
Decision procedures for the theory of equality

Silvio Ranise & Christophe Ringeissen

LORIA-INRIA Nancy Grand Est

(LORIA-Inria) Decision Procedures and Verification 2020/21 1 / 56

Topics

GOAL: design decision procedures for the satisfiability problem of
arbitrary Boolean combinations of ground atoms whose only main
symbol is equality
Two techniques

1 By translation to the Boolean satisfiability problem (via Herbrand
method)

2 By rewriting (i.e. using oriented equalities)

(LORIA-Inria) Decision Procedures and Verification 2020/21 2 / 56

Index

1 A motivating example

2 The TUF -satisfiability problem
A fundamental tool in automated reasoning: Herbrand theorem
Decidability of TUF by bounding Herbrand universe

3 A decision procedure for a class of equational formulae
Equality as a graph
Convexity: its role in designing a dec proc for equality

4 A better decision procedure based on rewriting
Rewriting: formal preliminaries
Convergent rewrite relations as dec. proc’s for equality

(LORIA-Inria) Decision Procedures and Verification 2020/21 3 / 56

A motivating example

What is an (optimizing) compiler?

Definition (Compilers)
Special programs that take instructions written in a high level language
(e.g., C, Pascal) and convert it into machine language or code the
computer can understand.

Example
Consider the following simple program fragment in C:

...
int x,y,z;
s0: ... /* y and z are initialized */
s1: x = (y+z) * (y+z) * (z+y) * (z+y);
...

Problem: sub-expressions are needlessly re-computed!

(LORIA-Inria) Decision Procedures and Verification 2020/21 4 / 56

A motivating example

An (optimizing) compiler: an example

Example (cont’d)
By exploiting only the syntactic structure of sub-expressions, transform

int x,y,z;
s0: ... /* y and z are initialized */

s1: x = (y+z) * (y+z) * (z+y) * (z+y) ;

into

int x,y,z; int aux1,aux2;
t0: ... /* y and z are initialized */
t1: aux1 = (y+z);
t2: aux2 = (z+y);
t3: x = aux1 * aux1 * aux2 * aux2;

which avoids the re-computation of sub-expressions!

(LORIA-Inria) Decision Procedures and Verification 2020/21 5 / 56

A motivating example

An (optimizing) compiler: an example

Example (cont’d)
QUESTION: how can we guarantee that the value stored in x after the
computation of the transformed program is equal to that in x after the
computation of the source?
ANSWER: ignore the arithmetic properties of all arithmetic operations
and consider them as uninterpreted functions (i.e. + f and ∗ g).
Then, prove the validity of the following proof obligation:

ys0 = yt0 ∧ zs0 = zt0 ∧
xs1 = g(g(f (ys0, zs0), f (ys0, zs0)), g(f (zs0, ys0), f (zs0, ys0))) ∧
aux1t1 = f (yt0, zt0) ∧
aux2 t2 = f (zt0, yt0) ∧
xt3 = g(g(aux1t1, aux1t1), g(aux2 t2, aux2 t2))

 ⇒ xs1 = xt3

(LORIA-Inria) Decision Procedures and Verification 2020/21 6 / 56

The TUF -satisfiability problem

The satisfiability problem for equational formulae

Definition
Let Σ be a set of function and constant symbols. An equational atom
is of form s = t where s, t are Σ-terms. An equational formula is a
Boolean combination of equational atoms.

QUESTION: is this problem decidable? I.e. does it exist a decision
procedure for such a problem? I.e. does it exist an algorithm which
takes an arbitrary equational formula and returns satisfiable when
there exists a model of it and unsatisfiable when there is not structure
satisfying the formula?

(LORIA-Inria) Decision Procedures and Verification 2020/21 7 / 56

The TUF -satisfiability problem

TUF : An example

For our example, we should prove the unsatisfiability of (Why?)
ys0 = yt0 ∧ zs0 = zt0 ∧
xs1 = g(g(f (ys0, zs0), f (ys0, zs0)), g(f (zs0, ys0), f (zs0, ys0))) ∧
aux1t1 = f (yt0, zt0) ∧
aux2 t2 = f (zt0, yt0) ∧
xt3 = g(g(aux1t1, aux1t1), g(aux2 t2, aux2 t2))

 ∧ xs1 6= xt3

which is indeed an equational formula whose atoms are built out of
the symbols in Σ := {f/2,g/2, xs0/0, ys0/0, xt0/0, yt0/0, ...}

(LORIA-Inria) Decision Procedures and Verification 2020/21 8 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Arbitrary structures versus Herbrand structures

Validity versus Satisfiability:
Given a sentence ϕ, T |= ϕ iff T ∪ {¬ϕ} is inconsistent

Problem: search for a model of the sentence φ = (T ∪ {¬ϕ})
For some particular sentences φ, one can restrict without loss of
generality to the subclass of models of φ that are Herbrand structures

Given any structureM such thatM |= φ, it is always possible to find a
Herbrand structure H such that H |= φ

(LORIA-Inria) Decision Procedures and Verification 2020/21 10 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand universe: UH

Assume the following form ∀x1, ..., xk .ψ
where ψ is a Boolean combination of atoms without quantifiers

UH0 := constants occurring in ψ

if there are no constants in ψ, then UH0 := {a} (for a an arbitrary
constant symbol)

UHi+1 := UHi ∪ {f (t1, ..., tn)|f is in ψ of arity n and t1, ..., tn ∈ UHi}
The Herbrand universe is defined as follows:

UH :=
∞⋃

i=0

UHi

(LORIA-Inria) Decision Procedures and Verification 2020/21 11 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand structures

Definition
The Herbrand structure H = 〈DH, IH〉 of ∀x1, ..., xk .ψ (where ψ is a
Boolean combination of atoms without quantifiers) is such that

DH is the Herbrand universe of ψ
IH is defined on (ground) terms as follows:

IH(c) := c if c is a constant in ψ

IH(f (t1, ..., tn)) := mapping the n-tuple of terms (t1, ..., tn)

to the term f (t1, ..., tn)

(LORIA-Inria) Decision Procedures and Verification 2020/21 12 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand theorem

Theorem
The formula ∀x1, ..., xk .ψ is consistent iff it admits a Herbrand model,
where ψ is a quantifier-free Boolean combination of atoms.

Proof.
(⇐): obvious.
(⇒): LetM be a model of φ = (∀x1, ..., xk .ψ). We can define an
interpretation over atoms p(t1. . . . , tn) where t1, . . . , tn ∈ DH:
p(t1. . . . , tn) is true in H if and only if p(t1. . . . , tn) is true inM.
Then, by structural induction on formulas, we can show that

H |= φ if and only ifM |= φ

(LORIA-Inria) Decision Procedures and Verification 2020/21 13 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand method (to refute formulae)

Input: ∀x1, ..., xk .ψ where ψ is a quantifier-free Boolean
combination of atoms
Output: satisfiable/unsatisfiable
Method: Consider the Herbrand universe UH of ψ and enumerate
the ground instances of ψ obtained by replacing the variables of ψ
by terms in UH:

Gnd(ψ) = {σ(ψ) | Dom(σ) = {x1, . . . , xk},Ran(σ) ⊆ UH}

1 G := ∅
2 while there exists some ψ′ in Gnd(ψ)\G do

(i) G := G ∪ {ψ′}
(ii) If the Boolean abstraction of G is an unsatisfiable

Boolean formula, then return unsatisfiable (and the
method terminates)

3 return satisfiable
(LORIA-Inria) Decision Procedures and Verification 2020/21 14 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand method: remarks

The formula ∀x1, ..., xk .ψ is consistent iff Gnd(ψ) is consistent.
Remark: Gnd(ψ) is usually an infinite theory.

In general, Herbrand method is a semi-decision procedure for
unsatisfiability in the sense that it terminates whenever the input
formula is unsatisfiable...
This is so because of

Theorem (Compactness)
A set Γ of formulae is satisfiable iff every finite set ∆ ⊆ Γ is satisfiable.

(LORIA-Inria) Decision Procedures and Verification 2020/21 15 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand method: remarks

In particular, Herbrand method terminates, regardless of the
satisfiability or unsatisfiability of the input formula, when the
Herbrand universe is finite...

... since only finitely many ground instances must be considered

... the Herbrand universe is finite whenever there are no function
symbols in the input formula (only constants)

Herbrand method does not terminate if the input formula is
satisfiable and the Herbrand universe is infinite...

... for this, it is sufficient to have one function symbols of arity ≥ 1

We assume to be able to check the (un-)satisfiability of Boolean
formulae ...

(LORIA-Inria) Decision Procedures and Verification 2020/21 16 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Checking Boolean (un-)satisfiability: how?

Truth tables... not very efficient!
SAT is computationally very demanding: NP-problem
In practice: Davis-Putnam-Logemann-Loveland (DPLL) algorithm,
whose input is a conjunction of clauses, where a clause is a
disjunction of literals
For Horn clauses: linear time (in the number of occurrences of
Boolean variables) algorithm exists
A Horn clause is a disjunction of literals containing at most one
positive literal.

Thus, a Horn clause is of the form (a1 ∧ · · · ∧ an)⇒ an+1, where ai
is an atom for i = 1, . . . ,n + 1

A detailed presentation in Lecture 6

(LORIA-Inria) Decision Procedures and Verification 2020/21 17 / 56

The TUF -satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

DPLL: abstract description

Let S be a set of clauses

Unit Resolution S ∪ {L,C ∨ L}
S ∪ {L,C} if ¬A := A

A := ¬A

Unit Subsumption
S ∪ {L,C ∨ L}

S ∪ {L}

Splitting
S

S ∪ {A} | S ∪ {¬A} if A is an atom occurring in S

There exists very efficient implementation of this calculus: zChaff,
MiniSAT, Berkmin, ...

(LORIA-Inria) Decision Procedures and Verification 2020/21 18 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Herbrand method and TUF

Recall that
in first-order logic: the symbol of equality =, is uninterpreted (it is
an arbitrary binary predicate symbol, written infix)
in first-order logic with equality: the symbol of equality =, is
interpreted to be the identity relation on the domain of the structure

Herbrand theorem is stated and proved in first-order logic (without
equality)
QUESTION: can we use Herbrand method to check the
satisfiability of equational formulae? So to have at least a
semi-decision procedure...
ANSWER: yes with a little bit of effort...

(LORIA-Inria) Decision Procedures and Verification 2020/21 20 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Satisfiability with and without equality

Let ϕ be an equational formula built out of the symbols in Σ

Consider the following set EQΣ of axioms saying that = is a
congruence relation:

∀x .(x = x)

∀x , y .(x = y ⇒ y = x)

∀x , y , z.(x = y ∧ y = z ⇒ x = z)

∀...x , y ...(x = y ⇒ f (...x ...) = f (...y ...)) for each f ∈ Σ

Remark: ϕ is satisfiable in first-order logic with equality iff ϕ ∧ EQΣ is
satisfiable in first-order logic without equality

(LORIA-Inria) Decision Procedures and Verification 2020/21 21 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Application of the theorem: a semi-decision procedure
for TUF

The theorem allows us to use Herbrand method to solve arbitrary
TUF -satisfiabillity problems
Given an equational formula ϕ:

1 compute the set Σ of function and constant symbols occurring in ϕ
2 compute the set EQΣ
3 return the result of applying the Herbrand method on ϕ ∧ EQΣ

(where = is considered as an arbitrary predicate symbol)

About termination: it is sufficient that Σ contains one non-constant
symbols that the Herbrand universe of ϕ ∧ EQΣ is infinite and the
procedure is not guaranteed to terminate!

(LORIA-Inria) Decision Procedures and Verification 2020/21 22 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Remarks on the semi-decision procedure

BIG QUESTION: can we turn the semi-decision procedure based
on Herbrand method into a decision procedure
ANSWER: yes, by showing that it is always possible to find a
finite subset of the Herbrand universe which is sufficient to detect
unsatisfiability!

(LORIA-Inria) Decision Procedures and Verification 2020/21 23 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Example

Consider the following TUF -satisfiability problem

ϕ ≡ f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

unsatisfiable?
By substituting equal by equal, we can derive a contradiction:

f (f (f (a))) = a ∧ f (f (f (f (f (a))))) = a ∧ f (a) 6= a

f (f (f (a))) = a ∧ f (f (a)) = a ∧ f (a) 6= a

f (f (f (a))) = a ∧ f (f (a)) = a ∧ f (a) 6= a

f (a) = a ∧ f (f (a)) = a ∧ f (a) 6= a

Contradiction!

Key observation: in deriving the contradiction, we have only used
terms and sub-terms which occur in the input formula ϕ!

(LORIA-Inria) Decision Procedures and Verification 2020/21 24 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

A TUF -satisfiability procedure

Theorem
ϕ ∧ EQΣ is unsatisfiable iff ϕ ∧GEQϕ

Σ is unsatisfiable,
where GEQϕ

Σ is the (finite) set of ground instances of EQΣ obtained by
instantiating variables with all terms and sub-terms occurring in ϕ.

Corollary
Given an equational formula ϕ. The following algorithm

1 compute the set Σ of function and constant symbols occurring in ϕ
2 compute the set GEQϕ

Σ

3 return the result of checking the (Boolean) satisfiability of
ϕ ∧GEQϕ

Σ

terminates and returns whether ϕ is satisfiable or not.
Hence, TUF is decidable.

(LORIA-Inria) Decision Procedures and Verification 2020/21 25 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Idea of the proof of theorem

ϕ ∧ EQΣ is unsat. ⇒ ϕ ∧GEQϕ
Σ is unsat.

consider the counter-positive...

ϕ ∧GEQϕ
Σ is sat. ⇒ ϕ ∧ EQΣ is sat.

(LORIA-Inria) Decision Procedures and Verification 2020/21 26 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Proof of theorem

1 ϕ ∧GEQϕ
Σ is sat. ⇒ ϕ ∧ EQΣ is sat.

Assume ϕ ∧GEQϕ
Σ. So, there must exist a Herbrand structure

M = (DM , IM) satisfying both ϕ and GEQϕ
Σ.

Consider a structure M ′ = (DM′ , IM′) where:
DM′ = DM ∪ {#}, where # 6∈ DM
IM′ is defined as follows:

IM′(t) :=

{
IM (t) if t occurs in ϕ
otherwise

Since for each term t occurring in ϕ, we have that IM′(t) = IM(t) by
construction, we derive that each equational atom a in ϕ ∧GEQϕ

Σ,
we have that M ′ |= a iff M |= a. Hence, M ′ |= ϕ ∧GEQϕ

Σ

(LORIA-Inria) Decision Procedures and Verification 2020/21 27 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Proof of theorem

1 (cont’d from previous slide)
Since IM′(t) = # for all t ∈ DM′ not occurring in ϕ, we can check
that any formula in Gnd(EQΣ)\GEQϕ

Σ is true in M ′.
Hence, all ground instances of EQΣ are true in M ′, and so
M ′ |= EQΣ.
Consequently, M ′ |= EQΣ and M ′ |= ϕ. Thus, ϕ ∧ EQΣ is
satisfiable.

2 ϕ ∧ EQΣ is sat. ⇒ ϕ ∧GEQϕ
Σ is sat.

Easy

(LORIA-Inria) Decision Procedures and Verification 2020/21 28 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Complexity of TUF and the designed decision
procedure

TUF is in NP since it subsumes SAT
To evaluate the designed decision procedure, consider the sub-set
of equational formulae built out of conjunctions of possibly
negated equational atoms of the form c = d (for c,d being
constant symbols): what about the complexity of the decision
procedure for this class?
Notice that for this class of formulae, the corresponding Boolean
formulae are Horn clauses (i.e. clauses containing at most one
positive literal)...
The SAT problem for propositional Horn clauses can be solved in
linear time in the number of occurrences of Boolean variables...
QUESTION: how many occurrences of Boolean variables are in
ϕ ∧GEQϕ

Σ?

(LORIA-Inria) Decision Procedures and Verification 2020/21 29 / 56

The TUF -satisfiability problem Decidability of TUF by bounding Herbrand universe

Complexity of the designed decision procedure

Assume ϕ contains a number of atoms linear in the number of
constants n in ϕ.
GEQϕ

Σ will contain
1 a linear number of occurrences of Boolean variables from

instantiating: ∀x .(x = x)
2 a quadratic number of occurrences of Boolean variables from

instantiating: ∀x , y .(x = y ⇒ y = x)
3 a cubic number of occurrences of Boolean variables from

instantiating: ∀x , y , z.(x = y ∧ y = z ⇒ x = z)

this leads to a decision procedure with a cubic complexity
QUESTION: can we do better (for this particular subset of
equational formulae)?

(LORIA-Inria) Decision Procedures and Verification 2020/21 30 / 56

A decision procedure for a class of equational formulae

Towards a better decision procedure

Consider the sources of inefficiency in the previously designed
decision procedure:

a quadratic blow-up to handle symmetry of =
a cubic blow-up to handle transitivity of =

Let us take a different perspective on equality: consider = as a
binary relation which must be an equivalence (since it must be
reflexive, symmetric, and transitive)

IDEA: represent the binary relation as a graph, to handle
transitivity

(LORIA-Inria) Decision Procedures and Verification 2020/21 31 / 56

A decision procedure for a class of equational formulae Equality as a graph

Equality as a binary relation

If we consider equality as a binary relation and represent it by
means of a graph, then

checking the unsatisfiability of a conjunction of equational literals
amounts to checking whether there exists a disequality c 6= d such
that the vertices c and d are connected.

QUESTION: what is the complexity of the best algorithm to find
whether two nodes in a graph are connected?
ANSWER: it is linear in sum of the number of nodes and the
number of edges (cf. Tarjan)
NB: linear complexity if the number of edges/equations is
assumed to be linear in the number of nodes/constants

(LORIA-Inria) Decision Procedures and Verification 2020/21 33 / 56

A decision procedure for a class of equational formulae Equality as a graph

A better decision procedure for conjunctions of
equational literals

Let ϕ be a conj. of equational literals of the form c = d or ¬c = d
1 let ϕeq be the conjunction of all equalities and ϕdiseq be the

conjunctions of all disequalities in ϕ
2 build the graph G associated with ϕeq

3 let c 6= d be a disequality in ϕdiseq :
if c and d are connected in G, then return unsatisfiable
otherwise, consider another disequality in ϕdiseq

4 when all diseq. in ϕdiseq have been considered, return satisfiable

If the number of atoms in ϕ is linear in the number of constants in
ϕ, then the running time of the algorithm will be quadratic in the
number of constants in ϕ...
Better than the cubic behavior of the previous procedure!

(LORIA-Inria) Decision Procedures and Verification 2020/21 34 / 56

A decision procedure for a class of equational formulae Convexity: its role in designing a dec proc for equality

Remarks

Notice that we have separated equalities and disequalities in the
procedure because of the following reasons:

conjunctions of equalities are always satisfiable
Exercise: show why! (Hints: you need to consider a particular
structure which satisfies all equalities... how can you make equal
any constant?)
Convexity of the theory of equality: if the conjunction ϕeq ∧ ϕdiseq

of equational literals is unsatisfiable, then there must exist just one
disequality c 6= d in ϕdiseq such that ϕeq ∧ c 6= d is unsatisfiable

Definition
A theory T is said to be convex if for any T -satisfiable set of equalities Γ, we
have T |= (Γ⇒

∨n
i=1 si = ti) implies there exists some k ∈ [1,n] such that

T |= (Γ⇒ sk = tk).

(LORIA-Inria) Decision Procedures and Verification 2020/21 36 / 56

A decision procedure for a class of equational formulae Convexity: its role in designing a dec proc for equality

Can we do even better than quadratic?

Source of inefficiency: symmetry or, equivalently, bidirectionality of
equality
QUESTION: can we orient the equality in one direction without
loosing refutation completeness, i.e. without returning satisfiable
when it is unsatisfiable?
Example: check the unsatisfiability of c = c1 ∧ c = c2 ∧ c1 6= c2
Now, orient the two equalities from left-to-right, i.e.

c → c1

c → c2

and consider the reflexive and transitive closure→∗ of→.
Unfortunately: c1 6→∗ c2. So,→∗⊂= and→∗ is different from =
However, if we consider the symmetric, reflexive, and transitive
closure↔∗ of→, then we have↔∗ is equal to =

(LORIA-Inria) Decision Procedures and Verification 2020/21 37 / 56

A better decision procedure based on rewriting

Orienting equalities

GOAL: orient equalities into rewrite rules in such a way that we
can still show the satisfiability of sets of literals over constants
without loosing refutation completeness
Formally, we introduce a binary relation→ (to emphasize that it is
an oriented version of =) on the constants in ϕeq

We call→ the rewrite relation induced by ϕeq

(LORIA-Inria) Decision Procedures and Verification 2020/21 38 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: derivation

Let S be a set of constants and→⊆ S × S
A derivation w.r.t. → is a (possibly infinite) sequence

s1, s2, ..., sn, sn+1, ...

such that si → si+1 for i = 1,2, ...,n, ...
To emphasize that si → si+1 for i = 1,2, ...,n, ..., we will also write
derivations as follows:

s1 → s2 → ...→ sn → sn+1 → ...

Example: if→:= {c1 → c2, c2 → c3, c3 → c1, c2 → c4, c4 → c6},
then

c1 → c2 →c3 → c1 → · · · infinite derivation

c1 → c2 →c4 → c6 finite derivation

(LORIA-Inria) Decision Procedures and Verification 2020/21 40 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: definitions

Let S be a set of constants and→⊆ S × S

→ is terminating if there is no infinite sequence s1 → s2 → · · ·
→ is confluent (or Church-Rosser) if←∗ ◦ →∗⊆→∗ ◦ ←∗

→ is locally confluent if← ◦ →⊆→∗ ◦ ←∗

A rewrite relation→ is convergent if→ is confluent and
terminating

(LORIA-Inria) Decision Procedures and Verification 2020/21 41 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: some important properties

Lemma. If→ is convergent, then for every c there exists a unique
normal form denoted with nf (c).
Key observation: consider the problem of checking the
unsatisfiability of ϕeq ∧ c 6= d

1 let→ be the rewrite relation associated with ϕeq

2 if→ is convergent, then rewrite c to nf (c) and d to nf (d)
3 if nf (c) is identical to nf (d), then return unsatisfiable
4 otherwise, return satisfiable

Two key features of convergent rewrite relations:
termination guarantees that the computation terminates
confluence allows “don’t-care” choice in the order of rewrite steps

(LORIA-Inria) Decision Procedures and Verification 2020/21 42 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: exercises

1 Prove the lemma in the previous slide
Hint: By contradiction, assume that for some c there exist c1, c2
such that c →∗ c1 and c →∗ c2 with ci in normal form for i = 1,2.
Recall the definition for an element being in normal form. Then,
remember that→ is confluent by assumption and so there must
exist and element d such that ci →∗ d for i = 1,2 and derive the
contradiction.

2 Let→:= {(c1, c2), (c2, c3), (c3, c5), (c2, c4), (c4, c5)}.
1 Find all possible derivations from c1 to c5
2 Show that c5 is the normal form of c1
3 Show that→ is convergent

(LORIA-Inria) Decision Procedures and Verification 2020/21 43 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Convergent rewrite relations and the satisfiability
problem

QUESTION: how can we establish that→ is convergent?
ANSWER: Newmann’s Lemma. A terminating and locally
confluent relation is confluent.
Local confluence is much easier to check than confluence: it is
possible to check confluence by considering all possible ways
(which are finitely many!) of rewriting an element by using an
oriented equation in ϕeq

Example: if→:= {(c1, c2), (c2, c3), (c3, c5), (c2, c4), (c4, c5)}, then

c4 ← c2 → c3

c4 → c5 ← c3

(LORIA-Inria) Decision Procedures and Verification 2020/21 44 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Towards terminating rewrite relations

QUESTION: How can ensure the termination of→?
ANSWER: using ordering relations, which precisely formalize the
idea of orienting an equality
A strict ordering � on a set of elements is an irreflexive,
antisymmetric and transitive binary relation
� is a reduction ordering if it is a strict ordering which is also
terminating: no infinite decreasing chain e1 � e2 � · · ·

Key property: A rewrite relation→ is terminating if there exists a
reduction ordering � such that→ is included in �

(LORIA-Inria) Decision Procedures and Verification 2020/21 45 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Towards confluent rewrite relations

Consider→ is a rewrite relation over a finite set of constants S and �
is an ordering over S such that→⊆� and � is total on S, e.g.,

e � d � c � b � a for S = {a,b, c,d ,e}

Then � is necessarily a reduction ordering and so→ is terminating.
By Newmann’s Lemma, one can now check for local confluence.

Let us now analyze in which situation a rewrite relation is not locally
confluent...

(LORIA-Inria) Decision Procedures and Verification 2020/21 46 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

How to get local confluence?

Assume a constant c can be rewritten in two different ways:
c → d and c → c′, respectively

To restore local confluence, we can add the equality c′ = d . Then
c′ = d can be oriented as the rewrite rule c′ → d id c′ � d and as
d → c′ if d � c′

Observation: ϕeq |= c′ = d

(LORIA-Inria) Decision Procedures and Verification 2020/21 47 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Computing locally confluent rewrite relations

we say that c → d and c → c′ overlap and the overlapped
constant c generates the critical pair c′ = d
Key idea: successively discover overlapped terms until no more
critical pairs are produced
To do this, we have to detect all identical left-hand-sides of the
rewrite relation→
Termination of adding critical pairs: the process terminates
since the number of critical pairs is bounded by |S × S|, where S
is the set of constants in ϕeq

(LORIA-Inria) Decision Procedures and Verification 2020/21 48 / 56

A better decision procedure based on rewriting Rewriting: formal preliminaries

A decision procedure for ϕeq ∧ ϕdiseq

1 Consider the following set of inference rules

CP
c = c′ c = d

c′ = d if c � c′ and c � d

DH
c = c′ c 6= d

c′ 6= d if c � c′ and c � d

UN
c 6= c
�

2 if ϕeq ∧ ϕdiseq `∗ �, then return unsatisfiable
3 otherwise, return satisfiable

(LORIA-Inria) Decision Procedures and Verification 2020/21 49 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

A decision procedure: remarks

Instead of considering all equalities first, the rules allow us to
interleave the processing of equalities and disequalities: this
allows us the early detection of inconsistencies (if any)
With a fixed (during the application of the rules) ordering � on
constants, the number of possible applications of rules is
quadratic in the number of constants (worst case)
CP (critical pair) is also called Superposition and DH (disequality
handler) is called Paramodulation when considering general
clauses

(LORIA-Inria) Decision Procedures and Verification 2020/21 51 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

What about a more general satisfiability problem?

QUESTION: can we reuse the previously introduced techniques to
check the satisfiability of conjunctions of equational literals built
out of function symbols?
ANSWER: yes, by using a simple trick and extending the set of
inference rules introduced above

(LORIA-Inria) Decision Procedures and Verification 2020/21 52 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

Trick: flattening

Flatten terms by introducing “fresh” constants, e.g.

{f (f (f (a))) = b} {f (a) = c1, f (f (c1)) = b}
 {f (a) = c1, f (c1) = c2, f (c2) = b}

{g(h(a)) 6= a} {h(a) = c1,g(c1) 6= a}
 {h(a) = c1,g(c1) = c2, c2 6= a}

Exercise: show that this transformation preserves satisfiability
The number of constants introduced is equal to the number of
sub-terms occurring in the input set of literals
Key observation: after flattening, literals are “close” to literals
built out of constants only... we need to take care of substitution in
a very simple way...

(LORIA-Inria) Decision Procedures and Verification 2020/21 53 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

The extended set of inference rules

CP
c = c′ c = d

c′ = d if c � c′ and c � d

Cong1
cj = c′

j f (c1, ..., cj , ..., cn) = cn+1

f (c1, ..., c′
j , ..., cn) = cn+1

if cj � c′
j

Cong2
f (c1, ..., cn) = c′

n+1 f (c1, ..., cn) = cn+1

cn+1 = c′
n+1

DH
c = c′ c 6= d

c′ 6= d if c � c′ and c � d

UN
c 6= c
�

Notice that we only need to compare constants!

(LORIA-Inria) Decision Procedures and Verification 2020/21 54 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

A decision procedure for conjunctions of arbitrary
equational literals

1 Flatten literals
2 Exhaustive application of the rules in the previous slide
3 if � is derived, then return unsatisfiable
4 otherwise, return satisfiable

In the worst case, the complexity is quadratic in the number of
sub-terms occurring in the input set of equational
literals [Armando et al., 2003]

You can do better (i.e. O(n log n)) by using a dynamic ordering over
constants
See [Nelson and Oppen, 1980, Nieuwenhuis and Oliveras, 2007]

(LORIA-Inria) Decision Procedures and Verification 2020/21 55 / 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

References

Armando, A., Ranise, S., and Rusinowitch, M. (2003).
A rewriting approach to satisfiability procedures.
Inf. Comput., 183(2):140–164.

Nelson, G. and Oppen, D. C. (1980).
Fast decision procedures based on congruence closure.
J. ACM, 27(2):356–364.

Nieuwenhuis, R. and Oliveras, A. (2007).
Fast congruence closure and extensions.
Inf. Comput., 205(4):557–580.

(LORIA-Inria) Decision Procedures and Verification 2020/21 56 / 56

	A motivating example
	The TUF-satisfiability problem
	A fundamental tool in automated reasoning: Herbrand theorem
	Decidability of TUF by bounding Herbrand universe

	A decision procedure for a class of equational formulae
	Equality as a graph
	Convexity: its role in designing a dec proc for equality

	A better decision procedure based on rewriting
	Rewriting: formal preliminaries
	Convergent rewrite relations as dec. proc's for equality

