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Materials

Galbraith’s book: Section 11.4.3
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf
IETF https:
//www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html
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Hashing to Z/pZ

Let p be a prime and Z/p/ZZ the field of p elements.
Given a message m as a bitstring in {0, 1}∗ (the ∗ means the length is not specified),
how to hash into Z/pZ?

The output value x ∈ Z/pZ should have a uniform distribution in [0, p − 1].

Reduction modulo p
If p has length n bits, p ∈ [2n−1, 2n − 1], the reduction mod p has bias related to p.
If s ∈ {0, 1}n is a n-bit string,
• s mod p is s (because s < p already) with proba p/2n

• s mod p is s − p (because s ≥ p) with proba 1− p/2n.
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Reduction modulo p
Reduction modulo p: bias
If p = α2n with α a rational, 0.5 < α < 1, and p ≤ s < 2n, then
0 ≤ s − p < 2n − p = (1− α)2n.
• s ∈ {0, 1}n is uniformly distributed
• s ≥ p with proba 1− p/2n = 1− α, in this case s mod p = s − p ∈ [0, (1− α)2n)
• s < (1− α)2n with proba 1− α

=⇒ s mod p ∈ [0, (1− α)2n] with proba 2(1− α)
and s mod p ∈ [(1− α)2n, α2n) with proba 2α− 1.

If α = 3/4 (⇐⇒ p is roughly in the middle of [2n−1, 2n]):
s mod p < p/3 with probability 1/2, and
s mod p is not uniformly distributed.

Solution
Expand the message m in {0, 1}n+k before reducing mod p.
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Reduction modulo p

For a bias < 2−k for some integer k,
expand m as a bistring in {0, 1}n+k where n is the bitsize of p
To ensure a security level 2k , a bias 2−k is acceptable.

7/16



Outline

Hashing to Fp

Map-to-curve

8/16



Hashing to curves: recommendations

The choice of the hashing technique depends on the form of the elliptic curve.
• The curve is in Montgomery form By2 = x3 + Ax2 + x
→ Elligator-2
• The curve is in twisted Edwards form ax2 + y2 = 1 + dx2y2

→ twisted-Edwards Elligator-2
• The curve is in short Weierstrass form y2 = x3 + ax + b, and ab 6= 0
→ Simplified SWU
• The curve is in short Weierstrass form y2 = x3 + ax + b, and ab = 0
→ Simplified SWU for ab = 0, or general SWU

SWU: Shallue-van de Woestijne
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Hashing to Montgomery curves: Elligator 2

Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: elliptic-curve points indistinguishable from uniform random strings.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 967–980. ACM Press, November 2013.
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Hashing to Montgomery curves: Elligator 2

Function inv0 such that inv0(x) = xp−2 so that

inv0(x)
{

= 0 if x = 0
= 1/x otherwise

Function sgn0 such that it returns a bit in {0, 1}:
x ∈ Fp, sgn0(x) = x mod 2
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Hashing to Montgomery curves: Elligator 2

E : By2 = x3 + Ax2 + x/Fp, A,B 6= 0, (A− 2)(A + 2) 6= 0
(A− 2)(A + 2) non-square =⇒ points of order 4 but #E (Fp)[2] = 2, not 4.
Precomputed: a non-square z ∈ Fp
Let u ∈ Fp a result of hashing to Fp, we want to hash u to the curve E (Fp)
1. x1 = −(A/B) · inv0(1 + zu2)
2. If x1 = 0, set x1 = −(A/B)
3. x̃1 = x3

1 + (A/B)x2
1 + x1/B2

4. x2 = −x1 − (A/B)
5. x̃2 = x3

2 + (A/B)x2
2 + x2/B2

6. If is_square(x̃1), set x = x1, y =
√

x̃1 with sgn0(y) = 1
7. Else set x = x2, y =

√
x̃2 with sgn0(y) = 0

8. s = x · B
9. t = y · B
10. Return (s, t)
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Hashing to twisted Edwards curves:

ax2 + y2 = 1 + dx2y2

a, d 6= 0
First hash u ∈ Fp onto a Montgomery curve as before,
then map the point to twisted Edwards form.
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Hashing to short Weierstrass curves

Simplified Shallue-van de Woestijne-Ulas method

Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam,
and Mehdi Tibouchi.
Efficient indifferentiable hashing into ordinary elliptic curves.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 237–254.
Springer, Heidelberg, August 2010.
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Simplified Shallue-van de Woestijne-Ulas method

E : y2 = x3 + ax + b = g(x)/Fp, a, b 6= 0

z ∈ Fp, non-square, z 6= −1, g(x)− z ∈ Fp[x ] irreducible, g(b/(za)) square.
1. v1 = inv0(z2 · u4 + z · u2)
2. x1 = (−b/a) · (1 + v1)
3. If v1 = 0, set x1 = b/(z · a)
4. x̃1 = x3

1 + a · x1 + b
5. x2 = z · u2 · x1

6. x̃2 = x3
2 + a · x2 + b

7. If is_square(x̃1), set x = x1 and y =
√

x̃1

8. Else set x = x2 and y =
√

x̃2

9. If sgn0(u) 6= sgn0(y), set y = −y
10. Return (x , y)
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Hashing to special short Weierstrass curves

y2 = g(x) = x3 + ax + b, a = 0 or b = 0

Wahby–Boneh Idea: hash to an isogenous curve with a′b′ 6= 0

Riad S. Wahby and Dan Boneh.
Fast and simple constant-time hashing to the BLS12-381 elliptic curve.
IACR TCHES, 2019(4):154–179, 2019.
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