
Towards An Online Incremental Approach to Predict Students
Performance

Chahrazed Labba and Anne Boyer
Loria, CNRS, University of Lorraine, Vandœuvre-lès-Nancy, France

Keywords: Machine learning, Genetic Algorithm, Classification, Prediction, Online Learning

Abstract: Analytical models developed in offline settings with pre-prepared data are typically used to predict students’
performance. However, when data are available over time, this learning method is not suitable anymore.
Online learning is increasingly used to update the online models from stream data. A rehearsal technique is
typically used, which entails re-training the model on a small training set that is updated each time new data is
received. The main challenge in this regard is the construction of the training set with appropriate data samples
to maintain good model performance. Typically, a random selection of samples is made, which can deteriorate
the model’s performance. In this paper, we propose a memory-based online incremental learning approach
for updating an online classifier that predicts student performance using stream data. The approach is based
on the use of the genetic algorithm heuristic while respecting the memory space constraints as well as the
balance of class labels. In contrast to random selection, our approach improves the stability of the analytical
model by promoting diversity when creating the training set. As a proof of concept, we applied it to the open
dataset OULAD. Our approach achieves a notable improvement in model accuracy, with an enhancement of
nearly 10% compared to the current state-of-the-art, while maintaining a relatively low standard deviation in
accuracy, ranging from 1% to 2.1%.

1 Introduction

One of the primary concerns in e-learning environ-
ments is the identification of the students who are ex-
periencing learning difficulties. Conventionally, ana-
lytical models developed in offline settings using pre-
prepared data are usually applied to predict students’
performance. The majority of these models operate in
batch mode, reading and processing all of the train-
ing data with the strong assumption that the data is
static and available in advance. Data availability in
the context of e-learning is highly dependent on stu-
dents’ interaction with the learning content, which is
affected by a variety of external factors (deadlines,
mental health, mood...). As a result, gathering all rel-
evant training samples at once is impossible. Thus, as
data become available over time, traditional methods
of training and evaluating analytical models become
obsolete and unsuitable.

To address this challenge, online incremental
learning is increasingly being used to update online
Machine Learning (ML) models with new data re-
ceived over time. According to the existing defi-
nitions (Gepperth and Hammer, 2016; Yang et al.,
2019), incremental learning is the process of learning
from streaming data with limited memory resources

while maintaining a good model performance. How-
ever, training the model on stream data only, may
result in a deterioration in model performance due
to what we call catastrophic forgetting (Hayes et al.,
2020). The first solution that comes to mind to ad-
dress this issue is to retrain the model on the old data.
However, due to privacy and/or memory constraints
(Chang, 2021), access to old data cannot be assured
in the context of online incremental learning.

In the literature (Rebuffi et al., 2017; Kirkpatrick
et al., 2017), we distinguish mainly three meth-
ods to meet this challenge including memory-based,
regularization-based and network-architecture-based
approaches. This paper is concerned with memory-
based approaches that consist in using rehearsal tech-
niques to recall a small episodic memory from pre-
vious tasks (data) when training on the new tasks,
thereby reducing loss on previous tasks.

To the best of our knowledge, (Labba and Boyer,
2022) is the sole work that has addressed and eval-
uated a memory-based incremental learning strategy
for predicting students’ performance. Their approach
introduces an episodic memory designed to maintain
a balanced training set of both old and new data, up-
dating the model when necessary. Assume that the
size of the training set is fixed at 100 samples and

that at a time t, it contains two class labels: failure
and success. The data set is well balanced between
these labels. As time passes at t +1, new data arrive,
which may include updates of previous observations
or entirely new observations. The task is to incor-
porate a selection mechanism that randomly chooses
samples from the new data received at t+1 to update
and refresh the training set established at t. This ap-
proach ensures that the training set remains up-to-date
and reflects the most recent data without exceeding
the 100-sample limit. However, a notable limitation
arises from the random selection of training samples
to build the training set (called also exemplar set), po-
tentially leading to a less model performance due to
the inclusion of poorly selected samples.

To limit the impact of randomness, we propose a
new memory-based incremental learning strategy to
predict students’ performance that is based on the use
of the Genetic Algorithm (GA) to build the training
set. The adoption of a genetic algorithm is not arbi-
trary. In this work, we believe that an initial popula-
tion composed of many individuals 1, combined with
a guided strategy for their generation, enables the cre-
ation of a more diverse group of individuals. This in
turn contributes to improving the stability and robust-
ness of the approach to build the training exemplar.
In contrast, the random selection process of training
samples generates only one random solution at a time,
which limits its ability to promote diversity and may
result in increased variation in terms of model perfor-
mance.

To prove the efficiency of our approach, a compar-
ison with (Labba and Boyer, 2022), using OULAD, is
performed. Overall, for the random selection strat-
egy (Labba and Boyer, 2022), we observe the widest
range of standard deviation in accuracy, extending
from 1% to 9%. Conversely, our GA-based ap-
proach shows significantly lower variations, limited
to a range of 1% to a maximum of 2.1%. Further,
we proved it’s more effective to consider loss as a
score for the GA fitness function to select the training
samples, as this resulted in reduced overall loss while
maintaining an acceptable measure of accuracy.

The rest of the paper is organized as follows: Sec-
tion 2 presents the related work. Section 3 describes
the online incremental process based on the GA to
build the exemplar set. Before concluding in Section
5, Section 4 presents the experimental results using
the OULAD dataset.

1an individual represents a set of samples selected for
the training

2 Related Work

Overall, the use of incremental learning is more de-
veloped, for image classification. In (Rebuffi et al.,
2017), the authors presented iCaRL, a training ap-
proach that enables incremental learning of classes
from stream data. The iCaRL strategy relies on small
training sets (called exemplar sets) for the observed
classes, which can be updated as new ones emerge.
In (Yan et al., 2021), the authors presented an on-
line learning strategy for semantic segmentation that
allows learning new visual concepts on a continuous
basis for pixel-wise semantic labeling of images. The
strategy involves a re-labeling approach for augment-
ing annotations as well as an efficient rehearsal-based
model adjustment with dynamic data sampling to
overcome the catastrophic forgetting. The later one is
achieved by using a replay buffer to save samples for
previous tasks and use them to regularize the learn-
ing each time new tasks are received. In (He et al.,
2020), the authors proposed an incremental learning
framework to overcome the problem of catastrophic
forgetting when learning new classes and the problem
of data distribution over time referred as concept drift.
The framework was tested to classify images using
the CIFAR-100 and ImageNet-1000 datasets. In (Sir-
shar et al., 2021) the authors presented a novel frame-
work that can incrementally learn to identify vari-
ous chest abnormalities by using few training data.
the framework is based on an incremental learning
loss function that infers Bayesian theory to recognize
structural and semantic inter-dependencies between
incrementally learned knowledge representations.

When it comes to predicting student performance
incrementally, most of the research is oriented to-
wards the comparison of incremental algorithms. In
(Kulkarni and Ade, 2014), the authors compared four
classifiers that can run incrementally. The aim is to
recommend the suitable algorithm to use in assessing
students performance within an incremental learning
context. In (Ade and Deshmukh, 2014), the authors
compared three approaches of incremental learning to
determine the suitable way to handle students stream
data. The used approaches include instance-based,
batch-based and ensembling of instance-based incre-
mental learning. In (Kotsiantis et al., 2010), the au-
thors proposed an incremental learning technique that
combines an incremental version of Naive Bayes, the
1-NN and the WINNOW algorithms. The aim is to
predict the student’s performance within a distance
education environment by using incremental ensem-
ble based on a voting methodology. To the best of
our knowledge, (Labba and Boyer, 2022) is the only
work in which a memory-based incremental learning

strategy to predict students’ performance was tackled
and evaluated. The proposed approach addresses the
frequency of updating an online model. An episodic
memory that stores a balanced exemplar set of old and
new data to train the model when necessary is used.
An algorithm is proposed to continuously update the
exemplar set as long as stream data is received. How-
ever, the main issue with the proposed solution is that
the exemplar set is built using a random selection of
the training samples. As a result, we may end up with
a set of examples that, rather than maintaining a good
model performance, degrades it due to poor samples
that might be selected using a random strategy.

3 GA to Build a training Exemplar

Due to privacy concerns and/or memory limitations,
access to old data cannot be guaranteed in the con-
text of incremental learning (Chang, 2021) . Thus, to
overcome the common problems (e.g catastrophic for-
getting), memory-based techniques that involve uti-
lizing a small episodic memory from prior data when
training on the new data is used. The main idea con-
sists in maintaining a balanced exemplar training set
of both old and new data in order to re-train the model
when necessary while using a fixed amount of mem-
ory. Newly received data is no longer used alone to
train the model; instead, an exemplar set containing
both old and new data is used. In (Labba and Boyer,
2022), the exemplar set is updated each time new data
are received. The update includes the add of observa-
tions for new classes and the update of the observa-
tions of old classes. However, the main issue is that
the exemplar set is built using a random selection of
the training samples. However, this random selection
may result in a poor model performance. The prob-
lem of selecting new and old observations to build the
training exemplar set is NP-Hard. Given a collection
of old and new observations, the optimal training ex-
emplar is a set or subset of these samples. This is a
discrete selection method. It is very expensive to de-
termine the optimal set of observations with a permu-
tation of possibilities, especially with the strong mem-
ory constraints. To find the best set, we propose to
use a genetic algorithm to generate many alternatives
when constructing the exemplar training set and then
selecting the one that improves model performance
in terms of accuracy and loss while meeting memory
constraints.

The genetic algorithms use an evolutionary ap-
proach that consists in the following phases: For sam-
ple selection, the first step is to generate a popula-
tion based on subsets of the possible samples while

respecting the exemplar size. From this population,
the subsets are used as training data to train a model.
Each time a model is trained on a subset, it is evalu-
ated using a fitness function which can be accuracy or
loss. Once each member of the population is evalu-
ated against the fitness function, a tournament is con-
ducted to determine which subsets will continue into
the next generation. The next generation is composed
of the winners of the tournament, with some crossover
and mutation. Crossover consists of updating the win-
ning sample sets with samples from the other winners,
while mutation introduces or removes some samples
at random.

3.1 Representation of individuals

The first step is to determine how each individual will
be represented. Since the goal is to find, at a given
time ti, the best subset of data observations from both
old and new observations to train a model, each indi-
vidual must be a representation of the subset of obser-
vations that it holds. Individuals will be represented
as a string of length equal to the number of both old
and new observations at ti, with each char of the string
corresponding to a training sample and a value of 1 or
0 depending on whether the sample is selected or not.
Each individual will thus occupy n bytes, where n is
the initial number of old and new observations at ti ,
and m is the maximum number of samples to be acti-
vated within an individual (m≪ n, m corresponds to
the size of the exemplar).

3.2 Generate population

The next step is to generate a population of a certain
size that will serve as the algorithm’s starting point.
Individual generation can be completely random or
slightly controlled. In our work, the number of sam-
ples to consider for each class label can be controlled.
Indeed, a random generation of individuals can re-
sult in the construction of unbalanced exemplar sets
in terms of class representation. However, since the
main goal is to find the best subset of samples that im-
proves the model’s performance, the generation can-
not be completely random. To respect memory con-
straints and consider a balanced representation among
the class labels, it is interesting to force the individual
generator to generate individuals with a fixed num-
ber of 1s per class label. As a result, all individuals
will have a fixed number of active samples while con-
sidering the balance criterion as well as the memory
limitations.

The Algorithm 1 allows the generation of individ-
uals by considering both random and controlled gen-

eration. The control is performed on the number of
samples per class label to ensure balance. While ran-
dom generation is applied when selecting samples in
the same class label. The algorithm takes as input the
old and new observations represented by (D,Y), the
size of the population to be generated sizep, and the
size of the exemplar set E size. It provides as output
the population P that contains the generated individ-
uals. The algorithm starts by initializing the list P
(Line 1). Then, it determines the set of class labels
presented in the input data (D,Y) and computes the
number of samples to be selected for each class la-
bel in the exemplar set (Line 2 - Line 8). For each
generated individual in P , the algorithm selects a set
of samples to be used in training at random for each
class label, by assigning a value of 1 if the sample is
included and 0 otherwise (Line 10 - Line 29). Once
the samples per class label are selected, the algorithm
verifies if the final generated individual exists or not
in P (Line 24 - Line 28). If this is the case, the process
of generation will be repeated. Else the generated in-
dividual will be added to the list P . The entire process
is repeated until the required number of individuals is
reached.

3.3 Evaluate each individual in the
population

For each of the generated individuals in P , a model
will be trained with a dataset containing only the ac-
tive samples for that individual. After training the
model on a subset of samples from each individual,
we must assess its performance. In this work, accu-
racy and loss are used as metrics to quantify the effec-
tiveness of the trained models using different exem-
plar sets. The Algorithm 2 presents the way the fitness
function is defined to evaluate the performance of the
individuals (exemplar sets). The algorithm takes as
input the old and new observations represented by
(D,Y), a small test dataset (Xtest ,Ytest), a model M
to be trained and evaluated, the list of generated indi-
viduals P and the score type Stype (accuracy or loss)
to evaluate the individual. It provides as output, a
dictionary W that assigns to each individual the cor-
responding accuracy and loss. For each individual
in P ,the algorithm first copies the parameters of the
model to be trained into a new one (Line 3). Then, it
retrieves the training data that correspond to the active
samples for the individual under evaluation (Line 4).
The model is trained on these data, and the test data
is used to make predictions. According to the score
type, the model is assessed either in terms of accuracy
or loss (Line 5 - Line 11). Once completed, the indi-
vidual and the associated evaluation metric are added

Algorithm 1 Generate a population

Require: (D,Y),size p,E size
Ensure: P

1: P ← list()
2: class labels← get true lables(Y)
3: size class labels← list()
4: for (c ∈ class labels) do
5: size label← get size samples((D,Y),c)
6: size class labels← add(size label)
7: end for
8: ratio = E size/size(class labels)
9: for (i ∈ size p) do

10: while True do
11: individual← ””
12: for j ∈ size class labels do
13: sub individual← ””
14: for (char ∈ j) do
15: count 1 = get number o f 1()
16: if count 1 == ratio then
17: concat(sub individual,0)
18: else
19: concat(sub individual,rand(0,1))
20: end if
21: end for
22: concat(individual,sub individual)
23: end for
24: if individual ∈ P then
25: Write(Repeat generation process)
26: else
27: Break
28: end if
29: end while
30: P ← concat(P , individual)
31: end for

to W .

3.4 Reproduce individuals: selection,
crossover and mutation

Following the computation of each individual’s scores
(accuracy and loss), a selection is performed to de-
termine which individuals will continue to the next
generation. For genetic algorithms there are differ-
ent techniques to perform the selection phase such as
the use of the roulette wheel selection, the stochastic
universal sampling and the tournament selection. In
our work, we consider a fitness based selection ap-
proach where the fittest k individuals are selected to
participate in the generation phase. The individuals
with the best scoring metric will be selected to re-
produce and pass their genes to the next generation.
Then, the most important stage of a genetic algorithm

Algorithm 2 Evaluate the Population in terms of ac-
curacy or loss

Require: (D,Y),(Xtest ,Ytest),P ,M ,Stype
Ensure: W

1: W ←{}
2: for individual ∈ P do
3: M0← copy(M)
4: Xtrain,Ytrain← get train data()
5: M0. f it(Xtrain,Ytrain)
6: predictions←M0.predict(Xtest)
7: if Stype == ”Accuracy” then
8: S = compute accuracy(predictions,Ytest)
9: else

10: S = compute loss(predictions,Ytest)
11: end if
12: W ← put(individual,S)
13: end for

Algorithm 3 the reproduction process : crossover and
mutation
Require: p1, p2,E size,(D,Y)
Ensure: child1,child2

1: nb samples = length(individual1)
2: crosspoint = Random(nb samples)
3: child1 = p1[: crosspoint]+ p2[crosspoint :]
4: child2 = p2[: crosspoint]+ p1[crosspoint :]
5: child1 =Mutate(child1,nb samples,(D,Y),E size)
6: child2 =Mutate(child2,nb samples,(D,Y),E size)

is crossover. A crossover point is chosen at random
from the genes for each pair of individuals (parents)
that will be mated. Offspring are produced by ex-
changing genes between parents until the crossover
point is reached. Some of their genes may be subject
to mutation with a low random probability in some of
the newly formed offspring. As a result, some of the
activated and not activated samples may be reversed.
The goal of mutation is to increase population diver-
sity and prevent early convergence. The Algorithm
3 introduces the reproduction process once the selec-
tion is performed. The algorithm takes as input the
two parents p1 and p2 to be mated, the data observa-
tions (D,Y) and the exemplar size E size. It provides
as output two individuals child1 and child2. The al-
gorithm starts by generating randomly a cross point
(Line 1 -Line 2). Then, it mates p1 and p2 and re-
turns child1 (Line 3) and child2 (Line 4). Once the
children are created, the mutation phase begins. The
Algorithm 4 introduces the mutation process. The al-
gorithm takes as input the child to be mutated child,
the length of the individual nb samples, the data ob-
servations (D,Y), the exemplar size E size and the
probability of mutation prob. It provides as output

Algorithm 4 Mutate

Require: child,nb samples,(D,Y),E size, prob
Ensure: new child

1: list index = list()
2: S = E size/length(class labels)
3: new child = ””
4: class labels← get true lables(Y)
5: size class labels← list()
6: for (c ∈ class labels) do
7: index start end = get indexes((D,Y),c)
8: list index = add(list index, index start end)
9: end for

10: for index ∈ list index do
11: sub child = child[index[0] : index[1]]
12: for i,char ∈ sub child do
13: ran = Random()
14: if ran < prob then
15: if char == 0andcount(1,sub child) < S

then
16: new char = 1
17: sub child = sub child[: i] +

new char+ sub child[i+1 :]
18: else if char == 1 then
19: new char = 0
20: sub child = sub child[: i] +

new char+ sub child[i+1 :]
21: end if
22: end if
23: end for
24: new child = concat(new childsub child)
25: end for

the mutated child new child. The algorithm starts by
determining for each class label in the data (D,Y), the
start and end indices of the samples that represent it
(Line 4 - Line 9). The mutation is then applied by
class label. Indeed, when the crossover is performed,
the child’s size constraint may be violated, and we
may end up with a child with a greater number of
activated samples than is required. In addition, due
to the randomness associated with the generation of
the crossover point, the data equilibrium criteria in
terms of class label may also be violated. For each
class label (line 10 - Line 25), the algorithm starts
by copying the sequence of bits that represents this
class label in the child to mutate (Line 11). Then, ac-
cording to the generated random value, if it is lower
than the probability value prob, the algorithm checks
if the character to be mutated is equal to 0 and if the
number of 1 in the sequence is lower than the repre-
sentation ratio of the class label (Line 14 - Line 15).
If this is the case, the algorithm reverses the bit and
the sequence is updated (line 16 -17). Otherwise, if
the character is equal to 1, then the mutation is ap-

plied and the sequence is updated (Line 18 - Line 20).
The new sequence is then concatenated to the mutated
child new child (Line 24). In this way, we ensure that
the reproduction process provides solutions that re-
spect memory constraints (exemplar set size) as well
as class-label balance criteria.

3.5 Main loop of Genetic Algorithm

To generate a set of appropriate training examples, all
of the preceding steps should be carried out in the fol-
lowing order. The first step is to generate the initial
population. In fact, the number of individuals to gen-
erate is an input parameter. Once generated, each in-
dividual is evaluated using one of the defined fitness
functions, including accuracy and loss. When one of
the individuals reaches the optimal value for the ac-
curacy or loss functions when calculating the fitness
score, the genetic algorithm is interrupted and the in-
dividual in question is provided as the best solution.
For this work, the optimum value for accuracy is set
to 100%, while the loss is set to 0. These values can
be always modified as required.

If non of the individuals reaches the goal state,
the selection process to select the best parents is per-
formed. Then, the reproducing algorithm including
crossover and mutation is invoked. At the end of this
process a new population is generated and then eval-
uated. This process is repeated n times, where n is
an input parameter and represents the number of iter-
ations. During the whole execution process, the in-
dividual with the best score value is kept as the best
solution.

4 Experimental Results

4.1 Case Study

To validate our GA-based incremental learning pro-
cess, we used the Open University Learning Analytics
dataset (OULAD)(Kuzilek et al., 2017). This dataset
is a collection of data from the Open University’s Vir-
tual Learning Environment (VLE). The dataset con-
tains information about student activities and inter-
actions with the VLE, such as accessing course ma-
terials, participating in online discussions, and sub-
mitting assignments. The OULAD dataset has been
widely used in learning analytics research and has
been made available for academic use. Overall, it
presents the data related to seven courses 2, where we

2[’AAA’, ’BBB’, ’CCC’, ’DDD’, ’EEE’, ’FFF’,
’GGG’]

have more than 30000 enrolled students. In our work,
we are interested in predicting student performance as
early as possible in time. To accomplish this, we de-
fined a set of features for the dataset OULAD. We dis-
tinguish the following indicators (Labba and Boyer,
2022)(Ben Soussia et al., 2021) : 1) Demographic
data; 2) Performance that denotes the submitted ex-
ams and the grades; 3) Engagement that describes the
learner interaction with the VLE content; 4) Regular-
ity that denotes the progress made by the learner in
terms of achieved VLE activities and the number of
submitted exams and 5) Reactivity that is described
by the time taken to submit an exam as well as the
time between successive connections to the VLE.

We adopt a weekly-based prediction strategy. The
problem is formalized as a binary classification prob-
lem. The classification consists of two classes: failure
and pass. On each week wi, a student is defined by a
tuple X = (f1, .., fm,y) where f1, .., fm are the features
and y is the class label. The prediction of the student’s
class label is made based on their final true label. The
aim is to predict students at risk of failure as early
as possible while taking into account the progressive
availability of data over time.

The experimental section presents the results of
the prediction against the AAA course over the year
2013. Overall, we have 363 enrolled student and 39
weeks 3.

4.2 Experiments

We compared the GA-based incremental learning pro-
cess using both loss and accuracy as score types to the
incremental process based on a random selection in-
troduced in (Labba and Boyer, 2022).

We used a small forgetting value (0.01) to invoke
model retrain at each week and check how model per-
formance varies over 39 weeks in terms of two met-
rics including accuracy and loss. The maximum size
of the training exemplar is set to 80. for the rest of
this section the displayed results represent the aver-
age value over 10 runs for each week, for both accu-
racy and loss metrics. When configuring the GA, we
fixed the initial population size to 20 individuals and
the number of iterations to 5.

4.2.1 The GA-based incremental process:
Stability over runs

Our objective is to mitigate the influence of random
sample selection in (Labba and Boyer, 2022) when
constructing the exemplar training set for the purpose

3The original data are provided by day, the data were
processed to calculate the features on a weekly basis

Figure 1: Standard deviation in terms of accuracy over 10
runs: GA Accuracy vs GA Loss vs Random Selection

of retraining the online analytical model. As a re-
sult, our goal is to minimize the standard deviation
in model accuracy when retraining it using the con-
structed exemplar. The Fig.1 illustrates the weekly
standard deviation of accuracy, with each week’s
standard deviation calculated from a set of 10 runs.
For the random selection strategy (Labba and Boyer,
2022), we observe the widest range of standard de-
viation in accuracy, extending from 1% to 9%. Con-
versely, our GA-based approach shows significantly
lower variations, limited to a range of 1% to a maxi-
mum of 2.1%. In terms of stability, the adoption of a
genetic algorithm with an initial population of 20 in-
dividuals, combined with a guided strategy for their
generation, enables the creation of a more diverse
group of individuals. This in turn contributes to im-
proving the stability and robustness of our approach.
In contrast, the random selection process generates
only one random solution at a time, which limits its
ability to promote diversity and results in increased
variation in terms of accuracy.

4.2.2 The GA-based incremental process vs
Random Selection

As stated in the section (3), the incremental GA-based
process considers various types of scores to construct
the exemplar set, including accuracy and loss. One
of these types must be filled in as input to the algo-
rithm. In order to check the impact of the score selec-
tion on the construction of the exemplar set and con-
sequently on the model performance, we compare, in
a first experiment, the incremental processes based on
GA using accuracy and GA using loss 4 to the random
selection process.

As shown in both Fig.2a and Fig.2b, our approach
based on the use of GA either with a score type as ac-
curacy or loss outperforms the existing random selec-
tion approach proposed in (Labba and Boyer, 2022)

4GA using accuracy denotes the variant of the genetic
algorithm when we use the accuracy as a score in the fitness
function, while GA using loss to denote that we use the loss
measure in the fitness function

(a) Mean Accuracy over 10 runs per week: exemplar
size=80

(b) Mean Loss over 10 runs per week: exemplar size=80
Figure 2: GA (score=Loss) vs GA (score=Accuracy) vs
Random Selection

in terms of both accuracy and loss. Indeed, our ap-
proach demonstrates a significant improvement, with
up to a 10% increase in accuracy and a noteworthy
reduction in log loss of (-0.1) when compared to the
random approach in (Labba and Boyer, 2022).

When assessing the various Genetic Algorithm
(GA) variants by considering both accuracy and
loss scores, a notable observation emerges. While
the accuracy-based evaluation undoubtedly yields the
best overall performance in terms of accuracy, the
same cannot be said for the corresponding loss metric.
Indeed, in our dataset, we have a total of 363 students,
of whom 266 are classified as ”pass” and 97 as ”fail”.
It’s important to note that in cases of data imbalance,
accuracy alone may not provide an adequate measure
to assess model performance, as it may be biased in
favor of the dominant class-label. When generating
the initial population in the GA approach, we make
sure we maintain a certain balance between the class
labels. However, during the mutation process, this
condition can be violated, as this action is carried out
randomly and on the basis of a given mutation proba-
bility. This may result in a good model performance
that reaches only the dominant class. Whereas, when
employing a loss-based score for the Genetic Algo-
rithm (GA) variant, the model demonstrates superior
results in terms of minimizing loss, although with a
slight compromise in accuracy. We believe it’s more
effective to consider loss as a score for selecting the
best training samples, as this reduces the overall loss

while maintaining an acceptable measure of accuracy.

5 Conclusion

As data become available over time, traditional offline
approaches of training and evaluating analytical mod-
els to predict students performance become obsolete
and unsuitable. Nowadays, online incremental learn-
ing is increasingly being used to update online Ma-
chine Learning (ML) models with new data received
over time. This work is concerned with memory-
based approaches that consist in using rehearsal tech-
niques to recall a small training exemplar set that con-
tains previous data and new data to retrain the online
model. One of the major concerns in this regard is
how to construct this training exemplar while receiv-
ing new data over time. Typically, a random selection
of samples is made, which can deteriorate the model’s
performance. In this paper, we proposed a memory-
based online incremental learning approach that is
based on the use of the genetic algorithm heuristic to
build the training exemplar set. The approach respects
the memory space constraints as well as the balance
of class labels when forming the training exemplar.

Indeed, compared to an exiting approach based
on random selection of training samples when build-
ing the training exemplar, our approach based on GA
enhances the model accuracy up to 10%. Further it
shows a better stability and less variations in terms of
accuracy. As a future work, we intend to evaluate the
proposed approach with a variety of ML models in
addition to random forest. Further, we intend to as-
sess its effectiveness using other score types such as
the F1-score.

REFERENCES

Ade, R. and Deshmukh, P. (2014). Instance-based vs batch-
based incremental learning approach for students clas-
sification. International Journal of Computer Appli-
cations, 106(3).

Ben Soussia, A., Roussanaly, A., and Boyer, A. (2021).
An in-depth methodology to predict at-risk learners.
In European Conference on Technology Enhanced
Learning, pages 193–206. Springer.

Chang, B. (2021). Student privacy issues in online learning
environments. Distance Education, 42(1):55–69.

Gepperth, A. and Hammer, B. (2016). Incremental learning
algorithms and applications. In European symposium
on artificial neural networks (ESANN).

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., and
Kanan, C. (2020). Remind your neural network to pre-

vent catastrophic forgetting. In European Conference
on Computer Vision, pages 466–483. Springer.

He, J., Mao, R., Shao, Z., and Zhu, F. (2020). Incremen-
tal learning in online scenario. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13926–13935.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.

Kotsiantis, S., Patriarcheas, K., and Xenos, M. (2010).
A combinational incremental ensemble of classifiers
as a technique for predicting students’ performance
in distance education. Knowledge-Based Systems,
23(6):529–535.

Kulkarni, P. and Ade, R. (2014). Prediction of student’s
performance based on incremental learning. Interna-
tional Journal of Computer Applications, 99(14):10–
16.

Kuzilek, J., Hlosta, M., and Zdrahal, Z. (2017). Open
university learning analytics dataset. Scientific data,
4(1):1–8.

Labba, C. and Boyer, A. (2022). When and how to update
online analytical models for predicting students per-
formance? In European Conference on Technology
Enhanced Learning, pages 173–186. Springer.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. (2017). icarl: Incremental classifier and rep-
resentation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition,
pages 2001–2010.

Sirshar, M., Hassan, T., Akram, M. U., and Khan, S. A.
(2021). An incremental learning approach to automat-
ically recognize pulmonary diseases from the multi-
vendor chest radiographs. Computers in Biology and
Medicine, 134:104435.

Yan, S., Zhou, J., Xie, J., Zhang, S., and He, X. (2021).
An em framework for online incremental learning of
semantic segmentation. In Proceedings of the 29th
ACM International Conference on Multimedia, pages
3052–3060.

Yang, Q., Gu, Y., and Wu, D. (2019). Survey of incremental
learning. In 2019 chinese control and decision confer-
ence (ccdc), pages 399–404. IEEE.

