EXERCISES FOR WEEK 5

AURORE GUILLEVIC

EXERCISES

Exercise 1. Consider an elliptic curve E defined over a prime field \mathbb{F}_p of j-invariant 0, and $p = 1 \mod 3$. The curve has an endomorphism $\psi \colon (x, y) \mapsto (\omega x, y)$ where ω (omega) in \mathbb{F}_p satisfies $\omega^2 + \omega + 1 = 0$ (ω is a primitive 3rd root of unity). The characteristic polynomial of ψ is $X^2 + X + 1$. The ring of integers of $\mathbb{Q}(\omega)$ is $\mathbb{Z}(\omega)$ (the Eisenstein integers), and $\omega = (-1 + \sqrt{-3})/2$. The Frobenius endomorphism $(x, y) \mapsto (x^p, y^p)$ has characteristic polynomial $X^2 - tX + p$ of discriminant $t^2 - 4p = -3y^2$.

Find the short basis \vec{b}_1, \vec{b}_2 for the scalar decomposition. Warning: there is (are) a sign mistake in the paper [1].

References

 Benjamin Smith. Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians. *Contemporary mathematics*, 637:15, May 2015. https://hal.inria.fr/hal-00874925. *E-mail address:* aurore.guillevic@inria.fr

Date: Week 5.