Elliptic curves, number theory and cryptography Week 14, Lecture 14B: Cryptographic Hashing to Curves

Aurore Guillevic

Aarhus University

Spring semester, 2022

These slides at

https://members.loria.fr/AGuillevic/files/Enseignements/AU/lectures/lecture14B.pdf

Outline

Hashing to \mathbb{F}_p

Map-to-curve

Galbraith's book: Section 11.4.3 https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf IETF https: //www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html

Outline

Hashing to \mathbb{F}_p

Map-to-curve

Hashing to $\mathbb{Z}/p\mathbb{Z}$

Let p be a prime and $\mathbb{Z}/p/ZZ$ the field of p elements. Given a message m as a bitstring in $\{0,1\}^*$ (the * means the length is not specified), how to hash into $\mathbb{Z}/p\mathbb{Z}$?

The output value $x \in \mathbb{Z}/p\mathbb{Z}$ should have a uniform distribution in [0, p-1].

Reduction modulo p

If p has length n bits, $p \in [2^{n-1}, 2^n - 1]$, the reduction mod p has bias related to p. If $s \in \{0, 1\}^n$ is a n-bit string,

- s mod p is s (because s < p already) with proba $p/2^n$
- $s \mod p$ is s p (because $s \ge p$) with proba $1 p/2^n$.

Reduction modulo p

Reduction modulo p: bias

If $p = \alpha 2^n$ with α a rational, $0.5 < \alpha < 1$, and $p \le s < 2^n$, then $0 \le s - p < 2^n - p = (1 - \alpha)2^n$.

- $s \in \{0,1\}^n$ is uniformly distributed
- $s \ge p$ with proba $1 p/2^n = 1 \alpha$, in this case $s \mod p = s p \in [0, (1 \alpha)2^n)$

•
$$s < (1-lpha)2^n$$
 with proba $1-lpha$

$$\implies s \bmod p \in [0, (1-\alpha)2^n] \text{ with proba } 2(1-\alpha)$$

and s mod $p \in [(1-\alpha)2^n, \alpha 2^n)$ with proba $2\alpha - 1$

If $\alpha = 3/4$ ($\iff p$ is roughly in the middle of $[2^{n-1}, 2^n]$): s mod p < p/3 with probability 1/2, and s mod p is **not** uniformly distributed.

Solution

Expand the message m in $\{0,1\}^{n+k}$ before reducing mod p.

Reduction modulo p

For a bias $< 2^{-k}$ for some integer k, expand m as a bistring in $\{0,1\}^{n+k}$ where n is the bitsize of pTo ensure a security level 2^k , a bias 2^{-k} is acceptable.

Hashing to \mathbb{F}_p

Map-to-curve

Hashing to curves: recommendations

The choice of the hashing technique depends on the form of the elliptic curve.

- The curve is in Montgomery form $By^2 = x^3 + Ax^2 + x$ \rightarrow Elligator-2
- The curve is in twisted Edwards form $ax^2 + y^2 = 1 + dx^2y^2$ \rightarrow twisted-Edwards Elligator-2
- The curve is in short Weierstrass form $y^2 = x^3 + ax + b$, and $ab \neq 0$ \rightarrow Simplified SWU
- The curve is in short Weierstrass form $y^2 = x^3 + ax + b$, and ab = 0 \rightarrow Simplified SWU for ab = 0, or general SWU

SWU: Shallue-van de Woestijne

Hashing to Montgomery curves: Elligator 2

Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
 Elligator: elliptic-curve points indistinguishable from uniform random strings.
 In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 967–980. ACM Press, November 2013.

Hashing to Montgomery curves: Elligator 2

Function inv0 such that $inv0(x) = x^{p-2}$ so that

$$inv0(x) \begin{cases} = 0 \text{ if } x = 0 \\ = 1/x \text{ otherwise} \end{cases}$$

Function sgn0 such that it returns a bit in $\{0, 1\}$: $x \in \mathbb{F}_p$, sgn0 $(x) = x \mod 2$ Hashing to Montgomery curves: Elligator 2

 $E: By^2 = x^3 + Ax^2 + x/\mathbb{F}_n, A, B \neq 0, (A-2)(A+2) \neq 0$ (A-2)(A+2) non-square \implies points of order 4 but $\#E(\mathbb{F}_p)[2] = 2$, not 4. Precomputed: a non-square $z \in \mathbb{F}_p$ Let $u \in \mathbb{F}_p$ a result of hashing to \mathbb{F}_p , we want to hash u to the curve $E(\mathbb{F}_p)$ 1. $x_1 = -(A/B) \cdot inv0(1 + zu^2)$ 2. If $x_1 = 0$, set $x_1 = -(A/B)$ 3. $\tilde{x}_1 = x_1^3 + (A/B)x_1^2 + x_1/B^2$ 4. $x_2 = -x_1 - (A/B)$ 5. $\tilde{x_2} = x_2^3 + (A/B)x_2^2 + x_2/B^2$ 6. If is square(\tilde{x}_1), set $x = x_1$, $y = \sqrt{\tilde{x}_1}$ with sgn₀(y) = 1 7. Else set $x = x_2$, $y = \sqrt{\tilde{x}_2}$ with sgn₀(y) = 0 8. $s = x \cdot B$ 9. $t = v \cdot B$ 10. Return (s, t)

Hashing to twisted Edwards curves:

$$ax^2 + y^2 = 1 + dx^2y^2$$

 $a, d \neq 0$ First hash $u \in \mathbb{F}_p$ onto a Montgomery curve as before, then map the point to twisted Edwards form.

Simplified Shallue-van de Woestijne-Ulas method

Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi Tibouchi.
 Efficient indifferentiable hashing into ordinary elliptic curves.
 In Tal Rabin, editor, *CRYPTO 2010*, volume 6223 of *LNCS*, pages 237–254.
 Springer, Heidelberg, August 2010.

Simplified Shallue-van de Woestijne-Ulas method

$$E: y^{2} = x^{3} + ax + b = g(x)/\mathbb{F}_{p}, a, b \neq 0$$

$$z \in \mathbb{F}_{p}, \text{ non-square, } z \neq -1, g(x) - z \in \mathbb{F}_{p}[x] \text{ irreducible, } g(b/(za)) \text{ square.}$$

$$1. v_{1} = \text{inv0}(z^{2} \cdot u^{4} + z \cdot u^{2})$$

$$2. x_{1} = (-b/a) \cdot (1 + v_{1})$$

$$3. \text{ If } v_{1} = 0, \text{ set } x_{1} = b/(z \cdot a)$$

$$4. \tilde{x}_{1} = x_{1}^{3} + a \cdot x_{1} + b$$

$$5. x_{2} = z \cdot u^{2} \cdot x_{1}$$

$$6. \tilde{x}_{2} = x_{2}^{3} + a \cdot x_{2} + b$$

$$7. \text{ If is_square}(\tilde{x}_{1}), \text{ set } x = x_{1} \text{ and } y = \sqrt{\tilde{x}_{1}}$$

$$8. \text{ Else set } x = x_{2} \text{ and } y = \sqrt{\tilde{x}_{2}}$$

$$9. \text{ If sgn0}(u) \neq \text{ sgn0}(y), \text{ set } y = -y$$

$$10. \text{ Return } (x, y)$$

Hashing to special short Weierstrass curves

$$y^2 = g(x) = x^3 + ax + b$$
, $a = 0$ or $b = 0$

Wahby–Boneh Idea: hash to an isogenous curve with $a'b' \neq 0$

Riad S. Wahby and Dan Boneh.

Fast and simple constant-time hashing to the BLS12-381 elliptic curve. *IACR TCHES*, 2019(4):154–179, 2019.