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Uninterpreted Functions + Arithmetic: An Example

x+1 6= 1+y , x = f (c), y = f (d), c ≤ d ,d+a ≤ c,a+b = 1,b = 1+a

It is possible to get rid of f by adding the instances of the
congruence axiom (Ackermann expansion): the above formula
can be equivalently transformed into

x+1 6= 1+y , c = d ⇒ x = y , c ≤ d ,d+a ≤ c,a+b = 1,b = 1+a

How to solve/satisfy this Linear Arithmetic formula?
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Linear Arithmetic (LA)

• A signature ΣLA = ({0,1,+}, {≤})
• A single ΣLA-structure, say LA(X ), defined by the domain X
and the standard interpretation of ΣLA-symbols over X

. if X is the set of naturals, then we speak of LA over the
naturals

. if X is the set of integers, then we speak of LA over the
integers

. if X is the set of rationals/reals, then we speak of LA over
the rational/reals
• TLA(X) is the set of sentences ϕ such that LA(X ) |= ϕ
• Why is it important to consider different domains?

. Satisfiability of formulae may change... Exercise: find an
example!
• Why have we put together the case rationals and reals?
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Theory of Linear Arithmetic (Rationals)
Signature:

+ : rat × rat → rat
0 : rat
1 : rat
<: rat × rat

Some true sentences

∀x . x + 0 = 0 + x
∀x , y , z. x + (y + z) = (x + y) + z
∀x , y . x + y = y + x
∀x . x + · · ·+ x = 0⇒ x = 0
∀x∃y . y + · · ·+ y = x
0 6= 1
∀x . ¬(x < x)
∀x , y , z. (x < y ∧ y < z)⇒ x < z
∀x , y . x < y ∨ y < x ∨ x = y
0 < 1

Is there a finite axiomatization? (what about the . . . ?)
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Architecture of a Dec Proc for LA(Rationals)

Literals in LA are equalities (s = t), disequalities (s 6= t), and
inequalities (s ≤ t)

• Gauss elimination solves conjunctions of equalities
• Fourier-Motzkin checks satisfiability of conjunctions of
inequalities and derives entailed equalities
• The disequality handler checks the satisfiability of
disequalities
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Gauss elimination

Standard algorithm in linear algebra

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Successive elimination of variables (choose j and replace `i by
`i + cj`j for i 6= j):

a11x1 + a12x2 + · · ·+ a1nxn = b1
a′

22x2 + · · ·+ a′
2nxn = b′

2
...

...
...

a′
m2x2 + · · ·+ a′

mnxn = b′
m
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Gauss elimination (cont’d)

After Gauss elimination, we get a triangular matrix
Ax = b is unsatisfiable iff there n = 0 in the matrix, where n is
rational different from 0
If Ax = b is satisfiable, then Gauss elimination leads to a
solved form

n∧
i=1

xi = ti

obtained by “back-substitution” from the triangular matrix
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Gauss Elimination: Satisfiable Example

{
x + y + z = 10 ×(−2)
2x + y + 3z = 20

Elimination of x : {
x + y + z = 10
−y + z = 0

Back-substitution: {
x = 10− 2z
y = z
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Gauss Elimination: Unsatisfiable Example


x + y = 2
x + 2y = 3
2x + 3y = 4

After pivoting: 
x + y = 2
y = 1
y = 0

and so 0 = 1 : UNSAT .
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Fourier-Motzkin Elimination

• Principle: eliminate a variable x thanks to transitivity

x ≤ α, β ≤ x ; β ≤ α

β ≤ α is UNSAT if β, α are numbers such that β > α.
• How to deduce the implicit equalities?
Implicit equalities come from the inequalities involved in the
derivation of 0 ≤ 0.
Example: x ≤ y , y ≤ x leads to 0 ≤ 0 and the two inequalities
are indeed implicit equalities x = y , y = x
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Fourier-Motzkin Elimination: An Example


3x ≤ 2y ×2
3y ≤ 4
3 ≤ 2x ×3

By eliminating x , we generate{
3y ≤ 4 ×4
9 ≤ 4y ×3

By eliminating y , we get 27 ≤ 16: UNSAT
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Derive entailed inequalities

Theorem
(Farkas) The set of consequences of a given set of inequalities
is closed under non-negative linear combinations

Using the following definitions:
• A non-negative (positive) linear combination of C1, ...,Cm is
an inequality of the form

∑m
i=1 αkCk where each αk ≥ 0

(αk > 0, resp) for k = 1, ...,m
• αCk denotes the expression

∑n
j=1 αak ,jxj ≤ αbk

• C1 + C2 denotes the expression∑n
j=1(a1,j + a2,j)xj ≤ (b1 + b2)
• Ck (for k = 1, ...,m) denotes the inequality

n∑
j=1

ak ,jxj ≤ bk
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Derive entailed implicit equalities

Proposition

If αk > 0 for k = 1, ...,m and
∑m

k=1 αkCk = 0 ≤ 0 then Cj is an
implicit equality for j = 1, ...,m
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Obtain Implicit equalities: Proof

Proof.
m∑

k=1

αkCk = α1C1 + · · ·+ αjCj + · · ·αmCm = 0,

−1Cj =
m∑

k=1,k 6=j

αk

αj
Cj for j = 1, ...,m

Since the set of consequence of P := {C1, ...,Cm} is closed
under non-negative combinations, we have that P |= −1Cj .
On the other hand, we have that P |= Cj (since Cj ∈ P).
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Fourier-Motzkin Elimination

Aim: Elimination of a variable thanks to transitivity

Consider a set of inequalities ϕ and a variable x occurring
in ϕ with coefficients of different signs
Partition ϕ into

x ≤ α (x of positive sign): {x ≤ αi | x ≤ αi ∈ ϕ}
β ≤ x (x of negative sign): {βi ≤ x | βi ≤ x ∈ ϕ}
γ (x not in γ)

Consider (β ≤ α) ∪ γ where
β ≤ α = {βi ≤ αi | βi ≤ x ∈ (β ≤ x), x ≤ αi ∈ (x ≤ α)}

Proposition

ϕ and (β ≤ α) ∪ γ are equisatisfiable.
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Complexity of Fourier-Motzkin Algorithm

When eliminating a variable, a quadratic number of inequalities
may be introduced:

m x1→ m2 x2→ (m2)2 · · · xn→ m2n

Fourier-Motzkin is doubly exponential...
ü Interest of considering special cases of inequalities

Christophe Ringeissen Decision procedures for Linear Arithmetic



Uninterpreted Functions + Arithmetic
Linear Arithmetic: the basics

A Simple Case of Linear Arithmetic

Modified Fourier-Motzkin Algorithm

• The algorithm can be modified also to derive implicit
equalities

. each inequality Ck in the initial set is given a label (say k )
and is augmented with a set containing its label, i.e. Ck : {k}

. when performing a Fourier step, we propagate labels as
follows:

ciCj + cjCi : Li ∪ Lj

where Li is the set of labels associated to Ci and Lj that
associated to Cj
• whenever an inequality of the form 0 ≤ 0 : L is derived, all
inequalities whose labels are in L are implicit equalities
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Handling Disequalities in Convex Theories

Definition

A theory T is said to be convex if for any T -satisfiable set of equalities P, we have
T |= (P ⇒

∨n
i=1 si = ti ) implies there exists some k ∈ [1, n] such that

T |= (P ⇒ sk = tk ).

This definition can be reworded in terms of satisfiability:

Definition

A theory T is said to be convex if for any T -satisfiable set of equalities P, we have
¬(P ⇒

∨n
i=1 si = ti ) is T -unsatisfiable implies there exists some k ∈ [1, n] such that

¬(P ⇒ sk = tk ) is T -unsatisfiable.

Since ¬(P ⇒ Q) corresponds to P ∧ ¬Q, we get:

Definition

A theory T is said to be convex if for any T -satisfiable set of equalities P, we have
P ∧

∧n
i=1 si 6= ti is T -unsatisfiable implies there exists some k ∈ [1, n] such that

P ∧ sk 6= tk is T -unsatisfiable.

Christophe Ringeissen Decision procedures for Linear Arithmetic



Uninterpreted Functions + Arithmetic
Linear Arithmetic: the basics

A Simple Case of Linear Arithmetic

Convex Theories: Examples and Counter-Examples

Examples of convex theories:

Theory of equality
LA(Rationals)

Some non-convex theories:

LA(Naturals):
x + y = 1⇒ x = 1 ∨ y = 1

but x + y = 1 6⇒ x = 1 and x + y = 1 6⇒ y = 1
Theory of Arrays:

e = rd(wr(a, i ,d), j)⇒ e = d ∨ e = rd(a, j)

but e = rd(wr(a, i ,d), j) 6⇒ e = d and
e = rd(wr(a, i ,d), j) 6⇒ e = rd(a, j)
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Disequality Handler

• Independence of disequalities:
ü convexity: LA(Rationals) is convex
• So, the disequality handler only needs to consider the solved
equalities (derived by Gauss elimination) and perform the
substitutions in each disequality separately

. unsatisfiability is reported as soon as a disequality of the
form s 6= s is obtained by performing such substitutions
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Disequality Handler: Example


x + y + z = 10
2x + y + 3z = 20
3x + 6y 6= 30

Solving the set of equalities leads to the solved form:{
x = 10− 2z
y = z

Substituting x and y in the disequality:

(3x + 6y 6= 30){x 7→ 10− 2z, y 7→ z}
30− 6z + 6z 6= 30

30 6= 30

UNSAT
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A Decision Procedure for LA(Rationals)

Equalities/Inequalities/Disequalities sent to the related
module GE/FME/DH
Each module applies a certain set of rules to make it trivial
to check the unsatisfiability (cf. deriving ⊥)
Entailed equalities of the form x = t (where x is a variable
which does not occur in t) derived by GE are sent

to FME to eliminate one variable
to DH to simplify the disequalities so to make it trivial to
check the unsatisfiability (cf. deriving t 6= t)

Implicit equalities derived by FME are sent to GE to
furtherly simplify equalities
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Satisfiability Problem in LA(Rationals)


2x + y + 3z = 20
x + y + z ≤ 10
10 + 2x − 2y ≤ 4x + 2z − 10
3x + 6y 6= 30

Satisfiable?
Is there any implicit equality?
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Difference Constraints (Pratt)

A special case of linear arithmetic, where constraints are of the
form: xi − xj ≤ c, or xi − 0 ≤ c, or 0− xj ≤ c.

A common form of constraint (in verification problems)

Construction of a directed graph with a vertex 0 and a vertex
per variable: xi − xj ≤ c represented by an edge xi → xj of
weight c.

Theorem
A set of difference constraints is satisfiable iff there is no
negative weight cycle in the graph.

Complexity: O(n3) thanks to the Bellman-Ford algorithm to
solve the “single-source shortest-path problem”
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