

$$
\left\{(x, y) \in K^{2}\right\} / \sim
$$

where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists \lambda \neq 0 \in K,(x, y)=(\lambda x, \lambda y)$.
We have

$$
\mathbb{P}^{2}(K)=\mathbb{A}^{2}(K) \cup \mathbb{P}^{1}(K)
$$

Correspondence of $\mathbb{A}^{2} \cup \mathbb{P}^{1}$ and \mathbb{P}^{2}

$$
\begin{aligned}
& \mathbb{P}^{2}(K)=\left\{(X, Y, Z) \in K^{3},(X, Y, Z) \neq(0,0,0)\right\} / \sim \\
& \mathbb{P}^{2}(K) \longleftrightarrow \mathbb{A}^{2}(K) \cup \mathbb{P}^{1}(K) \\
&(X, Y, Z) \mapsto \begin{cases}\left(\frac{X}{Z}, \frac{Y}{Z}\right) \in \mathbb{A}^{2}(K) & \text { if } Z \neq 0 \\
(X, Y) \in \mathbb{P}^{1}(K) & \text { if } Z=0\end{cases} \\
&(x, y, 1) \leftrightarrow(x, y) \in \mathbb{A}^{2}(K) \\
&(X, Y, 0) \leftrightarrow(X, Y) \in \mathbb{P}^{1}(K)
\end{aligned}
$$

Projective plane smooth curve

A projective plane cubic curve \mathcal{C} in $\mathbb{P}^{2}(K)$ is given by an equation

$$
\mathcal{C}: F(X, Y, Z)=0
$$

where F is a homogeneous polynomial of degree 3 .
An elliptic curve in $\mathbb{P}^{2}(K)$ is given by an equation

$$
\mathcal{E}: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}, 4 a^{3}+27 b^{2} \neq 0
$$

and the group of points on \mathcal{E} is

$$
\mathcal{E}(K)=\left\{(X, Y, Z) \in \mathbb{P}^{2}(K): F_{\mathcal{E}}(X, Y, Z)=0\right\}
$$

Point at infinity in the Projective Plane

$$
\begin{gathered}
\mathcal{E}: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}, 4 a^{3}+27 b^{2} \neq 0 \\
Z=0 \Longrightarrow \mathcal{E}: 0=X^{3}
\end{gathered}
$$

The Point at infinity is

$$
(X, Y, Z=0) \in \mathcal{E}(K) \Longrightarrow X=0
$$

There is no condition on Y except $Y \neq 0$ because $(0,0,0) \notin \mathbb{P}^{2}$. Then $(0, \lambda, 0)$ for any $\lambda \neq 0$ is the direction of a vertical line in \mathbb{A}^{2}.

Point at infinity on \mathcal{E}
The equivalence class of the point at infinity on \mathcal{E} is $\mathcal{O}=(0: 1: 0)$.

Projective coordinates

Washington's book section 2.6.1
Addition and doubling can be done without special treatment of points of order 2
$P(x, 0) \in \mathbb{A}^{2} \mapsto(X, 0,1) \in \mathbb{P}^{2}$
$P\left(X_{1}, Y_{1}, Z_{1}\right)+Q\left(X_{2}, Y_{2}, Z_{2}\right)$
Suppose that none is \mathcal{O}, then $Z_{1} \neq 0, Z_{2} \neq 0$.
Their affine part is $P\left(x_{1}, y_{1}\right)=\left(X_{1} / Z_{1}, Y_{1} / Z_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)=\left(X_{2} / Z_{2}, Y_{2} / Z_{2}\right)$.
\mathcal{L} through P and Q has slope $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{Y_{2} / Z_{2}-Y_{1} / Z_{1}}{X_{2} / Z_{2}-X_{1} / Z_{1}}=\frac{Y_{2} Z_{1}-Y_{1} Z_{2}}{X_{2} Z_{1}-X_{1} Z_{2}}$
If $P=Q$ then $\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}=\frac{3 X_{1}^{2} / Z_{1}^{2}+a}{2 Y_{1} / Z_{1}}=\frac{3 X_{1}^{2}+a Z_{1}^{2}}{2 Y_{1} Z_{1}}$

Addition law in projective coordinates (in $\left.\mathbb{P}^{2}(K)\right)$

See the Elliptic Curve Formula Database (EFD) by Tanja Lange:
www.hyperelliptic.org/EFD/g1p/auto-shortw-projective.html Let $P_{1}=\left(X_{1}, Y_{1}, Z_{1}\right)$ and $P_{2}=\left(X_{2}, Y_{2}, Z_{2}\right)$ be two points on

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

Adapting directly the formula $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$, resp. $\lambda=\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right)$ to projective coordinates with $x_{i}=X_{i} / Z_{i}, y_{i}=Y_{i} / Z_{i}$, the slope of the line $\left(P_{1}, P_{2}\right)$ is given by

$$
\lambda= \begin{cases}\frac{Y_{2} Z_{1}-Y_{1} Z_{2}}{X_{2} Z_{1}-X_{1} Z_{2}} & \text { if } P_{1} \neq \pm P_{2} \\ \frac{3 X_{1}^{2}+a Z_{1}^{2}}{2 Y_{1} Z_{1}} & \text { if } P_{1}=P_{2} \text { and } Y_{1} \neq 0\end{cases}
$$

Addition law in projective coordinates in $\mathbb{P}^{2}(K)$
Cohen, Miyaji and Ono published at Asiacrypt'1998 the formulas

$$
\begin{aligned}
u & =Y_{2} \cdot Z_{1}-Y_{1} \cdot Z_{2} \\
v & =X_{2} \cdot Z_{1}-X_{1} \cdot Z_{2} \\
A & =u^{2} \cdot Z_{1} \cdot Z_{2}-v^{3}-2 v^{2} \cdot X_{1} Z_{2} \\
X_{3} & =v \cdot A \\
Y_{3} & =u \cdot\left(v^{2} X_{1} Z_{2}-A\right)-v^{3} \cdot Y_{1} Z_{2} \\
Z_{3} & =v^{3} \cdot Z_{1} Z_{2}
\end{aligned}
$$

this costs 11 Mult., the squares u^{2}, v^{2}, then $v^{3}=v^{2} \cdot v$, hence 12 Mult. +2 Squares and negligible additions and subtractions.

Addition law in projective coordinates in $\mathbb{P}^{2}(K)$
For doubling, Cohen, Miyaji and Ono have

$$
\begin{aligned}
w & =a Z_{1}^{2}+3 X_{1}^{2} \\
s & =Y_{1} \cdot Z_{1} \\
B & =X_{1} \cdot Y_{1} \cdot s \\
h & =w^{2}-8 B \\
X_{3} & =2 h \cdot s \\
Y_{3} & =w \cdot(4 B-h)-8 \cdot\left(Y_{1} s\right)^{2} \\
Z_{3} & =8 s^{3}
\end{aligned}
$$

this costs 6 Mult., 5 Squares and $w^{3}=w^{2} \cdot w$, hence
7 Mult. + 5 Squares and negligible additions, subtractions and a multiplication by a.

Corner cases of addition law in projective coordinates in $\mathbb{P}^{2}(K)$

If $P\left(X_{1}, Y_{1}, Z_{1}\right)$ and $Q=-P_{1}=\left(X_{1},-Y_{1}, Z_{1}\right)$ with $Y_{1} \neq 0$ then the addition formula computes
$\left(X_{3}, Y_{3}, Z_{3}\right)=\left(0, Y_{3}, 0\right)$ and $Y_{3}=8 Y_{1}^{3} Z_{1}^{5} \neq 0$
This is the point at infinity \mathcal{O}, without division by 0 .
If $P_{1}\left(X_{1}, 0, Z_{1}\right)$ has order 2 , the doubling formula computes $\left(0, Y_{3}, 0\right)=\mathcal{O}$ without a division by 0 .

Other coordinate systems and forms of elliptic curves

There are many other coordinate systems:

- affine (x, y)
- projective $(X, Y, Z) \mapsto(X / Z, Y / Z)$
- Jacobian $(X, Y, Z) \mapsto\left(X / Z^{2}, Y / Z^{3}\right)$
- extended Jacobian $\left(X, Y, Z, Z^{2}\right) \mapsto\left(X / Z^{2}, Y / Z^{3}\right)$
that can be combined with different forms of curves:
- Short Weierstrass with $a=-3, a=1, a=0, b=0$, etc
- Specificities: points of order 2 or 4 available
- Montgomery form
- Edwards, twisted Edwards form
- Jacobi Quartic
- Huff form
- ...
\rightarrow EFD contains almost all of them.

Outline

```
Projective space and the point at infinity
Projective space }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ as }\mp@subsup{\mathbb{A}}{}{2}\times\mp@subsup{\mathbb{P}}{}{1
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
Scalar multiplication on elliptic curves
Recap on complexity
The Discrete Log Problem in cryptography
```


Étienne Bézout

French mathematician (1730-1783)
Scientist in the Navy

You can read about Bézout's theorem on Wikipedia at this link:
https://en.wikipedia.org/wiki/B\�\%
A9zout\%27s_theorem

https://mathshistory.st-andrews.ac.
uk/Biographies/Bezout/pictdisplay/

Multiplicity of intersection

Let \mathcal{C} and \mathcal{C}^{\prime} be two projective plane curves with no common component, that is they are defined by homogeneous polynomials F and G with no common factor. the Multiplicity of intersection of \mathcal{C} and \mathcal{C}^{\prime} at $P \in \mathbb{P}^{2}$ is the unique integer $I_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right) \geq 0$ such that

1. $I_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)=0 \Longleftrightarrow P \notin \mathcal{C} \cap \mathcal{C}^{\prime}$
2. If $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, if P is a non-singular point of \mathcal{C}_{1} and \mathcal{C}_{2}, and if \mathcal{C}_{1} and \mathcal{C}_{2} have different tangent directions at P, then $I_{P}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)=1$
One often says in this case that \mathcal{C}_{1} and \mathcal{C}_{2} intersect transversally at P.
3. If $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$ and if \mathcal{C}_{1} and \mathcal{C}_{2} do not intersect transversally at P, then $I_{P}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right) \geq 2$.

Bézout's theorem

Silverman-Tate book appendix A.
Let \mathcal{C}_{1} and \mathcal{C}_{2} be projective curves with no common component. Then

$$
\sum_{P \in \mathcal{C}_{1} \cap \mathcal{C}_{2}} I_{P}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)=\left(\operatorname{deg} \mathcal{C}_{1}\right)\left(\operatorname{deg} \mathcal{C}_{2}\right)
$$

where the sum is over all points of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ in the algebraically closed field K (e.g. \mathbb{C} or $\overline{\mathbb{F}_{p}}$).

In particular, if \mathcal{C}_{1} and \mathcal{C}_{2} are smooth curves with only transversal intersections, then $\# \mathcal{C}_{1} \cap \mathcal{C}_{2}=\left(\operatorname{deg} \mathcal{C}_{1}\right)\left(\operatorname{deg} \mathcal{C}_{2}\right)$; and in all cases there is an inequality

$$
\#\left(\mathcal{C}_{1} \cap \mathcal{C}_{2}\right) \leq\left(\operatorname{deg} \mathcal{C}_{1}\right)\left(\operatorname{deg} \mathcal{C}_{2}\right)
$$

Outline

```
Projective space and the point at infinity
Projective space }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ as }\mp@subsup{\mathbb{A}}{}{2}\times\mp@subsup{\mathbb{P}}{}{1
Multiplicity of intersection and Bézout theorem
```

Associativity of the addition law

Scalar multiplication on elliptic curves

Recap on complexity

The Discrete Log Problem in cryptography

Associativity: $(P+Q)+R=P+(Q+R)$

Idea of the proof using Bézout's theorem

This will NOT be in the exam

Silverman-Tate book pages 16-21 and 238-240.
From Bézout's theorem, two distinct cubic projective plane curves without a common component have exactly 9 intersection points.

Theorem A
Let $\mathcal{C}, \mathcal{C}_{1}$ and \mathcal{C}_{2} be three cubic curves. Suppose \mathcal{C} goes through eight of the nine intersection points of \mathcal{C}_{1} and \mathcal{C}_{2}. Then \mathcal{C} goes through the ninth intersection point.

Idea of the proof using Bézout's theorem

Let's consider an elliptic curve \mathcal{C} and the eight points

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}
$$

To show associativity, we need to show that there is a unique ninth point:

$$
-((P+Q)+R)=-(P+(Q+R)) .
$$

Idea of the proof using Bézout's theorem

Let \mathcal{C}_{1} be defined by the equations of the three lines through the nine distinct points $P, Q,-(P+Q) \in \ell_{P, Q}$, the vertical $-(Q+R), Q+R, \mathcal{O} \in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R) \in \ell_{P+Q, R}$ multiplied together:

$$
\mathcal{C}_{1}: F_{1}(X, Y, Z)=\ell_{P, Q} \cdot v_{Q+R} \cdot \ell_{P+Q, R}=0
$$

Idea of the proof using Bézout's theorem

Let \mathcal{C}_{1} be defined by the equations of the three lines through the nine distinct points $P, Q,-(P+Q) \in \ell_{P, Q}$, the vertical $-(Q+R), Q+R, \mathcal{O} \in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R) \in \ell_{P+Q, R}$ multiplied together:

$$
\mathcal{C}_{1}: F_{1}(X, Y, Z)=\ell_{P, Q} \cdot v_{Q+R} \cdot \ell_{P+Q, R}=0
$$

Let \mathcal{C}_{2} be defined by the equations of the three lines through the nine distinct points $Q, R,-(Q+R) \in \ell_{Q, R}$, the vertical $P+Q,-(P+Q), \mathcal{O} \in v_{P+Q}$, and $P, Q+R,-(P+(Q+R)) \in \ell_{P, Q+R}$ multiplied together:

$$
\mathcal{C}_{2}: F_{2}(X, Y, Z)=\ell_{Q, R} \cdot v_{P+Q} \cdot \ell_{P, Q+R}=0
$$

Idea of the proof using Bézout's theorem

Let \mathcal{C}_{1} be defined by the equations of the three lines through the nine distinct points $P, Q,-(P+Q) \in \ell_{P, Q}$, the vertical $-(Q+R), Q+R, \mathcal{O} \in v_{Q+R}$, and $R,(P+Q),-((P+Q)+R) \in \ell_{P+Q, R}$ multiplied together:

$$
\mathcal{C}_{1}: F_{1}(X, Y, Z)=\ell_{P, Q} \cdot v_{Q+R} \cdot \ell_{P+Q, R}=0
$$

Let \mathcal{C}_{2} be defined by the equations of the three lines through the nine distinct points $Q, R,-(Q+R) \in \ell_{Q, R}$, the vertical $P+Q,-(P+Q), \mathcal{O} \in v_{P+Q}$, and $P, Q+R,-(P+(Q+R)) \in \ell_{P, Q+R}$ multiplied together:

$$
\mathcal{C}_{2}: F_{2}(X, Y, Z)=\ell_{Q, R} \cdot v_{P+Q} \cdot \ell_{P, Q+R}=0
$$

Then \mathcal{C}_{1} and \mathcal{C}_{2} are two cubic curves of \mathbb{P}^{2} that intersect at nine distinct points, namely the known

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}_{1} \cap \mathcal{C}_{2}
$$

and a ninth intersection point $P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$.

Idea of the proof using Bézout's theorem

Now \mathcal{C} is a curve that goes to the first eight points

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}
$$

Hence by Theorem A it also goes through the 9-th point of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. Thus the ninth intersection point of \mathcal{C}_{1} and \mathcal{C}_{2} lies on $\mathcal{C}: P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}, P_{9} \in \mathcal{C}$.

Idea of the proof using Bézout's theorem

Now \mathcal{C} is a curve that goes to the first eight points

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}
$$

Hence by Theorem A it also goes through the 9-th point of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. Thus the ninth intersection point of \mathcal{C}_{1} and \mathcal{C}_{2} lies on $\mathcal{C}: P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}, P_{9} \in \mathcal{C}$.

Both $-((P+Q)+R) \in \mathcal{C}_{1}$ and $-(P+(Q+R)) \in \mathcal{C}_{2}$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_{9} \in \mathcal{C} \cap \mathcal{C}_{1}$ and $-(P+(Q+R)), P_{9} \in \mathcal{C} \cap \mathcal{C}_{2}$

Idea of the proof using Bézout's theorem

Now \mathcal{C} is a curve that goes to the first eight points

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}
$$

Hence by Theorem A it also goes through the 9-th point of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. Thus the ninth intersection point of \mathcal{C}_{1} and \mathcal{C}_{2} lies on $\mathcal{C}: P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}, P_{9} \in \mathcal{C}$.

Both $-((P+Q)+R) \in \mathcal{C}_{1}$ and $-(P+(Q+R)) \in \mathcal{C}_{2}$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_{9} \in \mathcal{C} \cap \mathcal{C}_{1}$ and $-(P+(Q+R)), P_{9} \in \mathcal{C} \cap \mathcal{C}_{2}$

But by Bézout's theorem, $\#\left(\mathcal{C} \cap \mathcal{C}_{1}\right) \leq 9$ and $\#\left(\mathcal{C} \cap \mathcal{C}_{2}\right) \leq 9$ as cubic curves,

Idea of the proof using Bézout's theorem

Now \mathcal{C} is a curve that goes to the first eight points

$$
P, Q, R, \mathcal{O},-(P+Q), P+Q,-(Q+R),(Q+R) \in \mathcal{C}
$$

Hence by Theorem A it also goes through the 9-th point of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$. Thus the ninth intersection point of \mathcal{C}_{1} and \mathcal{C}_{2} lies on $\mathcal{C}: P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}, P_{9} \in \mathcal{C}$.

Both $-((P+Q)+R) \in \mathcal{C}_{1}$ and $-(P+(Q+R)) \in \mathcal{C}_{2}$ also lies on \mathcal{C} by construction. Hence $-((P+Q)+R), P_{9} \in \mathcal{C} \cap \mathcal{C}_{1}$ and $-(P+(Q+R)), P_{9} \in \mathcal{C} \cap \mathcal{C}_{2}$

But by Bézout's theorem, $\#\left(\mathcal{C} \cap \mathcal{C}_{1}\right) \leq 9$ and $\#\left(\mathcal{C} \cap \mathcal{C}_{2}\right) \leq 9$ as cubic curves, so finally

$$
P_{9}=-(P+(Q+R))=-((P+Q)+R) .
$$

Proof of Theorem A

Theorem A

Let $\mathcal{C}, \mathcal{C}_{1}$ and \mathcal{C}_{2} be three cubic curves. Suppose \mathcal{C} goes through eight of the nine intersection points of \mathcal{C}_{1} and \mathcal{C}_{2}. Then \mathcal{C} goes through the ninth intersection point.
This will NOT be in the exam
Let \mathcal{C}_{1} and \mathcal{C}_{2} be two distinct cubic smooth plane curves without a common component.
By Bézout's theorem, \mathcal{C}_{1} and \mathcal{C}_{2} intersect at exactly 9 points P_{1}, \ldots, P_{9}. Consider the 9 distinct points P_{1}, \ldots, P_{9} in $\mathbb{P}^{2}(K)$.

Let \mathcal{C}^{\prime} be another cubic smooth plane curve going through the first eight points P_{1}, \ldots, P_{8}.
We will show that \mathcal{C}^{\prime} also goes through P_{9}.

Proof of Theorem A

Consider a generic cubic projective plane curve $\mathcal{C}: F(X, Y, Z)=0$ given by a homogeneous irreducible degree 3 polynomial

$$
F=a_{0}+a_{1} X Z^{2}+a_{2} X^{2} Z+a_{3} X^{3}+a_{4} Y Z^{2}+a_{5} Y^{2} Z+a_{6} Y^{3}+a_{7} X Y Z+a_{8} X^{2} Y+a_{9} X Y^{2}
$$

with 10 parameters $\left\{a_{i}\right\}_{0 \leq i \leq 9}$.

Proof of Theorem A

Consider a generic cubic projective plane curve $\mathcal{C}: F(X, Y, Z)=0$ given by a homogeneous irreducible degree 3 polynomial

$$
F=a_{0}+a_{1} X Z^{2}+a_{2} X^{2} Z+a_{3} X^{3}+a_{4} Y Z^{2}+a_{5} Y^{2} Z+a_{6} Y^{3}+a_{7} X Y Z+a_{8} X^{2} Y+a_{9} X Y^{2}
$$

with 10 parameters $\left\{a_{i}\right\}_{0 \leq i \leq 9}$.
$P_{1} \in \mathcal{C} \Longrightarrow$ an equation $F\left(X_{1}, Y_{1}, Z_{1}\right)$ forces a condition on the $a_{i} \mathrm{~s}$.

Proof of Theorem A

Consider a generic cubic projective plane curve $\mathcal{C}: F(X, Y, Z)=0$ given by a homogeneous irreducible degree 3 polynomial

$$
F=a_{0}+a_{1} X Z^{2}+a_{2} X^{2} Z+a_{3} X^{3}+a_{4} Y Z^{2}+a_{5} Y^{2} Z+a_{6} Y^{3}+a_{7} X Y Z+a_{8} X^{2} Y+a_{9} X Y^{2}
$$

with 10 parameters $\left\{a_{i}\right\}_{0 \leq i \leq 9}$.
$P_{1} \in \mathcal{C} \Longrightarrow$ an equation $F\left(X_{1}, Y_{1}, Z_{1}\right)$ forces a condition on the $a_{i} \mathrm{~s}$. Going through the 8 points P_{1}, \ldots, P_{8} forces 8 conditions on the a_{i} s.

Proof of Theorem A

Consider a generic cubic projective plane curve $\mathcal{C}: F(X, Y, Z)=0$ given by a homogeneous irreducible degree 3 polynomial
$F=a_{0}+a_{1} X Z^{2}+a_{2} X^{2} Z+a_{3} X^{3}+a_{4} Y Z^{2}+a_{5} Y^{2} Z+a_{6} Y^{3}+a_{7} X Y Z+a_{8} X^{2} Y+a_{9} X Y^{2}$
with 10 parameters $\left\{a_{i}\right\}_{0 \leq i \leq 9}$.
$P_{1} \in \mathcal{C} \Longrightarrow$ an equation $F\left(X_{1}, Y_{1}, Z_{1}\right)$ forces a condition on the $a_{i} s$. Going through the 8 points P_{1}, \ldots, P_{8} forces 8 conditions on the a_{i} s.

The set of $\left\{a_{i}\right\}_{0 \leq i \leq 9}$ is a K-vector space of dimension 10, and the 8 conditions $P_{i} \in \mathcal{C} \Longleftrightarrow F\left(X_{i}, Y_{i}, Z_{i}\right)=0$ make it a K-vector space of $\operatorname{dim} 2$.

Proof of Theorem A

Let $\left(F_{\lambda}, F_{\mu}\right)$ a basis of this 2-dimensional vector space.
F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents.
They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ}.

Proof of Theorem A

Let $\left(F_{\lambda}, F_{\mu}\right)$ a basis of this 2-dimensional vector space.
F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents.
They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ}.
The former generic cubic curve \mathcal{C}^{\prime} defined by $F^{\prime}(X, Y, Z)$ goes through P_{1}, \ldots, P_{8}.
We have $F^{\prime}\left(X_{i}, Y_{i}, Z_{i}\right)=0$ for all $1 \leq i \leq 8$.
We also have $F^{\prime}=\lambda F_{\lambda}+\mu F_{\mu}$ for a choice of $\lambda, \mu \in K$ as F_{λ}, F_{μ} form a basis.

Proof of Theorem A

Let $\left(F_{\lambda}, F_{\mu}\right)$ a basis of this 2-dimensional vector space.
F_{λ}, F_{μ} are homogeneous polynomials of degree 3 and linearly independents.
They define curves \mathcal{F}_{λ} and \mathcal{F}_{μ}.
The former generic cubic curve \mathcal{C}^{\prime} defined by $F^{\prime}(X, Y, Z)$ goes through P_{1}, \ldots, P_{8}.
We have $F^{\prime}\left(X_{i}, Y_{i}, Z_{i}\right)=0$ for all $1 \leq i \leq 8$.
We also have $F^{\prime}=\lambda F_{\lambda}+\mu F_{\mu}$ for a choice of $\lambda, \mu \in K$ as F_{λ}, F_{μ} form a basis.
By Bézout's theorem, \mathcal{F}_{λ} and \mathcal{F}_{μ} being two general cubic curves, they have $\left(\operatorname{deg} \mathcal{F}_{\lambda}\right)\left(\operatorname{deg} \mathcal{F}_{\mu}\right)=9$ points of intersection, counting multiplicities.

Proof of Theorem A

But actually we know explicitly a basis for this 2-dim vector space:
\mathcal{C}_{1} and \mathcal{C}_{2} that are distinct and go to P_{1}, \ldots, P_{8}.
So a basis is actually F_{1}, F_{2} and $F=\nu_{1} F_{1}+\nu_{2} F_{2}$ with $\mathcal{C}_{1}: F_{1}(X, Y, Z)=0$ and $\mathcal{C}_{2}: F_{2}(X, Y, Z)=0$.

Proof of Theorem A

But actually we know explicitly a basis for this 2 -dim vector space:
\mathcal{C}_{1} and \mathcal{C}_{2} that are distinct and go to P_{1}, \ldots, P_{8}.
So a basis is actually F_{1}, F_{2} and $F=\nu_{1} F_{1}+\nu_{2} F_{2}$ with $\mathcal{C}_{1}: F_{1}(X, Y, Z)=0$ and $\mathcal{C}_{2}: F_{2}(X, Y, Z)=0$.

And moreover $P_{9} \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \Longrightarrow F_{1}\left(P_{9}\right)=0=F_{2}\left(P_{9}\right)$
Because \mathcal{C}^{\prime} is defined by $F^{\prime}=\nu_{1} F_{1}+\nu_{2} F_{2}$, then evaluating at P_{9}, we get $F^{\prime}\left(P_{9}\right)=0$ and \mathcal{C}^{\prime} also goes through P_{9}.

Other approaches

In Washington's book Section 2.4, looking carefully at polynomials and again intersection multiplicities. Alternatively: with resultants of polynomials.

Further optional reading on the topic:

- Washington's book Section 2.4 pages 20 to 32;
- Silverman-Tate book Appendix A.

Outline

```
Projective space and the point at infinity
Projective space }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ as }\mp@subsup{\mathbb{A}}{}{2}\times\mp@subsup{\mathbb{P}}{}{1
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
```

Scalar multiplication on elliptic curves

```
Recap on complexity
```

The Discrete Log Problem in cryptography

Scalar multiplication

With an addition law on E, the points on the curve form a group $E(K)$.

Scalar multiplication (exponentiation)

The multiplication-by- m map, or scalar multiplication is

$$
\begin{aligned}
{[m]: E } & \rightarrow E \\
P & \mapsto \underbrace{P+\ldots+P}_{m \text { copies of } P}
\end{aligned}
$$

for any $m \in \mathbb{Z}$, with $[-m] P=[m](-P)$ and $[0] P=\mathcal{O}$.

- a key-ingredient operation in public-key cryptography
- given $m>0$, computing [m] P as $P+P+\ldots P$ with $m-1$ additions is exponential in the size of $m: m=e^{\ln m}$
- we can compute $[m] P$ in $O(\log m)$ operations on E.

Naive Scalar multiplication: Double-and-Add

Input: E defined over a field $K, m>0, P \in E(K)$
Output: $[m] P \in E$
1 if $m=0$ then return \mathcal{O}
2 Write m in binary expansion $m=\sum_{i=0}^{n-1} b_{i} 2^{i}$ where $b_{i} \in\{0,1\}$
$3 R \leftarrow P$
4 for $i=n-2$ dowto 0 do loop invariant: $R=\left[\left\lfloor m / 2^{i}\right]\right] P$
$5 \quad R \leftarrow[2] R$
$6 \quad$ if $b_{i}=1$ then
$7 \quad R \leftarrow R+P$
8 return R
Question: What are the best- and worst-case costs of the algorithm?
Question: Why is this algorithm dangerous if m is secret?

Naive Scalar multiplication: Double-and-Add

$\mathbf{m s b}=$ most significant bits (highest powers)
Isb $=$ least significant bits (units)
Pervious slide: Most Significant Bits First algorithm.
In Washington's book, §2.2 INTEGER TIMES A POINT p.18, the LSB-first algorithm is given, disadvantage: one extra temporary variable.

Outline

```
Projective space and the point at infinity
Projective space }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ as }\mp@subsup{\mathbb{A}}{}{2}\times\mp@subsup{\mathbb{P}}{}{1
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
Scalar multiplication on elliptic curves
```

Recap on complexity

The Discrete Log Problem in cryptography

Outline

Projective space and the point at infinity
Projective space \mathbb{P}^{2} as $\mathbb{A}^{2} \times \mathbb{P}^{1}$
Multiplicity of intersection and Bézout theorem
Associativity of the addition law
Scalar multiplication on elliptic curves
Recap on complexity
The Discrete Log Problem in cryptography

Public-key cryptography

Introduced in 1976 (Diffie-Hellman, DH) and 1977 (Rivest-Shamir-Adleman, RSA) Asymmetric means distinct public and private keys

- encryption with a public key
- decryption with a private key
- deducing the private key from the public key is a very hard problem

Two hard problems:

- Integer factorization (for RSA)
- Discrete logarithm computation in a finite group (for Diffie-Hellman)

Discrete logarithm problem

G multiplicative group of order r
g generator, $\mathbf{G}=\left\{1, g, g^{2}, g^{3}, \ldots, g^{r-2}, g^{r-1}\right\}$
Given $h \in \mathbf{G}$, find integer $x \in\{0,1, \ldots, r-1\}$ such that $h=g^{x}$.
Exponentiation easy: $(g, x) \mapsto g^{x}$
Discrete logarithm hard in well-chosen groups G

Choice of group

Prime finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ where p is a prime integer
Multiplicative group: $\mathbb{F}_{p}^{*}=\{1,2, \ldots, p-1\}$
Multiplication modulo p
Finite field $\mathbb{F}_{2^{n}}=\operatorname{GF}\left(2^{n}\right), \mathbb{F}_{3^{m}}=\mathrm{GF}\left(3^{m}\right)$ for efficient arithmetic, now broken
Elliptic curves $E: y^{2}=x^{3}+a x+b / \mathbb{F}_{p}$

Diffie-Hellman key exchange

> Alice Bob

Diffie-Hellman key exchange

$$
\begin{array}{cc}
\text { Alice } \\
(\mathbf{G}, \cdot), g, r=\# \mathbf{G} & \text { Bublic parameters }
\end{array} \quad(\mathbf{G}, \cdot), g, r=\# \mathbf{G}
$$

Diffie-Hellman key exchange

> Alice
> $(\mathbf{G}, \cdot), g, r=\# \mathbf{G}$
> secret key sk $=a \leftarrow(\mathbb{Z} / r \mathbb{Z})^{*}$
> public value $\mathrm{PK}_{A}=g^{a}$

Bob
$(\mathbf{G}, \cdot), g, r=\# \mathbf{G}$
secret key $\mathrm{sk}_{B}=b \leftarrow(\mathbb{Z} / r \mathbb{Z})^{*}$
public value $\mathrm{PK}_{B}=g^{b}$

Diffie-Hellman key exchange

$$
\begin{aligned}
& \text { Alice } \\
& (\mathbf{G}, \cdot), g, r=\# \mathbf{G} \\
& \text { secret key } \mathrm{sk}_{A}=a \leftarrow(\mathbb{Z} / r \mathbb{Z})^{*} \\
& \text { public value } \mathrm{PK}_{A}=g^{a}
\end{aligned}
$$

Diffie-Hellman key exchange

Alice

Bob

$$
(\mathbf{G}, \cdot), g, r=\# \mathbf{G}
$$

secret key $\mathrm{sk}_{A}=a \leftarrow(\mathbb{Z} / r \mathbb{Z})^{*}$
public value $\mathrm{PK}_{A}=g^{a}$

gets Bob's public key PK_{B}

$$
s k=\mathrm{PK}_{B}{ }^{a}=g^{\mathrm{ab}}
$$

gets Alice's public key PK_{A}

$$
s k=\mathrm{PK}_{A}^{b}=g^{a b}
$$

Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)
Given a finite cyclic group (\mathbf{G}, \cdot), a generator g and $h \in \mathbf{G}$, compute \times s.t. $h=g^{x}$.
\rightarrow can we invert the exponentiation function $(g, x) \mapsto g^{x}$?
Common choice of G:

- prime finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ (1976)
- characteristic 2 field $\mathbb{F}_{2^{n}}(\approx 1979)$
- elliptic curve $E\left(\mathbb{F}_{p}\right)(1985)$

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?

- $g \in G$ generator, \exists always a preimage $x \in\{1, \ldots, \# G\}$
- naive search, try them all: $\# G$ tests
- $O(\sqrt{\# G})$ generic algorithms

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?

- $g \in G$ generator, \exists always a preimage $x \in\{1, \ldots, \# G\}$
- naive search, try them all: $\# G$ tests
- $O(\sqrt{\# G})$ generic algorithms
- Shanks baby-step-giant-step (BSGS): $O(\sqrt{\# G})$, deterministic
- random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\# G})$, probabilistic (the cycle path encodes the answer)
- parallel search (parallel Pollard, Kangarous)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{\times}$?

- $g \in G$ generator, \exists always a preimage $x \in\{1, \ldots, \# G\}$
- naive search, try them all: $\# G$ tests
- $O(\sqrt{\# G})$ generic algorithms
- Shanks baby-step-giant-step (BSGS): $O(\sqrt{\# G})$, deterministic
- random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\# G})$, probabilistic (the cycle path encodes the answer)
- parallel search (parallel Pollard, Kangarous)
- independent search in each distinct subgroup
+ Chinese remainder theorem (Pohlig-Hellman)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{\times}$?
\rightarrow choose G of large prime order (no subgroup)
\rightarrow complexity of inverting exponentiation in $O(\sqrt{\# G})$
\rightarrow security level 128 bits means $\sqrt{\# G} \geq 2^{128}$
take $\# G=2^{256}$
analogy with symmetric crypto, keylength 128 bits (16 bytes)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{\times}$?
\rightarrow choose G of large prime order (no subgroup)
\rightarrow complexity of inverting exponentiation in $O(\sqrt{\# G})$
\rightarrow security level 128 bits means $\sqrt{\# G} \geq 2^{128}$
take $\# G=2^{256}$
analogy with symmetric crypto, keylength 128 bits (16 bytes)
Use additional structure of G if any.
\Longrightarrow Number Field Sieve algorithms.

Credits

- Rémi Clarisse PhD thesis at tel-03506116
- Jérémie Detrey summer school lecture at ARCHI'2017 summer school

