Decision procedures for the theory of equality J

Silvio Ranise & Christophe Ringeissen

LORIA-INRIA Nancy Grand Est

(LORIA-Inria) Decision Procedures and Verification 2020/21 1/56

Topics

@ GOAL: design decision procedures for the satisfiability problem of
arbitrary Boolean combinations of ground atoms whose only main
symbol is equality

@ Two techniques

@ By translation to the Boolean satisfiability problem (via Herbrand
method)
@ By rewriting (i.e. using oriented equalities)

(LORIA-Inria) Decision Procedures and Verification 2020/21 2/56

Index

o A motivating example

© The Tye-satisfiability problem
@ A fundamental tool in automated reasoning: Herbrand theorem
@ Decidability of Tyg by bounding Herbrand universe

e A decision procedure for a class of equational formulae
@ Equality as a graph
@ Convexity: its role in designing a dec proc for equality

e A better decision procedure based on rewriting
@ Rewriting: formal preliminaries
@ Convergent rewrite relations as dec. proc’s for equality

(LORIA-Inria) Decision Procedures and Verification 2020/21 3/56

A motivating example

What is an (optimizing) compiler ?

Definition (Compilers)

Special programs that take instructions written in a high level language
(e.g., C, Pascal) and convert it into machine language or code the
computer can understand.

Example
Consider the following simple program fragment in C:

int x,vy,z;
sO: ... /+x y and z are initialized */
slix = (y+z) * (y+z) = (zty) = (z+y);

Problem: sub-expressions are needlessly re-computed/

(LORIA-Inria) Decision Procedures and Verification 2020/21 4/56

An (optimizing) compiler: an example
Example (cont'd)
By exploiting only the syntactic structure of sub-expressions, transform

int x,vy,z;
sO: ... /+ y and z are initialized */

sl:x = (y+z) * (y+z) =* ‘ (z+y) | = | (z+y) |;
into

int x,y,z; int auxl,aux2;

t10: ... /» y and z are initialized */

t1: auxl = (y+z);
12: aux2 = (z+y);
13: x = auxl * auxl * aux2 * aux2;

which avoids the re-computation of sub-expressions/

v

(LORIA-Inria) Decision Procedures and Verification 2020/21 5/56

A motivating example

An (optimizing) compiler: an example

Example (cont’d)

QUESTION: how can we guarantee that the value stored in x after the
computation of the transformed program is equal to that in x after the

computation of the source ?

ANSWER: ignore the arithmetic properties of all arithmetic operations
and consider them as uninterpreted functions (i.e. + ~» f and % ~ g).
Then, prove the validity of the following proof obligation:

Ys0 = Yo N\ Zso = Zno

Xs1 = g(g(f(¥s0, Zs0), F(¥s0, Zs0)), 9(F(Zs0, ¥s0), F(Zs0, ¥s0)))
aUX'In = f(yfo,Zzo)

aux2p = f(Z(07yto)

Xz = g(9(auxtsw, auxin), g(aux2e, aux2y))

= Xs1 = Xi3

> > > >

(LORIA-Inria) Decision Procedures and Verification 2020/21 6/56

The Ty -satisfiability problem

The satisfiability problem for equational formulae

Definition

Let X be a set of function and constant symbols. An equational atom
is of form s = t where s, t are L-terms. An equational formula is a
Boolean combination of equational atoms.

QUESTION: is this problem decidable ? |.e. does it exist a decision
procedure for such a problem? |.e. does it exist an algorithm which
takes an arbitrary equational formula and returns satisfiable when
there exists a model of it and unsatisfiable when there is not structure
satisfying the formula ?

(LORIA-Inria) Decision Procedures and Verification 2020/21 7156

Tur: An example

For our example, we should prove the unsatisfiability of (Why ?)

Ys0 = Yio N\ Zso = Zio

Xs1 = 9(g(f(¥s0, Zs0), F(¥s0, Zs0)), 9(F(2Zs0, ¥s0), F(Zs0, ¥s0)))
aux1y = f(Ywo, Zio)

aux2p = f(zw, yio)

X = g(g(auxiy, auxty), g(aux2p, aux2ep))

A Xst # X3

> > > >

which is indeed an equational formula whose atoms are built out of
the SymbOIS inX := {f/27 g/2a XSO/Oa y30/07 XIO/Oa ytO/Ov }

(LORIA-Inria) Decision Procedures and Verification 2020/21 8/56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Arbitrary structures versus Herbrand structures

Validity versus Satisfiability:
Given a sentence ¢, T |= ¢ iff T U {—¢} is inconsistent

Problem: search for a model of the sentence ¢ = (T U {—¢})
For some particular sentences ¢, one can restrict without loss of
generality to the subclass of models of ¢ that are Herbrand structures

Given any structure M such that M |= ¢, it is always possible to find a
Herbrand structure # such that 4 = ¢

(LORIA-Inria) Decision Procedures and Verification 2020/21 10/56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand universe: UH

Assume the following form
where 1 is a Boolean combination of atoms without quantifiers
@ UHj := constants occurring in 1

o if there are no constants in 1, then UH, := {a} (for a an arbitrary
constant symbol)

@ UH;, 1 :=UH; U {f(t,...,tn)|fisin ¢ of arity nand t, ..., t, € UH,}
@ The Herbrand universe is defined as follows:

UH := U UH;
i=0

(LORIA-Inria) Decision Procedures and Verification 2020/21 11/56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand structures

Definition
The Herbrand structure H = (D, Zy) of VXq, ..., Xk.1 (Where ¢ is a
Boolean combination of atoms without quantifiers) is such that

@ Dy is the Herbrand universe of

@ 74 is defined on (ground) terms as follows:

In(c) := cifcisaconstantin

Iu(f(t,.... ta)) := mapping the n-tuple of terms (t, ..., tn)
to the term f(t1, ..., tn)

(LORIA-Inria) Decision Procedures and Verification 2020/21 12/56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand theorem

Theorem

The formulaVxy, ..., Xi.2) is consistent iff it admits a Herbrand model,
where 1) is a quantifier-free Boolean combination of atoms.

Proof.

(«): obvious.

(=): Let M be a model of ¢ = (Vxq, ..., Xk.¢»). We can define an
interpretation over atoms p(t;....,t,) where ty, ..., t, € Dy:
p(ti...., th) istruein # if and only if p(t;. ..., ty) is true in M.
Then, by structural induction on formulas, we can show that

H E ¢ifand only if M = ¢

(LORIA-Inria) Decision Procedures and Verification 2020/21 13/56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand method (to refute formulae)

@ Input: Vxy, ..., Xx.2p where v is a quantifier-free Boolean
combination of atoms

@ Output: satisfiable/unsatisfiable

@ Method: Consider the Herbrand universe UH of ¢ and enumerate
the ground instances of) obtained by replacing the variables of v
by terms in UH:

Gnd(vy) = {o(v)) | Dom(c) = {x1,..., Xk}, Ran(c) C UH}

o :
@ whilet here exists some v’ in Gnd(v))\ G do
() G:=GU{y'}
(i) If the Boolean abstraction of G is an unsatisfiable
Boolean formula, then return unsatisfiable (and the
method terminates)

© return satisfiable

(LORIA-Inria) Decision Procedures and Verification 2020/21 14 /56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Herbrand method: remarks

The formula Vxq, ..., Xk.% is consistent iff Gnd(v)) is consistent.
Remark: Gnd(v) is usually an infinite theory.

@ In general, Herbrand method is a semi-decision procedure for
unsatisfiability in the sense that it terminates whenever the input
formula is unsatisfiable...

This is so because of

Theorem (Compactness)
A set T of formulae is satisfiable iff every finite set A C T is satisfiable.

(LORIA-Inria) Decision Procedures and Verification 2020/21 15/56

A fundamental tool in automated reasoning: Herbrand theorem
Herbrand method: remarks

@ In particular, Herbrand method terminates, regardless of the
satisfiability or unsatisfiability of the input formula, when the
Herbrand universe is finite...

@ ... since only finitely many ground instances must be considered
o ... the Herbrand universe is finite whenever there are no function
symbols in the input formula (only constants)

@ Herbrand method does not terminate if the input formula is
satisfiable and the Herbrand universe is infinite...

e ... for this, it is sufficient to have one function symbols of arity > 1

@ We assume to be able to check the (un-)satisfiability of Boolean
formulae ...

(LORIA-Inria) Decision Procedures and Verification 2020/21 16 /56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

Checking Boolean (un-)satisfiability: how ?

@ Truth tables... not very efficient!

@ SAT is computationally very demanding: NP-problem

@ In practice: Davis-Putnam-Logemann-Loveland (DPLL) algorithm,
whose input is a conjunction of clauses, where a clause is a
disjunction of literals

@ For Horn clauses: linear time (in the number of occurrences of
Boolean variables) algorithm exists
A Horn clause is a disjunction of literals containing at most one
positive literal.

Thus, a Horn clause is of the form (a; A--- A an) = ani1, Where g;
isanatomfori=1,..., n+1

A detailed presentation in Lecture 6

(LORIA-Inria) Decision Procedures and Verification 2020/21 17 /56

The Tye-satisfiability problem A fundamental tool in automated reasoning: Herbrand theorem

DPLL.: abstract description

Let S be a set of clauses

; ; Sui{L,CcvlLl} . A = A
Unit Resolution —Su(LCl if I . iy
; . Su{L,Cv L}
Unit Subsumption sy
S

if Aiis an atom occurring in S

Splitting SU{AT | SULAT

There exists very efficient implementation of this calculus: zChaff,
MiniSAT, Berkmin, ...

(LORIA-Inria) Decision Procedures and Verification 2020/21

18/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Herbrand method and Tyr

@ Recall that
e in first-order logic: the symbol of equality =, is uninterpreted (it is
an arbitrary binary predicate symbol, written infix)
e in first-order logic with equality: the symbol of equality =, is
interpreted to be the identity relation on the domain of the structure
@ Herbrand theorem is stated and proved in first-order logic (without
equality)
@ QUESTION: can we use Herbrand method to check the
satisfiability of equational formulae ? So to have at least a
semi-decision procedure...

@ ANSWER: yes with a little bit of effort...

(LORIA-Inria) Decision Procedures and Verification 2020/21 20/56

Decidability of Ty by bounding Herbrand universe
Satisfiability with and without equality

@ Let ¢ be an equational formula built out of the symbols in &

@ Consider the following set EQs of axioms saying that = is a
congruence relation:

X=X
v, y.x=y=y=x
VX, y,Z(Xx=yAy=z=>x=2z

V.x,y.(x=y=f(.x.)=1f(.y.)) foreachfeX

Remark: ¢ is satisfiable in first-order logic with equality iff o A EQy is
satisfiable in first-order logic without equality

(LORIA-Inria) Decision Procedures and Verification 2020/21 21/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Application of the theorem: a semi-decision procedure
for TU/:

@ The theorem allows us to use Herbrand method to solve arbitrary
Tye-satisfiabillity problems
@ Given an equational formula ¢:
@ compute the set ¥ of function and constant symbols occurring in ¢
@ compute the set EQx
© return the result of applying the Herbrand method on ¢ A EQs
(where = is considered as an arbitrary predicate symbol)
@ About termination: it is sufficient that ¥ contains one non-constant
symbols that the Herbrand universe of ¢ A EQy is infinite and the
procedure is not guaranteed to terminate/

(LORIA-Inria) Decision Procedures and Verification 2020/21 22/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Remarks on the semi-decision procedure

@ BIG QUESTION: can we turn the semi-decision procedure based
on Herbrand method into a decision procedure

@ ANSWER: yes, by showing that it is always possible to find a
finite subset of the Herbrand universe which is sufficient to detect

unsatisfiability /

(LORIA-Inria) Decision Procedures and Verification 2020/21 23/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Example

@ Consider the following Tyg-satisfiability problem
e = f(f(f(a)) = anf(f(f(f(f(a))))) = anf(a) #a
unsatisfiable ?
@ By substituting equal by equal, we can derive a contradiction:

f(f(f(a))) = a A F(F(F(F(f()) = an f(a) # a
f(f(f(a))) = anf(f(a)) =anf(a)#a
f(f(f(a))) = anf(f(a)) =anf(a)#a

f(a) = a| A f(f(a)) = an|H(a) # a

Contradiction!

@ Key observation: in deriving the contradiction, we have only used
terms and sub-terms which occur in the input formula ¢/

(LORIA-Inria) Decision Procedures and Verification 2020/21 24 /56

Decidability of Ty by bounding Herbrand universe
A Tye-satisfiability procedure

Theorem

¢ A EQs is unsatisfiable iff ¢ N GEQZ is unsatisfiable,
where GEQY is the (finite) set of ground instances of EQs obtained by
instantiating variables with all terms and sub-terms occurring in .

Corollary

Given an equational formula ¢. The following algorithm
@ compute the set ¥ of function and constant symbols occurring in ¢
@ compute the set GEQY

© return the result of checking the (Boolean) satisfiability of
¢ N GEQZ

terminates and returns whether ¢ is satisfiable or not.
Hence, T f is decidable.

(LORIA-Inria) Decision Procedures and Verification 2020/21 25/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Idea of the proof of theorem

o A EQs is unsat. = ¢ A GEQY is unsat.
consider the counter-positive...

¢ A GEQY is sat. = ¢ A EQy is sat.

(LORIA-Inria) Decision Procedures and Verification 2020/21

26 /56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Proof of theorem

Q@ ¢ AGEQfissat. = ¢ A EQy is sat.
Assume ¢ A GEQZ. So, there must exist a Herbrand structure
M = (D, Iu) satisfying both ¢ and GEQX.
Consider a structure M’ = (Dyy,) where:
o Dy = Dy U {#}, where # & Dy
o Iy is defined as follows:

I (£) = Iu(t) if t occursin ¢
WA # otherwise

Since for each term t occurring in ¢, we have that Iy (t) = Iy(t) by
construction, we derive that each equational atom ain ¢ A GEQZ,
we have that M’ |= aiff M |= a. Hence, M' = ¢ A GEQY.

(LORIA-Inria) Decision Procedures and Verification 2020/21 27 /56

Decidability of Ty by bounding Herbrand universe
Proof of theorem

@ (cont'd from previous slide)
Since Iy (t) = # for all t € Dy not occurring in ¢, we can check
that any formula in Gnd(EQs)\ GEQY. is true in M'.
Hence, all ground instances of EQy are true in M’, and so
M = EQs.
Consequently, M’ = EQy and M’ |= ¢. Thus, ¢ A EQs is
satisfiable.
Q@ ¢ \EQys issat. = ¢ A GEQY is sat.
Easy

(LORIA-Inria) Decision Procedures and Verification 2020/21 28/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Complexity of Tyr and the designed decision
procedure

@ Tyr isin NP since it subsumes SAT

@ To evaluate the designed decision procedure, consider the sub-set
of equational formulae built out of conjunctions of possibly
negated equational atoms of the form ¢ = d (for ¢, d being
constant symbols): what about the complexity of the decision
procedure for this class?

@ Notice that for this class of formulae, the corresponding Boolean
formulae are Horn clauses (i.e. clauses containing at most one
positive literal)...

@ The SAT problem for propositional Horn clauses can be solved in
linear time in the number of occurrences of Boolean variables...

@ QUESTION: how many occurrences of Boolean variables are in
o N GEQZ?

(LORIA-Inria) Decision Procedures and Verification 2020/21 29/56

The Tye-satisfiability problem Decidability of Ty by bounding Herbrand universe

Complexity of the designed decision procedure

@ Assume o contains a number of atoms linear in the number of
constants nin .
e GEQZ will contain
@ alinear number of occurrences of Boolean variables from
instantiating: Vx.(x = x)
@ a quadratic number of occurrences of Boolean variables from
instantiating: Vx,y.(x =y = y = x)
© a cubic number of occurrences of Boolean variables from
instantiating: Vx,y,z.(x =y Ay =z= x = 2)
@ this leads to a decision procedure with a cubic complexity

@ QUESTION: can we do better (for this particular subset of
equational formulae) ?

(LORIA-Inria) Decision Procedures and Verification 2020/21 30/56

A decision procedure for a class of equational formulae

Towards a better decision procedure

@ Consider the sources of inefficiency in the previously designed
decision procedure:
@ a quadratic blow-up to handle symmetry of =
@ a cubic blow-up to handle transitivity of =
@ Let us take a different perspective on equality: consider = as a
binary relation which must be an equivalence (since it must be
reflexive, symmetric, and transitive)

IDEA: represent the binary relation as a graph, to handle
transitivity

(LORIA-Inria) Decision Procedures and Verification 2020/21 31/56

A decision procedure for a class of equational formulae Equality as a graph

Equality as a binary relation

@ If we consider equality as a binary relation and represent it by
means of a graph, then

e checking the unsatisfiability of a conjunction of equational literals
amounts to checking whether there exists a disequality ¢ # d such
that the vertices ¢ and d are connected.

@ QUESTION: what is the complexity of the best algorithm to find
whether two nodes in a graph are connected?

@ ANSWER: it is linear in sum of the number of nodes and the
number of edges (cf. Tarjan)
NB: linear complexity if the number of edges/equations is
assumed to be linear in the number of nodes/constants

(LORIA-Inria) Decision Procedures and Verification 2020/21 33/56

A better decision procedure for conjunctions of
equational literals

@ Let ¢ be a conj. of equational literals of the form ¢ = d or -c = d
@ let ©® be the conjunction of all equalities and %9 be the
conjunctions of all disequalities in ¢
@ hbuild the graph G associated with ®9
@ let ¢ # d be a disequality in 9s€9:
@ if cand d are connected in G, then return unsatisfiable
@ otherwise, consider another disequality in

© when all diseq. in ¢¥$°9 have been considered, return satisfiable

@ If the number of atoms in ¢ is linear in the number of constants in
v, then the running time of the algorithm will be quadratic in the
number of constants in ...

@ Better than the cubic behavior of the previous procedure!

(LORIA-Inria) Decision Procedures and Verification 2020/21 34 /56

A decision procedure for a class of equational formulae Convexity: its role in designing a dec proc for equality

Remarks

@ Notice that we have separated equalities and disequalities in the
procedure because of the following reasons:

e conjunctions of equalities are always satisfiable
Exercise: show why! (Hints: you need to consider a particular
structure which satisfies all equalities... how can you make equal
any constant?)

e Convexity of the theory of equality: if the conjunction ¢ A p95eq
of equational literals is unsatisfiable, then there must exist just one
disequality ¢ # d in ¢¥%€9 such that ¢®9 A ¢ # d is unsatisfiable

Definition

A theory T is said to be convex if for any T-satisfiable set of equalities I', we
have T = (I = \/I_, s; = t;) implies there exists some k < [1, n] such that
T':(r:>8k:fk).

(LORIA-Inria) Decision Procedures and Verification 2020/21 36 /56

A decision procedure for a class of equational formulae Convexity: its role in designing a dec proc for equality

Can we do even better than quadratic ?

@ Source of inefficiency: symmetry or, equivalently, bidirectionality of
equality
@ QUESTION: can we orient the equality in one direction without
loosing refutation completeness, i.e. without returning satisfiable
when it is unsatisfiable ?
Example: check the unsatisfiability of c=ci Ac=c A cy # ¢
Now, orient the two equalities from left-to-right, i.e.
cC — ¢
c — &

and consider the reflexive and transitive closure —* of —.
Unfortunately: ¢y A* ¢. So, =*C= and —* is different from =
However, if we consider the symmetric, reflexive, and transitive
closure «++* of —, then we have ++* is equal to =

(LORIA-Inria) Decision Procedures and Verification 2020/21 37/56

A better decision procedure based on rewriting

Orienting equalities

@ GOAL: orient equalities into rewrite rules in such a way that we
can still show the satisfiability of sets of literals over constants
without loosing refutation completeness

@ Formally, we introduce a binary relation — (to emphasize that it is
an oriented version of =) on the constants in 9

@ We call — the rewrite relation induced by (9

(LORIA-Inria) Decision Procedures and Verification 2020/21 38/56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: derivation

@ Let S be a set of constants and -C S x S
@ A derivation w.r.t. — is a (possibly infinite) sequence

S1,82, ..., Sn, 3n+1 9 v

such that s; — sj ¢y fori=1,2,....n, ...
@ To emphasize that s; — s; ¢ fori =1,2,...,n, ..., we will also write
derivations as follows:

31 —>S2 — ... —>Sn—>sn+1 — ...

Example: if —-:= {¢1 — 2,62 — C3,C3 — C1,Co — C4,C4 — Co}s
then

Cci — C —C3 — €y — --- infinite derivation
Ci — C —C4 — Cg finite derivation

(LORIA-Inria) Decision Procedures and Verification 2020/21 40/56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: definitions

Let S be a set of constantsand -=C S x S

@ — is terminating if there is no infinite sequence sy — s, — - - -
@ — is confluent (or Church-Rosser) if +* o -*C—* o «*
@ — is locally confluent if <— o0 -C—* o «*

@ A rewrite relation — is convergent if — is confluent and
terminating

(LORIA-Inria) Decision Procedures and Verification 2020/21 41/56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: some important properties

@ Lemma. If — is convergent, then for every ¢ there exists a unique
normal form denoted with nf(c).
@ Key observation: consider the problem of checking the
unsatisfiability of ©®9 A ¢ # d
@ let — be the rewrite relation associated with (®
@ if — is convergent, then rewrite ¢ to nf(c) and d to nf(d)
© if nf(c) is identical to nf(d), then return unsatisfiable
© otherwise, return satisfiable
Two key features of convergent rewrite relations:

e termination guarantees that the computation terminates
e confluence allows “don’t-care” choice in the order of rewrite steps

(LORIA-Inria) Decision Procedures and Verification 2020/21 42 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Rewrite relations: exercises

@ Prove the lemma in the previous slide
Hint: By contradiction, assume that for some c there exist c1, ¢,
such that ¢ —* ¢y and ¢ —* ¢ with ¢; in normal form for i =1, 2.
Recall the definition for an element being in normal form. Then,
remember that — is confluent by assumption and so there must
exist and element d such that ¢; —* d for i = 1,2 and derive the
contradiction.

Q Let —:={(c1,), (c2,C3),(C3,C5),(C2,C4),(Cs,C5)}-

@ Find all possible derivations from ¢; to ¢s

@ Show that cs is the normal form of ¢y
© Show that — is convergent

(LORIA-Inria) Decision Procedures and Verification 2020/21 43 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Convergent rewrite relations and the satisfiability
problem

@ QUESTION: how can we establish that — is convergent?

@ ANSWER: Newmann’s Lemma. A terminating and locally
confluent relation is confluent.

@ Local confluence is much easier to check than confluence: it is
possible to check confluence by considering all possible ways
(which are finitely many/) of rewriting an element by using an
oriented equation in ¢4
Example: it —:= {(c1, ¢2), (¢2, C3), (€3, C5), (C2, C4), (Ca, C5)}, then

C4 < Co — C3

C4 — C5 < (3

(LORIA-Inria) Decision Procedures and Verification 2020/21 44 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Towards terminating rewrite relations

@ QUESTION: How can ensure the termination of — ?

@ ANSWER: using ordering relations, which precisely formalize the
idea of orienting an equality

@ A strict ordering > on a set of elements is an irreflexive,
antisymmetric and transitive binary relation

@ - is a reduction ordering if it is a strict ordering which is also
terminating: no infinite decreasing chain e; > e, >~ - - -

@ Key property: A rewrite relation — is terminating if there exists a
reduction ordering > such that — is included in >

(LORIA-Inria) Decision Procedures and Verification 2020/21 45/ 56

Rewriting: formal preliminaries
Towards confluent rewrite relations

Consider — is a rewrite relation over a finite set of constants S and -
is an ordering over S such that —C> and > is total on S, e.g.,

e-d-=c-b=a for S={ab,cd, e}

Then = is necessarily a reduction ordering and so — is terminating.
By Newmann’s Lemma, one can now check for local confluence.

Let us now analyze in which situation a rewrite relation is not locally
confluent...

(LORIA-Inria) Decision Procedures and Verification

2020/21 46 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

How to get local confluence?

@ Assume a constant ¢ can be rewritten in two different ways:
¢ — d and ¢ — ¢/, respectively

@ To restore local confluence, we can add the equality ¢’ = d. Then
¢’ = d can be oriented as the rewrite rule ¢’ — did ¢’ = d and as
d—cifd~c

@ Observation: o* =¢ =d

(LORIA-Inria) Decision Procedures and Verification 2020/21 47 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

Computing locally confluent rewrite relations

@ we say that ¢ — d and ¢ — ¢’ overlap and the overlapped
constant ¢ generates the critical pair ¢’ = d

@ Key idea: successively discover overlapped terms until no more
critical pairs are produced

@ To do this, we have to detect all identical left-hand-sides of the
rewrite relation —

@ Termination of adding critical pairs: the process terminates
since the number of critical pairs is bounded by |S x S|, where S
is the set of constants in 9

(LORIA-Inria) Decision Procedures and Verification 2020/21 48 /56

A better decision procedure based on rewriting Rewriting: formal preliminaries

A decision procedure for 89 A p9seq

@ Consider the following set of inference rules

c=c c=d

CP ifc-c andc > d

c¢=d
c=c c#d . ,
DH 7 Zd ifc-c andc > d
c#¢cC
UN =

Q if ©® A p9%€9 | [, then return unsatisfiable
© otherwise, return satisfiable

(LORIA-Inria) Decision Procedures and Verification 2020/21 49 /56

Convergent rewrite relations as dec. proc’s for equality
A decision procedure: remarks

@ Instead of considering all equalities first, the rules allow us to
interleave the processing of equalities and disequalities: this
allows us the early detection of inconsistencies (if any)

@ With a fixed (during the application of the rules) ordering > on
constants, the number of possible applications of rules is
quadratic in the number of constants (worst case)

@ CP (critical pair) is also called Superposition and DH (disequality
handler) is called Paramodulation when considering general
clauses

(LORIA-Inria) Decision Procedures and Verification 2020/21 51/56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

What about a more general satisfiability problem ?

@ QUESTION: can we reuse the previously introduced techniques to
check the satisfiability of conjunctions of equational literals built
out of function symbols ?

@ ANSWER: yes, by using a simple trick and extending the set of
inference rules introduced above

(LORIA-Inria) Decision Procedures and Verification 2020/21 52 /56

Convergent rewrite relations as dec. proc’s for equality
Trick: flattening

@ Flatten terms by introducing “fresh” constants, e.g.

{f(f(f(a))) = b} ~ {f(a)=ci,f(f(c1)) = b}
~ {f(a) = c1,f(c1) = c2, f(c2) = b}
{g(h(a)) #a} ~ {h(a)=ci,9(c1) # 3}
~ {h(a) =c1,9(c1) = 2,2 # &}

@ Exercise: show that this transformation preserves satisfiability

@ The number of constants introduced is equal to the number of
sub-terms occurring in the input set of literals

@ Key observation: after flattening, literals are “close” to literals
built out of constants only... we need to take care of substitution in
a very simple way...

(LORIA-Inria) Decision Procedures and Verification 2020/21 53/ 56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

The extended set of inference rules

CP g ifc=candc>d
¢ = c]’ f(ct,....Cj, ..., Cn) = Cnid o ,
Cong; f(Ct, .. €], s Cn) = Cap1 it G - ¢
Cong f(cr, ., Cn) = Cp iy f(¢t,...,Cn) = Cny1
? Cnt1 = Cpyy
— /
DH C_CC,#dC#d ifc~=c andc >~ d
UN cé c

Notice that we only need to compare constants/

(LORIA-Inria) Decision Procedures and Verification 2020/21 54 /56

A better decision procedure based on rewriting Convergent rewrite relations as dec. proc’s for equality

A decision procedure for conjunctions of arbitrary
equational literals

@ Flatten literals

© Exhaustive application of the rules in the previous slide

@ if Ois derived, then return unsatisfiable

© otherwise, return satisfiable

In the worst case, the complexity is quadratic in the number of

sub-terms occurring in the input set of equational
literals [Armando et al., 2003]

You can do better (i.e. O(nlog n)) by using a dynamic ordering over
constants
See [Nelson and Oppen, 1980, Nieuwenhuis and Oliveras, 2007]

(LORIA-Inria) Decision Procedures and Verification 2020/21 55/ 56

Convergent rewrite relations as dec. proc’s for equality
References

Armando, A., Ranise, S., and Rusinowitch, M. (2003).
A rewriting approach to satisfiability procedures.

Inf. Comput., 183(2):140-164.

Nelson, G. and Oppen, D. C. (1980).

Fast decision procedures based on congruence closure.
J. ACM, 27(2):356-364.

Nieuwenhuis, R. and Oliveras, A. (2007).

Fast congruence closure and extensions.
Inf. Comput., 205(4):557-580

Decision Procedures and Verification 2020/21 56 / 56

	A motivating example
	The TUF-satisfiability problem
	A fundamental tool in automated reasoning: Herbrand theorem
	Decidability of TUF by bounding Herbrand universe

	A decision procedure for a class of equational formulae
	Equality as a graph
	Convexity: its role in designing a dec proc for equality

	A better decision procedure based on rewriting
	Rewriting: formal preliminaries
	Convergent rewrite relations as dec. proc's for equality

