Elliptic curves, number theory and cryptography
Week 2, Lecture 2

Aurore Guillevic

Aarhus University

Spring semester, 2022

These slides at
https://members.loria.fr/AGuillevic/files/Enseignements/AU/lectures/lecture02.pdf
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Outline

Projective space and the point at infinity
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Projective space and point at infinity
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Projective space and point at infinity
E/R:y?=x3-3x+1
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Projective space and point at infinity

E/K:y>?=x*4+Ax+B  Char(K)#2,3

Affine plane (Euclidean plane) over a field K
AYK) = {(x,y): x,y € K}

Group of points of E on K
The set of rational points on the curve E/K is

E(K) = {(x,y) € A%(K) | (x, y) satisfies E |} U {Px}

where Py, is the point at infinity.
We cannot represent the point at infinity Po, in the affine space A: there is no (o0, ).

Intuition: store the denominator z of the coordinates (x, y) in a 3rd coord.
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Projective space and point at infinity

Elliptic curves are projective plane (smooth) curves

Projective plane
The projective plane of dimension 2 defined over a field K, denoted P?(K) is

P2(K) = {(X, Y,Z)e K3|(X,Y,Z) # (0,0 0)}/~

with the equivalence relation (X, Y,Z) ~ (X', Y, Z') «~—
there exists A # 0 € K such that (X, Y,Z) = (AX,A\Y',\Z").

The equivalence class w.r.t. ~ is denoted (X : Y : Z)
with colons instead of commas.
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Projective space and point at infinity

Projective space
The projective space of dimension n defined over a field K, denoted P"(K) is

P'(K) = {(Xo, X, Xp) € K™ [ (X0, X1, ..., X)) #0 = (0,0,...,0)} / ~

with the equivalence relation (Xp, X1,...,X,) ~ (Xg, X{,...,X}) <
there exists A # 0 € K such that (Xo, X1,...,Xp) = (AXg, AX{, AL .., X]).

The equivalence class w.r.t. ~ is denoted (Xp : X1 :...: X)
with colons instead of commas.
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Outline

Projective space P? as A x P!
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Homogenization

A polynomial f € K|[x, y] defines a plane curve Co in A%(K)
— a homogeneous polynomial F € K[X, Y, Z] defines
a projective plane curve C in P?(K)

Degree of a bivariate polynomial
Let the degree d = deg f to be the largest value i + j of the (non-zero) monomials
X'yl of f:

f= Z a;J-xiyj, d= max i+j.
ij: aj#0 i 270
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Homogenization

Homogenization of a polynomial
The homogenization of f(x,y) =3, ;. 23 £0 ajx'yl € K[x,y] is

F(X,Y,Z)= > agX'Yiz97'=  where d = deg(f) .

ij: a;#0
Equivalently (Washington's book 2.3 page 19),

XY

_de (XY _
F(X,Y,Z2)=2Z f(Z’Z) , where d = deg(f) .

From this definition we have
® F is homogeneous of degree d;
F(x,y,1) = f(x,y);
F(x,y,0) #0, and
F(X,Y,Z) =0 does not contain the line at infinity
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Why homogenization?

(slide added to answer a question)
In the projective space, a point P(Xp, Yo, Zp) has many possible representations:

P = (AXo, A Yo, AZp) for any scalar A # 0
P € C a curve of P2 = P is a zero of a polynomial F(X,Y,Z).

But then we require F(AXp, AYo, AZy) = 0 for all A # 0.
Thanks to homogenization, we have

F(AXo, A\Yo, A\Zo) = A F (X0, Yo, Zo)
hence

PelC — F(Xo, Yo,Zo):O <~ F()\Xo,)\YO,/\Zo):OV)\#O
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A projective plane curve is smooth

Let E: F(X,Y,Z) =0 over a field K, where F is a homogeneous polynomial.
There is no singular point (Xp, Yo, Zp) such that

OF
67()(0’ Y07 ZO) =0
OF
E;s;’()<67 5/67 sz) =0
oF
E;;g’()<b7 5/67 sz) =0

where OF /OX, OF /0Y, OF /OZ are the partial derivatives.
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A line in P?(K)
Affine plane (Euclidean plane) over a field K

A2(K) ={(x,y): x,y € K}

A line in the affine plane A%(K) is defined by an equation of the form
L:ax+ by +c=0, with (a, b,c) # (0,0,0).
Applying the homogenization formula, one has:

Projective Line
A projective line in P2(K) has an equation of the form

L:aX+bY +cZ =0, with (a,b,c) # (0,0,0).

e Two distinct points of A? determine a line in A2
e two lines of A determine one point in A unless they are parallel.

The projective plane will contain the intersection point of parallel lines at infinity. ,
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Two parallel lines meet at infinity
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At infinity is not a single point
Distinct pairs of parallel lines do not meet at the same point at infinity.
L1 N Ly ={P}in A? so L1, L> cannot share a 2nd point O

/
2 'O/
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Points at infinity

The Points at infinity in the projective plane P2(K)
correspond to directions of parallel lines in A2(K)
P? = A2 U {the directions in A%}

where direction is not oriented, like the slope of a line.
The set of directions in A2 is

{(x.y) € K?}/ ~
where (x,y) ~ (x',y') <= IN#0€ K, (x,y) = (Ax, \y).

We have
P?(K) = A%(K) UPY(K)
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Correspondence of A? U P! and P?

P2(K) = {(X,Y,2) € K3 (X,¥,2) #(0,0,0)} / ~

P2A(K) +— A%(K)UPY(K)

x.v.2) (;;) € A%(K) ifZ#0
? ? ’_>

(X,Y)ePY(K) ifZ=0
(x,y,1) < (xy) € A*(K)

(X,Y,0) « (X,Y)ePY(K)
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Projective plane smooth curve

A projective plane cubic curve C in P2(K) is given by an equation
C: F(X,Y,Z)=0
where F is a homogeneous polynomial of degree 3.
An elliptic curve in P2(K) is given by an equation
E:Y?Z =X34aXZ?+ bZ3, 423 +27b% £ 0
and the group of points on & is

E(K)={(X,Y,Z) e P*(K): Fg(X,Y,Z) =0}
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Point at infinity in the Projective Plane

E:Y?Z =X34aXZ?+bZ3, 42+ 2762 #0
Z7=0 = £:0=X3
The Point at infinity is
(X,Y,Z2=0)e&(K) = X=0

There is no condition on Y except Y # 0 because (0,0,0) ¢ P2.
Then (0, ), 0) for any A # 0 is the direction of a vertical line in A2,

Point at infinity on £
The equivalence class of the point at infinity on £is O = (0:1:0).
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Projective coordinates

Washington's book section 2.6.1

Addition and doubling can be done without special treatment of points of order 2
P(x,0) € A% — (X,0,1) € P?

F’()(l, Yﬁ_,;Zl) + (?()(Q, \12,222)

Suppose that none is O, then Z; # 0, Z> # 0.

Their affine part is P(xl,yl) = (Xl/Zl, Yl/Zl) and Q(Xz,yg) = (XQ/Z2, YQ/Z2).

ve-n_Y/H-V2a4a _ Y2Zi-N2
xo—x1 XoJZo—X1/Zy XoZi — XiZo

L through P and Q has slope A =

3x+a 3XZ/Z7+a 3X}+azi
2y1 - 2Y1/Zl - 2Y121

If P=Q then \ =
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Addition law in projective coordinates (in P?(K))

See the Elliptic Curve Formula Database (EFD) by Tanja Lange:

www.hyperelliptic.org/EFD/glp/auto-shortw-projective.html
Let Py = (X1, Y1,Z1) and P> = (Xa, Y2, Z2) be two points on

E: Y?Z = X?+aXZ? + bZ* .
Adapting directly the formula A = (y2 — y1)/(x2 — x1), resp. A = (3xZ + a)/(2y1) to

projective coordinates with x; = X;/Z;, y; = Y;/Z;, the slope of the line (P1, P,) is
given by

Y221 — Y14 .

Az e ip os4p

X7 — Xz, F7EP
A\ =

3X? + aZ?

if PL=P d Y
2ViZ: if PL="Pyand Y1 #0
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Addition law in projective coordinates in P?(K)

Cohen, Miyaji and Ono published at Asiacrypt'1998 the formulas

u = Y Zi—-Y1-2
v = Xo - Zt—X1-2

= P 4-ZL—vP-272 X2
X3 = v-A
Y3 = u-(V*X1Z—A)—Vv: -2
Z3 = V37212,

2 3 2

this costs 11 Mult., the squares u ,v2, then v3 = v?. v, hence
12 Mult. + 2 Squares and negligible additions and subtractions.
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Addition law in projective coordinates in P?(K)

For doubling, Cohen, Miyaji and Ono have

w = aZf +3X}

s = Y124

B = Xi-Yi-s

h = w?>-8B

X3 = 2h-s

Ys = w-(4B—h)—8-(Y1s)?
Z3 = 8s3

this costs 6 Mult., 5 Squares and w3 = w? - w, hence

7 Mult. + 5 Squares and negligible additions, subtractions and a multiplication by a.
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Corner cases of addition law in projective coordinates in P?(K)

If P(Xl, Yl,Zl) and Q = —P1 = (Xl, —Yl,Zl) with Yl 75 0
then the addition formula computes

(X3, Y3, 23) = (0, Yg,O) and Y3 = 8Y13215 7& 0

This is the point at infinity O, without division by 0.

If P1(X1,0,Z1) has order 2, the doubling formula computes
(0, Y3,0) = O without a division by 0.
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Other coordinate systems and forms of elliptic curves
There are many other coordinate systems:

affine (x, y)

e projective (X,Y,Z) — (X/Z,Y/Z)

Jacobian (X, Y,Z) — (X/Z%,Y/Z3)

® extended Jacobian (X, Y, Z,Z%) — (X/Z%,Y/Z3)

that can be combined with different forms of curves:
® Short Weierstrass with a=—3,a=1,a=0, b=0, etc
® Specificities: points of order 2 or 4 available
® Montgomery form
® Edwards, twisted Edwards form
Jacobi Quartic
Huff form

— EFD contains almost all of them.
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Outline

Multiplicity of intersection and Bézout theorem
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Etienne Bézout

French mathematician (1730 — 1783)
Scientist in the Navy

You can read about Bézout's theorem on Wikipedia
at this link:
https://en.wikipedia.org/wiki/B%C3%
A9zout%27s_theorem

https://mathshistory.st-andrews.ac.

uk/Biographies/Bezout/pictdisplay/
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Multiplicity of intersection

Let C and C’ be two projective plane curves with no common component, that is they
are defined by homogeneous polynomials F and G with no common factor.
the Multiplicity of intersection of C and C’ at P € P? is the unique integer
Ip(C,C") > 0 such that
1. Ip(C,C")=0 < P¢CNC
2. If P € CyNCy, if Pis anon-singular point of C; and Cy, and if C; and C, have
different tangent directions at P, then /p(C1,C2) =1
One often says in this case that C; and C; intersect transversally at P.
3. If Pe(Cy;NCy and if C; and Cy do not intersect transversally at P, then
/,D(Cl,02) > 2.
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Bézout's theorem

Silverman—Tate book appendix A.
Let C1 and C; be projective curves with no common component. Then

> Ip(C1,C2) = (degC1)(degCa) ,
PeCiNCy

where the sum is over all points of C; N Cy in the algebraically closed field K

(e.g. Cor Fp).
In particular, if C; and C, are smooth curves with only transversal intersections,

then #C1 N Cy = (degC1)(degCa) ;
and in all cases there is an inequality

#(Cl N Cz) < (deg Cl)(degCQ)
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Outline

Associativity of the addition law

30/54



Associativity: (P+ Q)+ R=P+(Q+ R)
6

to
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Associativity: (P+ Q)+ R =P
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Associativity: (P+ Q)+ R=P+(Q+ R)
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Associativity: (P+ Q)+ R=P+(Q+ R)
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R Q
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7
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|dea of the proof using Bézout's theorem

This will NOT be in the exam
Silverman—Tate book pages 16-21 and 238-240.
From Bézout's theorem, two distinct cubic projective plane curves without a common

component have exactly 9 intersection points.

Theorem A
Let C, C1 and Cs be three cubic curves. Suppose C goes through eight of the nine
intersection points of C; and Cy. Then C goes through the ninth intersection point.
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|dea of the proof using Bézout's theorem

Let's consider an elliptic curve C and the eight points

P,QR,O,—(P+Q),P+Q,—(Q+R),(R+R)eC.

To show associativity, we need to show that there is a unique ninth point:

—(P+Q)+R)=—-(P+(Q+R)) .
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|dea of the proof using Bézout's theorem

Let C1 be defined by the equations of the three lines through the nine distinct points
P,Q,—(P+ Q) € {p q, the vertical -(Q + R),Q + R, 0 € vg;r, and
R,(P+ Q),—((P+ Q) + R) € ¢p+qr multiplied together:

Ci: (X, Y, Z)="lpq-voir - lpror =0
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|dea of the proof using Bézout's theorem

Let C1 be defined by the equations of the three lines through the nine distinct points
P,Q,—(P+ Q) € {p q, the vertical -(Q + R),Q + R, 0 € vg;r, and
R,(P+ Q),—((P+ Q) + R) € ¢p+qr multiplied together:

Ci: (X, Y, Z)="lpq-voir - lpror =0

Let C> be defined by the equations of the three lines through the nine distinct points
Q,R,—(Q+ R) € lgR, the vertical P+ Q,—(P + Q), 0 € vp,q, and
P,Q+ R,—(P+(Q+ R)) € {p,qg+r multiplied together:

Cz: F2(X, Y, Z) == KQR VPLQ fp’Q_;,_R =0
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|dea of the proof using Bézout's theorem

Let C1 be defined by the equations of the three lines through the nine distinct points
P,Q,—(P+ Q) € {p q, the vertical -(Q + R),Q + R, 0 € vg;r, and
R,(P+ Q),—((P+ Q) + R) € ¢p+qr multiplied together:

Ci: (X, Y, Z)="lpq-voir - lpror =0

Let C> be defined by the equations of the three lines through the nine distinct points
Q,R,—(Q+ R) € {gR, the vertical P+ Q,—(P + Q), 0 € vp,q, and
P,Q+ R,—(P+(Q+ R)) € {p,qg+r multiplied together:

Cz: F2(X, Y, Z) == KQR VPLQ fp’Q_;,_R =0

Then C; and Cy are two cubic curves of P? that intersect at nine distinct points,
namely the known

PaQaRvoa_(P+Q)>P+Qa_(Q+R),(Q+R)661062

and a ninth intersection point Py € C; N Cs.
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|dea of the proof using Bézout's theorem

Now C is a curve that goes to the first eight points
P,Q,RO,-(P+Q),P+Q,—(Q+R),(R+R)eC

Hence by Theorem A it also goes through the 9-th point of C; N Cs.
Thus the ninth intersection point of C; and Cs lies on C: Py € C1 NCy, Py € C.
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|dea of the proof using Bézout's theorem

Now C is a curve that goes to the first eight points
P,Q,RO,-(P+Q),P+Q,—(Q+R),(R+R)eC

Hence by Theorem A it also goes through the 9-th point of C; N Cs.
Thus the ninth intersection point of C; and Cs lies on C: Py € C1 NCy, Py € C.

Both —((P+ Q)+ R) € C1 and —(P + (Q + R)) € Cy also lies on C by construction.
Hence —((P+ Q)+ R),Po € CNCi and —(P+ (Q+ R)),Po € CNCs
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|dea of the proof using Bézout's theorem

Now C is a curve that goes to the first eight points
P,Q,RO,-(P+Q),P+Q,—(Q+R),(R+R)eC

Hence by Theorem A it also goes through the 9-th point of C; N Cs.
Thus the ninth intersection point of C; and Cs lies on C: Py € C1 NCy, Py € C.

Both —((P+ Q)+ R) € C1 and —(P + (Q + R)) € Cy also lies on C by construction.
Hence —((P+ Q)+ R),Po € CNCi and —(P+ (Q+ R)),Po € CNCs

But by Bézout's theorem, #(C N C1) <9 and #(C NC2) <9 as cubic curves,
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|dea of the proof using Bézout's theorem

Now C is a curve that goes to the first eight points
P,Q,RO,-(P+Q),P+Q,—(Q+R),(R+R)eC

Hence by Theorem A it also goes through the 9-th point of C; N Cs.
Thus the ninth intersection point of C; and Cs lies on C: Py € C1 NCy, Py € C.

Both —((P+ Q)+ R) € C1 and —(P + (Q + R)) € Cy also lies on C by construction.
Hence —((P+ Q)+ R),Po € CNCi and —(P+ (Q+ R)),Po € CNCs

But by Bézout's theorem, #(C N C1) <9 and #(C NC2) <9 as cubic curves,

so finally
Po=—(P+(Q+R)=—-((P+Q)+R).
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Proof of Theorem A

Theorem A

Let C, C1 and C5 be three cubic curves. Suppose C goes through eight of the nine
intersection points of C; and Cy. Then C goes through the ninth intersection point.
This will NOT be in the exam

Let C; and Cy be two distinct cubic smooth plane curves without a common
component.

By Bézout's theorem, C; and C> intersect at exactly 9 points Py, ..., Po.
Consider the 9 distinct points P, ..., Py in P2(K).

Let C' be another cubic smooth plane curve going through the first eight points

P..... Ps.
We will show that C’ also goes through Py.
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Proof of Theorem A

Consider a generic cubic projective plane curve C: F(X,Y,Z) =0 given by a
homogeneous irreducible degree 3 polynomial

F=ay+aiXZ?°+apX?Z+asX3+aYZ?+ a5 Y2 Z +ag Y3+ ar XYZ + ag X2 Y + ag X Y?

with 10 parameters {a;}o<i<o.
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Proof of Theorem A

Consider a generic cubic projective plane curve C: F(X,Y,Z) =0 given by a
homogeneous irreducible degree 3 polynomial

F=ay+aiXZ?°+apX?Z+asX3+aYZ?+ a5 Y2 Z +ag Y3+ ar XYZ + ag X2 Y + ag X Y?
with 10 parameters {a;}o<i<o.

P1 € C = an equation F(Xi, Y1, Z1) forces a condition on the ajs.
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Proof of Theorem A

Consider a generic cubic projective plane curve C: F(X,Y,Z) =0 given by a
homogeneous irreducible degree 3 polynomial

F=ay+aiXZ?°+apX?Z+asX3+aYZ?+ a5 Y2 Z +ag Y3+ ar XYZ + ag X2 Y + ag X Y?
with 10 parameters {a;}o<i<o.

P1 € C = an equation F(Xi, Y1, Z1) forces a condition on the ajs.
Going through the 8 points Py, ..., Pg forces 8 conditions on the a;s.
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Proof of Theorem A

Consider a generic cubic projective plane curve C: F(X,Y,Z) =0 given by a
homogeneous irreducible degree 3 polynomial

F=ay+aiXZ?°+apX?Z+asX3+aYZ?+ a5 Y2 Z +ag Y3+ ar XYZ + ag X2 Y + ag X Y?
with 10 parameters {a;}o<i<o.

P1 € C = an equation F(Xi, Y1, Z1) forces a condition on the ajs.
Going through the 8 points Py, ..., Pg forces 8 conditions on the a;s.

The set of {a;}o<i<g is a K-vector space of dimension 10,
and the 8 conditions P; € C <= F(X;, Y;, Z;) = 0 make it a K-vector space of dim 2.
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Proof of Theorem A

Let (Fy, F.) a basis of this 2-dimensional vector space.
Fx, F,. are homogeneous polynomials of degree 3 and linearly independents.
They define curves F) and F,.
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Proof of Theorem A

Let (Fy, F.) a basis of this 2-dimensional vector space.
Fx, F,. are homogeneous polynomials of degree 3 and linearly independents.
They define curves F) and F,.

The former generic cubic curve C’ defined by F/'(X, Y, Z) goes through Py, ..., Ps.
We have F'(X;, Y;,Z;))=0forall 1 <i<8.
We also have F' = AF) + pF, for a choice of A\, u € K as Fy, F, form a basis.
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Proof of Theorem A

Let (Fy, F.) a basis of this 2-dimensional vector space.
Fx, F,. are homogeneous polynomials of degree 3 and linearly independents.
They define curves F) and F,.

The former generic cubic curve C’ defined by F/'(X, Y, Z) goes through Py, ..., Ps.
We have F'(X;, Y;,Z;))=0forall 1 <i<8.
We also have F' = AF) + pF, for a choice of A\, u € K as Fy, F, form a basis.

By Bézout's theorem, F) and F,, being two general cubic curves, they have
(deg F))(deg F,,) = 9 points of intersection, counting multiplicities.
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Proof of Theorem A

But actually we know explicitly a basis for this 2-dim vector space:
Cy and C; that are distinct and go to P, ..., Ps.

So a basis is actually Fi, F> and F = v1F; 4+ voF, with

Ci: A(X,Y,Z)=0and Cy: F2(X,Y,Z)=0.
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Proof of Theorem A

But actually we know explicitly a basis for this 2-dim vector space:
Cy and C; that are distinct and go to P, ..., Ps.

So a basis is actually Fi, F> and F = v1F; 4+ voF, with

Ci: A(X,Y,Z)=0and Cy: F2(X,Y,Z)=0.

And moreover Py € C;NCy = F1(Pg) = 0 = Fp(Py)

Because C’ is defined by F' = v1F; + 12 F>, then evaluating at Pg, we get
F'(Pg) = 0 and C’ also goes through Pq.
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Other approaches

In Washington's book Section 2.4,
looking carefully at polynomials and again intersection multiplicities.
Alternatively: with resultants of polynomials.

Further optional reading on the topic:
® Washington's book Section 2.4 pages 20 to 32;
® Silverman—Tate book Appendix A.
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Outline

Scalar multiplication on elliptic curves
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Scalar multiplication

With an addition law on E, the points on the curve form a group E(K).
Scalar multiplication (exponentiation)

The multiplication-by-m map, or scalar multiplication is

[m]: E — E
P - P+...+P
N————

m copies of P
for any m € Z, with [-m]P = [m](—P) and [0]P = O.
® 3 key-ingredient operation in public-key cryptography

® given m > 0, computing [m|P as P+ P + ... P with m — 1 additions is
exponential in the size of m: m = ¢e"™

® we can compute [m]P in O(log m) operations on E.
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Naive Scalar multiplication: Double-and-Add

Input: E defined over a field K, m >0, P € E(K)
Output: [m|P € E

1 if m =0 then return O

2 Write m in binary expansion m = 27;01 b;2" where b; € {0,1}

3 R<P

4 for i = n— 2 dowto 0 do loop invariant: R = [[m/2'|]P
5 R+ [2)R

6 if bj =1 then

7 R+~ R+P

8 return R

Question: What are the best- and worst-case costs of the algorithm?
Question: Why is this algorithm dangerous if m is secret?
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Naive Scalar multiplication: Double-and-Add

msb = most significant bits (highest powers)
Isb = least significant bits (units)
Pervious slide: Most Significant Bits First algorithm.

In Washington's book, §2.2 INTEGER TIMES A POINT p.18,
the LSB-first algorithm is given, disadvantage: one extra temporary variable.
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Outline

Recap on complexity
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Outline

The Discrete Log Problem in cryptography
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Public-key cryptography

Introduced in 1976 (Diffie-Hellman, DH) and 1977 (Rivest-Shamir—Adleman, RSA)
Asymmetric means distinct public and private keys

® encryption with a public key

® decryption with a private key

® deducing the private key from the public key is a very hard problem
Two hard problems:

® Integer factorization (for RSA)

e Discrete logarithm computation in a finite group (for Diffie—Hellman)
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Discrete logarithm problem

G multiplicative group of order r
g generator, G = {1,g,g%,g%,...,8" 2,1}

Given h € G, find integer x € {0,1,...,r — 1} such that h = g*

Exponentiation easy: (g, x) — g*
Discrete logarithm hard in well-chosen groups G
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Choice of group

Prime finite field F, = Z/pZ where p is a prime integer

Multiplicative group: Fj, = {1,2,...,p — 1}

Multiplication modulo p

Finite field Fo» = GF(2"), F3m = GF(3™) for efficient arithmetic, now broken

Elliptic curves E: y? = x3 + ax + b/F,
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Diffie-Hellman key exchange

Alice Bob



Diffie-Hellman key exchange

Alice Bob
(G,-),g,r=#G public parameters (G,-),g,r=#G



Diffie-Hellman key exchange

Alice Bob
(G")?gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*

public value PK, = g2 public value PKg= g”



Diffie-Hellman key exchange

Alice Bob
(G")7gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*
public value PK, = g2 PKg public value PKg= g”
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Diffie-Hellman key exchange

Alice Bob
(G")?gar:#G (Gv')vgvr:#G
secret key skqa = a « (Z/rZ)* secret key skg = b« (Z/rZ)*
public value PK, = g2 PKg public value PKg= g”

N PKA 4
gets Bob's public key PKg gets Alice’s public key PK4

sk = PKg? = g2 sk = PKpP = g2
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Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)

Given a finite cyclic group (G, ), a generator g and h € G, compute x s.t. h = g*.
— can we invert the exponentiation function (g, x) — g*?

Common choice of G:
e prime finite field F, = Z/pZ (1976)
e characteristic 2 field Fan (= 1979)
® elliptic curve E(F,) (1985)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}

® naive search, try them all: #G tests

® O(\/#G) generic algorithms
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}
® naive search, try them all: #G tests
® O(\/#0G) generic algorithms

® Shanks baby-step-giant-step (BSGS): O(y/#G), deterministic

® random walk in G, cycle path finding algorithm in a connected graph (Floyd) —
Pollard: O(+/#G), probabilistic
(the cycle path encodes the answer)

® parallel search (parallel Pollard, Kangarous)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
® g € G generator, 3 always a preimage x € {1,...,#G}
® naive search, try them all: #G tests
O(+/#G) generic algorithms
® Shanks baby-step-giant-step (BSGS): O(1/#G), deterministic
® random walk in G, cycle path finding algorithm in a connected graph (Floyd) —
Pollard: O(1/#G), probabilistic

(the cycle path encodes the answer)
® parallel search (parallel Pollard, Kangarous)

independent search in each distinct subgroup
+ Chinese remainder theorem (Pohlig-Hellman)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
— choose G of large prime order (no subgroup)
— complexity of inverting exponentiation in O(+/#G)

— security level 128 bits means /#G > 2128
take #G = 226
analogy with symmetric crypto, keylength 128 bits (16 bytes)
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Discrete log problem

How fast can we invert the exponentiation function (g, x) — g*?
— choose G of large prime order (no subgroup)
— complexity of inverting exponentiation in O(+/#G)

— security level 128 bits means /#G > 2128
take #G = 226
analogy with symmetric crypto, keylength 128 bits (16 bytes)

Use additional structure of G if any.
= Number Field Sieve algorithms.
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Credits

o Rémi Clarisse PhD thesis at tel-03506116

® Jérémie Detrey summer school lecture at ARCHI'2017 summer school
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https://tel.archives-ouvertes.fr/tel-03506116v2
https://archi2017.loria.fr/wp-content/uploads/2017/03/Jeremie_Detrey_cours_ARCHI_2017.pdf
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