Decision procedures for the theory of equality

Silvio Ranise & Christophe Ringeissen

LORIA-INRIA Nancy Grand Est

- GOAL: design decision procedures for the satisfiability problem of arbitrary Boolean combinations of ground atoms whose only main symbol is equality
- Two techniques
 - By translation to the Boolean satisfiability problem (via Herbrand method)
 - 2 By rewriting (i.e. using oriented equalities)

Index

A motivating example

2) The *T_{UF}*-satisfiability problem

- A fundamental tool in automated reasoning: Herbrand theorem
- Decidability of T_{UF} by bounding Herbrand universe

A decision procedure for a class of equational formulae

- Equality as a graph
- Convexity: its role in designing a dec proc for equality

4 A better decision procedure based on rewriting

- Rewriting: formal preliminaries
- Convergent rewrite relations as dec. proc's for equality

What is an (optimizing) compiler?

Definition (Compilers)

Special programs that take instructions written in a high level language (e.g., C, Pascal) and convert it into machine language or code the computer can understand.

Example

Consider the following simple program fragment in C:

```
...
int x,y,z;
s0: ... /* y and z are initialized */
s1: x = (y+z) * (y+z) * (z+y) * (z+y);
...
```

Problem: sub-expressions are needlessly re-computed!

An (optimizing) compiler: an example

Example (cont'd)

By exploiting only the syntactic structure of sub-expressions, transform

int x,y,z; s0: ... /* y and z are initialized */ s1: x = (y+z) * (y+z) * (z+y) * (z+y);

into

```
int x,y,z; int aux1,aux2;
t0: ... /* y and z are initialized */
t1:aux1 = (y+z);
t2:aux2 = (z+y);
t3:x = aux1 * aux1 * aux2 * aux2;
```

which avoids the re-computation of sub-expressions!

An (optimizing) compiler: an example

Example (cont'd)

QUESTION: how can we guarantee that the value stored in \times after the computation of the transformed program is equal to that in \times after the computation of the source?

ANSWER: ignore the arithmetic properties of all arithmetic operations and consider them as uninterpreted functions (i.e. $+ \rightsquigarrow f$ and $* \rightsquigarrow g$). Then, prove the validity of the following proof obligation:

$$\begin{pmatrix} y_{s0} = y_{t0} \land z_{s0} = z_{t0} & \land \\ x_{s1} = g(g(f(y_{s0}, z_{s0}), f(y_{s0}, z_{s0})), g(f(z_{s0}, y_{s0}), f(z_{s0}, y_{s0}))) & \land \\ aux1_{t1} = f(y_{t0}, z_{t0}) & \land \\ aux2_{t2} = f(z_{t0}, y_{t0}) & \land \\ x_{t3} = g(g(aux1_{t1}, aux1_{t1}), g(aux2_{t2}, aux2_{t2})) & \land \end{pmatrix} \Rightarrow x_{s1} = x_{t3}$$

The satisfiability problem for equational formulae

Definition

Let Σ be a set of function and constant symbols. An **equational atom** is of form s = t where s, t are Σ -terms. An **equational formula** is a Boolean combination of equational atoms.

QUESTION: is this problem decidable? I.e. does it exist a decision procedure for such a problem? I.e. does it exist an algorithm which takes an arbitrary equational formula and returns *satisfiable* when there exists a model of it and *unsatisfiable* when there is not structure satisfying the formula?

T_{UF}: An example

For our example, we should prove the unsatisfiability of (Why?)

$$\begin{pmatrix} y_{s0} = y_{t0} \land z_{s0} = z_{t0} & \land \\ x_{s1} = g(g(f(y_{s0}, z_{s0}), f(y_{s0}, z_{s0})), g(f(z_{s0}, y_{s0}), f(z_{s0}, y_{s0}))) & \land \\ aux1_{t1} = f(y_{t0}, z_{t0}) & \land \\ aux2_{t2} = f(z_{t0}, y_{t0}) & \land \\ x_{t3} = g(g(aux1_{t1}, aux1_{t1}), g(aux2_{t2}, aux2_{t2})) & \land \end{pmatrix} \land x_{s1} \neq x_{t3}$$

which is indeed an equational formula whose atoms are built out of the symbols in $\Sigma := \{f/2, g/2, x_{s0}/0, y_{s0}/0, x_{t0}/0, y_{t0}/0, ...\}$

Arbitrary structures versus Herbrand structures

Validity versus Satisfiability:

Given a sentence φ , $T \models \varphi$ iff $T \cup \{\neg \varphi\}$ is inconsistent

Problem: search for a model of the sentence $\phi = (T \cup \{\neg \varphi\})$ For some particular sentences ϕ , one can restrict without loss of generality to the subclass of models of ϕ that are **Herbrand structures**

Given any structure \mathcal{M} such that $\mathcal{M} \models \phi$, it is always possible to find a Herbrand structure \mathcal{H} such that $\mathcal{H} \models \phi$

Herbrand universe: UH

Assume the following form $\forall x_1, ..., x_k.\psi$

where ψ is a Boolean combination of atoms without quantifiers

- $UH_0 := constants occurring in \psi$
 - if there are no constants in ψ, then UH₀ := {a} (for a an arbitrary constant symbol)
- $UH_{i+1} := UH_i \cup \{f(t_1, ..., t_n) | f \text{ is in } \psi \text{ of arity } n \text{ and } t_1, ..., t_n \in UH_i\}$
- The Herbrand universe is defined as follows:

$$\mathsf{UH}:=\bigcup_{i=0}^\infty\mathsf{UH}_i$$

Herbrand structures

Definition

The Herbrand structure $\mathcal{H} = \langle \mathcal{D}_{\mathcal{H}}, \mathcal{I}_{\mathcal{H}} \rangle$ of $\forall x_1, ..., x_k.\psi$ (where ψ is a Boolean combination of atoms without quantifiers) is such that

- $\mathcal{D}_{\mathcal{H}}$ is the Herbrand universe of ψ
- $\mathcal{I}_{\mathcal{H}}$ is defined on (ground) terms as follows:

 $\begin{aligned} \mathcal{I}_{\mathcal{H}}(c) &:= c \text{ if } c \text{ is a constant in } \psi \\ \mathcal{I}_{\mathcal{H}}(f(t_1,...,t_n)) &:= mapping \text{ the } n\text{-tuple of terms } (t_1,...,t_n) \\ & \text{ to the term } f(t_1,...,t_n) \end{aligned}$

Herbrand theorem

Theorem

The formula $\forall x_1, ..., x_k.\psi$ is consistent iff it admits a Herbrand model, where ψ is a quantifier-free Boolean combination of atoms.

Proof.

(\Leftarrow): obvious. (\Rightarrow): Let \mathcal{M} be a model of $\phi = (\forall x_1, ..., x_k.\psi)$. We can define an interpretation over atoms $p(t_1, ..., t_n)$ where $t_1, ..., t_n \in \mathcal{D}_{\mathcal{H}}$: $p(t_1, ..., t_n)$ is true in \mathcal{H} if and only if $p(t_1, ..., t_n)$ is true in \mathcal{M} . Then, by structural induction on formulas, we can show that

 $\mathcal{H} \models \phi$ if and only if $\mathcal{M} \models \phi$

Herbrand method (to refute formulae)

- Input: ∀x₁,..., x_k.ψ where ψ is a quantifier-free Boolean combination of atoms
- Output: satisfiable/unsatisfiable
- Method: Consider the Herbrand universe UH of ψ and enumerate the ground instances of ψ obtained by replacing the variables of ψ by terms in UH:

$$Gnd(\psi) = \{\sigma(\psi) \mid Dom(\sigma) = \{x_1, \ldots, x_k\}, Ran(\sigma) \subseteq UH\}$$

G := Ø
While there exists some ψ' in Gnd(ψ)\G do

(i) G := G ∪ {ψ'}
(ii) If the Boolean abstraction of G is an unsatisfiable Boolean formula, then return unsatisfiable (and the method terminates)

return satisfiable

Herbrand method: remarks

The formula $\forall x_1, ..., x_k . \psi$ is consistent iff $Gnd(\psi)$ is consistent. Remark: $Gnd(\psi)$ is usually an infinite theory.

 In general, Herbrand method is a semi-decision procedure for unsatisfiability in the sense that it terminates whenever the input formula is unsatisfiable...
 This is so because of

Theorem (Compactness)

A set Γ of formulae is satisfiable iff every finite set $\Delta \subseteq \Gamma$ is satisfiable.

Herbrand method: remarks

- In particular, Herbrand method terminates, regardless of the satisfiability or unsatisfiability of the input formula, when the Herbrand universe is finite...
 - ... since only finitely many ground instances must be considered
 - ... the Herbrand universe is finite whenever there are no function symbols in the input formula (only constants)
- Herbrand method does not terminate if the input formula is satisfiable and the Herbrand universe is infinite...
 - $\bullet\,$... for this, it is sufficient to have one function symbols of arity ≥ 1
- We assume to be able to check the (un-)satisfiability of Boolean formulae ...

Checking Boolean (un-)satisfiability: how?

- Truth tables... not very efficient!
- SAT is computationally very demanding: NP-problem
- In practice: Davis-Putnam-Logemann-Loveland (DPLL) algorithm, whose input is a conjunction of clauses, where a clause is a disjunction of literals
- For Horn clauses: linear time (in the number of occurrences of Boolean variables) algorithm exists
 A Horn clause is a disjunction of literals containing at most one positive literal.

Thus, a Horn clause is of the form $(a_1 \land \cdots \land a_n) \Rightarrow a_{n+1}$, where a_i is an atom for $i = 1, \ldots, n+1$

A detailed presentation in Lecture 6

DPLL: abstract description

Let S be a set of clauses

$$\begin{array}{rcl} \textit{Unit Resolution} & \frac{S \cup \{L, C \lor \overline{L}\}}{S \cup \{L, C\}} & \text{if } & \overline{\neg A} & := & A \\ \hline S \cup \{L, C\} & \text{if } & \overline{A} & := & \neg A \end{array}$$

$$\begin{array}{rcl} \textit{Unit Subsumption} & \frac{S \cup \{L, C \lor L\}}{S \cup \{L\}} & \\ & S \text{plitting } & \frac{S}{S \cup \{A\} \mid S \cup \{\neg A\}} & \text{if } A \text{ is an atom occurring in } S \end{array}$$

There exists very efficient implementation of this calculus: zChaff, **MiniSAT**, Berkmin, ...

Herbrand method and T_{UF}

- Recall that
 - in first-order logic: the symbol of equality =, is uninterpreted (it is an arbitrary binary predicate symbol, written infix)
 - in first-order logic with equality: the symbol of equality =, is
 interpreted to be the identity relation on the domain of the structure
- Herbrand theorem is stated and proved in first-order logic (without equality)
- **QUESTION**: can we use Herbrand method to check the satisfiability of equational formulae? So to have at least a semi-decision procedure...
- **ANSWER**: yes with a little bit of effort...

Satisfiability with and without equality

- Let φ be an equational formula built out of the symbols in Σ
- Consider the following set EQ_Σ of axioms saying that = is a congruence relation:

$$\begin{aligned} \forall x.(x = x) \\ \forall x, y.(x = y \Rightarrow y = x) \\ \forall x, y, z.(x = y \land y = z \Rightarrow x = z) \\ \forall ...x, y...(x = y \Rightarrow f(...x..) = f(...y..)) & \text{for each } f \in \Sigma \end{aligned}$$

Remark: φ is satisfiable in first-order logic with equality iff $\varphi \wedge EQ_{\Sigma}$ is satisfiable in first-order logic without equality

Application of the theorem: a semi-decision procedure for T_{UF}

- The theorem allows us to use Herbrand method to solve arbitrary T_{UF} -satisfiabillity problems
- Given an equational formula φ :
 - **()** compute the set Σ of function and constant symbols occurring in φ
 - 2) compute the set EQ_{Σ}
 - return the result of applying the Herbrand method on φ ∧ EQ_Σ (where = is considered as an arbitrary predicate symbol)
- About termination: it is sufficient that Σ contains one non-constant symbols that the Herbrand universe of φ ∧ EQ_Σ is infinite and the procedure is not guaranteed to terminate!

Remarks on the semi-decision procedure

- **BIG QUESTION**: can we turn the semi-decision procedure based on Herbrand method into a decision procedure
- ANSWER: yes, by showing that it is always possible to find a finite subset of the Herbrand universe which is sufficient to detect unsatisfiability!

Example

• Consider the following *T_{UF}*-satisfiability problem

$$\varphi \equiv f(f(f(a))) = a \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$$

unsatisfiable?

• By substituting equal by equal, we can derive a contradiction:

$$\frac{f(f(f(a)))}{f(f(a))} = a \land f(f(f(f(a)))) = a \land f(a) \neq a$$
$$f(f(f(a))) = a \land f(f(a)) = a \land f(a) \neq a$$
$$f(\underline{f(f(a))}) = a \land \underline{f(f(a))} = a \land f(a) \neq a$$
$$\boxed{f(a) = a} \land f(f(a)) = a \land \boxed{f(a) \neq a}$$
Contradiction!

 Key observation: in deriving the contradiction, we have only used terms and sub-terms which occur in the input formula φ!

A T_{UF} -satisfiability procedure

Theorem

 $\varphi \wedge EQ_{\Sigma}$ is unsatisfiable iff $\varphi \wedge GEQ_{\Sigma}^{\varphi}$ is unsatisfiable, where GEQ_{Σ}^{φ} is the (finite) set of ground instances of EQ_{Σ} obtained by instantiating variables with all terms and sub-terms occurring in φ .

Corollary

Given an equational formula φ . The following algorithm

- **(**) compute the set Σ of function and constant symbols occurring in φ
- 2 compute the set GEQ_{Σ}^{φ}
- return the result of checking the (Boolean) satisfiability of $φ \land \text{GEQ}_{Σ}^{φ}$

terminates and returns whether φ is satisfiable or not. Hence, T_{UF} is decidable.

Idea of the proof of theorem

$\varphi \wedge EQ_{\Sigma}$ is unsat. $\Rightarrow \varphi \wedge GEQ_{\Sigma}^{\varphi}$ is unsat.

consider the counter-positive...

$\varphi \wedge GEQ_{\Sigma}^{\varphi}$ is sat. $\Rightarrow \varphi \wedge EQ_{\Sigma}$ is sat.

Proof of theorem

• $\varphi \wedge GEQ_{\Sigma}^{\varphi}$ is sat. $\Rightarrow \varphi \wedge EQ_{\Sigma}$ is sat. Assume $\varphi \wedge GEQ_{\Sigma}^{\varphi}$. So, there must exist a Herbrand structure $M = (D_M, I_M)$ satisfying both φ and GEQ_{Σ}^{φ} . Consider a structure $M' = (D_{M'}, I_{M'})$ where:

•
$$D_{M'} = D_M \cup \{\#\}$$
, where $\# \notin D_M$

• *I_{M'}* is defined as follows:

$$I_{M'}(t) := \left\{ egin{array}{cc} I_M(t) & ext{if } t ext{ occurs in } arphi \ \# & ext{ otherwise} \end{array}
ight.$$

Since for each term *t* occurring in φ , we have that $I_{M'}(t) = I_M(t)$ by construction, we derive that each equational atom *a* in $\varphi \land GEQ_{\Sigma}^{\varphi}$, we have that $M' \models a$ iff $M \models a$. Hence, $M' \models \varphi \land GEQ_{\Sigma}^{\varphi}$

Proof of theorem

(cont'd from previous slide) Since *I_{M'}(t) = #* for all *t* ∈ *D_{M'}* not occurring in *φ*, we can check that any formula in *Gnd*(*EQ*_Σ)*GEQ*^{*φ*}_Σ is true in *M'*. Hence, all ground instances of *EQ*_Σ are true in *M'*, and so *M'* ⊨ *EQ*_Σ. Consequently, *M'* ⊨ *EQ*_Σ and *M'* ⊨ *φ*. Thus, *φ* ∧ *EQ*_Σ is satisfiable.

$$\begin{tabular}{ll} \hline \end{tabular} & \end{$$

Complexity of T_{UF} and the designed decision procedure

- T_{UF} is in NP since it subsumes SAT
- To evaluate the designed decision procedure, consider the sub-set of equational formulae built out of conjunctions of possibly negated equational atoms of the form c = d (for c, d being constant symbols): what about the complexity of the decision procedure for this class?
- Notice that for this class of formulae, the corresponding Boolean formulae are Horn clauses (i.e. clauses containing at most one positive literal)...
- The SAT problem for propositional Horn clauses can be solved in linear time in the number of occurrences of Boolean variables...
- **QUESTION**: how many occurrences of Boolean variables are in $\varphi \wedge GEQ_{\Sigma}^{\varphi}$?

Complexity of the designed decision procedure

- Assume φ contains a number of atoms linear in the number of constants n in φ.
- GEQ_{Σ}^{φ} will contain
 - a linear number of occurrences of Boolean variables from instantiating: ∀x.(x = x)
 - a quadratic number of occurrences of Boolean variables from instantiating: $\forall x, y. (x = y \Rightarrow y = x)$
 - 3 a cubic number of occurrences of Boolean variables from instantiating: ∀x, y, z.(x = y ∧ y = z ⇒ x = z)
- this leads to a decision procedure with a cubic complexity
- **QUESTION**: can we do better (for this particular subset of equational formulae)?

Towards a better decision procedure

- Consider the sources of inefficiency in the previously designed decision procedure:
 - a quadratic blow-up to handle symmetry of =
 - a cubic blow-up to handle transitivity of =
- Let us take a different perspective on equality: consider = as a binary relation which must be an equivalence (since it must be reflexive, symmetric, and transitive)

IDEA: represent the binary relation as a graph, to handle transitivity

Equality as a binary relation

- If we consider equality as a binary relation and represent it by means of a graph, then
 - checking the unsatisfiability of a conjunction of equational literals amounts to checking whether there exists a disequality $c \neq d$ such that the vertices *c* and *d* are connected.
- **QUESTION**: what is the complexity of the best algorithm to find whether two nodes in a graph are connected?

• **ANSWER**: it is linear in sum of the number of nodes and the number of edges (cf. Tarjan)

NB: linear complexity if the number of edges/equations is assumed to be linear in the number of nodes/constants

A better decision procedure for conjunctions of equational literals

- Let φ be a conj. of equational literals of the form c = d or $\neg c = d$
 - let φ^{eq} be the conjunction of all equalities and φ^{diseq} be the conjunctions of all disequalities in φ
 - 2 build the graph G associated with φ^{eq}
 - 3 let $c \neq d$ be a disequality in φ^{diseq} :
 - if c and d are connected in G, then return unsatisfiable
 - otherwise, consider another disequality in $\varphi^{\textit{diseq}}$

(4) when all diseq. in φ^{diseq} have been considered, return satisfiable

- If the number of atoms in φ is linear in the number of constants in φ, then the running time of the algorithm will be quadratic in the number of constants in φ...
- Better than the cubic behavior of the previous procedure!

Remarks

- Notice that we have separated equalities and disequalities in the procedure because of the following reasons:
 - conjunctions of equalities are always satisfiable Exercise: show why! (Hints: you need to consider a particular structure which satisfies all equalities... how can you make equal any constant?)
 - Convexity of the theory of equality: if the conjunction φ^{eq} ∧ φ^{diseq} of equational literals is unsatisfiable, then there must exist just one disequality c ≠ d in φ^{diseq} such that φ^{eq} ∧ c ≠ d is unsatisfiable

Definition

A theory *T* is said to be *convex* if for any *T*-satisfiable set of equalities Γ , we have $T \models (\Gamma \Rightarrow \bigvee_{i=1}^{n} s_i = t_i)$ implies there exists some $k \in [1, n]$ such that $T \models (\Gamma \Rightarrow s_k = t_k)$.

Can we do even better than quadratic?

- Source of inefficiency: symmetry or, equivalently, bidirectionality of equality
- **QUESTION**: can we orient the equality in one direction without loosing refutation completeness, i.e. without returning satisfiable when it is unsatisfiable?

Example: check the unsatisfiability of $c = c_1 \land c = c_2 \land c_1 \neq c_2$ Now, orient the two equalities from left-to-right, i.e.

$$egin{array}{ccc} c &
ightarrow & c_1 \ c &
ightarrow & c_2 \end{array}$$

and consider the **reflexive and transitive** closure \rightarrow^* of \rightarrow . Unfortunately: $c_1 \not\rightarrow^* c_2$. So, $\rightarrow^* \subset =$ and \rightarrow^* is different from = However, if we consider the **symmetric**, **reflexive**, and **transitive closure** \leftrightarrow^* of \rightarrow , then we have \leftrightarrow^* is equal to =

Orienting equalities

- GOAL: orient equalities into rewrite rules in such a way that we can still show the satisfiability of sets of literals over constants without loosing refutation completeness
- Formally, we introduce a binary relation → (to emphasize that it is an oriented version of =) on the constants in φ^{eq}
- We call \rightarrow the rewrite relation induced by φ^{eq}

Rewrite relations: derivation

- Let S be a set of constants and $\rightarrow \subseteq S \times S$
- A derivation w.r.t. \rightarrow is a (possibly infinite) sequence

$$\textbf{s}_1, \textbf{s}_2, ..., \textbf{s}_n, \textbf{s}_{n+1}, ...$$

such that $s_i \rightarrow s_{i+1}$ for i = 1, 2, ..., n, ...

To emphasize that s_i → s_{i+1} for i = 1, 2, ..., n, ..., we will also write derivations as follows:

$$s_1 \rightarrow s_2 \rightarrow ... \rightarrow s_n \rightarrow s_{n+1} \rightarrow ...$$

Example: if $\rightarrow := \{c_1 \rightarrow c_2, c_2 \rightarrow c_3, c_3 \rightarrow c_1, c_2 \rightarrow c_4, c_4 \rightarrow c_6\}$, then

Rewrite relations: definitions

Let S be a set of constants and $\rightarrow \subseteq S \times S$

- \rightarrow is terminating if there is no infinite sequence $s_1 \rightarrow s_2 \rightarrow \cdots$
- \rightarrow is confluent (or Church-Rosser) if $\leftarrow^* \circ \rightarrow^* \subseteq \rightarrow^* \circ \leftarrow^*$
- \rightarrow is locally confluent if $\leftarrow \circ \rightarrow \subseteq \rightarrow^* \circ \leftarrow^*$
- A rewrite relation \rightarrow is convergent if \rightarrow is confluent and terminating

Rewrite relations: some important properties

- Lemma. If → is convergent, then for every *c* there exists a unique normal form denoted with *nf*(*c*).
- Key observation: consider the problem of checking the unsatisfiability of φ^{eq} ∧ c ≠ d
 - old O let ightarrow be the rewrite relation associated with $arphi^{eq}$
 - 2) if \rightarrow is convergent, then rewrite *c* to nf(c) and *d* to nf(d)
 - if nf(c) is identical to nf(d), then return unsatisfiable
 - otherwise, return satisfiable
 - Two key features of convergent rewrite relations:
 - termination guarantees that the computation terminates
 - confluence allows "don't-care" choice in the order of rewrite steps

Rewrite relations: exercises

- Prove the lemma in the previous slide Hint: By contradiction, assume that for some *c* there exist c_1, c_2 such that $c \rightarrow^* c_1$ and $c \rightarrow^* c_2$ with c_i in normal form for i = 1, 2. Recall the definition for an element being in normal form. Then, remember that \rightarrow is confluent by assumption and so there must exist and element *d* such that $c_i \rightarrow^* d$ for i = 1, 2 and derive the contradiction.
- ② Let →:= {(c_1, c_2), (c_2, c_3), (c_3, c_5), (c_2, c_4), (c_4, c_5)}.
 - Find all possible derivations from c₁ to c₅
 - Show that c₅ is the normal form of c₁
 - **3** Show that \rightarrow is convergent

Convergent rewrite relations and the satisfiability problem

- **QUESTION**: how can we establish that \rightarrow is convergent?
- **ANSWER**: Newmann's Lemma. A terminating and locally confluent relation is confluent.
- Local confluence is much easier to check than confluence: it is possible to check confluence by considering all possible ways (which are finitely many!) of rewriting an element by using an oriented equation in φ^{eq}
 Example: if →:= {(c₁, c₂), (c₂, c₃), (c₃, c₅), (c₂, c₄), (c₄, c₅)}, then

$$egin{array}{cccc} c_4 \leftarrow c_2 &
ightarrow & c_3 \ c_4
ightarrow c_5 \leftarrow & c_3 \end{array}$$

Towards terminating rewrite relations

- **QUESTION**: How can ensure the termination of \rightarrow ?
- **ANSWER**: using ordering relations, which precisely formalize the idea of orienting an equality
- A strict ordering ≻ on a set of elements is an irreflexive, antisymmetric and transitive binary relation
- ≻ is a reduction ordering if it is a strict ordering which is also terminating: no infinite decreasing chain e₁ ≻ e₂ ≻ ···
- Key property: A rewrite relation \rightarrow is terminating if there exists a reduction ordering \succ such that \rightarrow is included in \succ

Towards confluent rewrite relations

Consider \rightarrow is a rewrite relation over a finite set of constants *S* and \succ is an ordering over *S* such that $\rightarrow \subseteq \succ$ and \succ is total on *S*, e.g.,

$$e \succ d \succ c \succ b \succ a$$
 for $S = \{a, b, c, d, e\}$

Then \succ is necessarily a reduction ordering and so \rightarrow is terminating. By Newmann's Lemma, one can now check for local confluence.

Let us now analyze in which situation a rewrite relation is not locally confluent...

How to get local confluence?

- Assume a constant *c* can be rewritten in two different ways: $c \rightarrow d$ and $c \rightarrow c'$, respectively
- To restore local confluence, we can add the equality c' = d. Then c' = d can be oriented as the rewrite rule c' → d id c' ≻ d and as d → c' if d ≻ c'
- Observation: $\varphi^{eq} \models c' = d$

Computing locally confluent rewrite relations

- we say that c → d and c → c' overlap and the overlapped constant c generates the critical pair c' = d
- Key idea: successively discover overlapped terms until no more critical pairs are produced
- To do this, we have to detect all identical left-hand-sides of the rewrite relation \rightarrow
- Termination of adding critical pairs: the process terminates since the number of critical pairs is bounded by $|S \times S|$, where S is the set of constants in φ^{eq}

A decision procedure for $\varphi^{eq} \wedge \varphi^{diseq}$

Consider the following set of inference rules

$$CP \quad \frac{c = c' \quad c = d}{c' = d} \quad \text{if } c \succ c' \text{ and } c \succ d$$

$$DH \quad \frac{c = c' \quad c \neq d}{c' \neq d} \quad \text{if } c \succ c' \text{ and } c \succ d$$

$$UN \quad \frac{c \neq c}{\Box}$$

if φ^{eq} ∧ φ^{diseq} ⊢* □, then return *unsatisfiable* otherwise, return *satisfiable*

A decision procedure: remarks

- Instead of considering all equalities first, the rules allow us to interleave the processing of equalities and disequalities: this allows us the early detection of inconsistencies (if any)
- *CP* (critical pair) is also called *Superposition* and *DH* (disequality handler) is called *Paramodulation* when considering general clauses

What about a more general satisfiability problem?

- QUESTION: can we reuse the previously introduced techniques to check the satisfiability of conjunctions of equational literals built out of function symbols?
- ANSWER: yes, by using a simple trick and extending the set of inference rules introduced above

Trick: flattening

• Flatten terms by introducing "fresh" constants, e.g.

$$\{f(f(f(a))) = b\} \quad \rightsquigarrow \quad \{f(a) = c_1, f(f(c_1)) = b\} \\ \quad \rightsquigarrow \quad \{f(a) = c_1, f(c_1) = c_2, f(c_2) = b\} \\ \{g(h(a)) \neq a\} \quad \rightsquigarrow \quad \{h(a) = c_1, g(c_1) \neq a\} \\ \quad \rightsquigarrow \quad \{h(a) = c_1, g(c_1) = c_2, c_2 \neq a\}$$

- Exercise: show that this transformation preserves satisfiability
- The number of constants introduced is equal to the number of sub-terms occurring in the input set of literals
- Key observation: after flattening, literals are "close" to literals built out of constants only... we need to take care of substitution in a very simple way...

The extended set of inference rules

$$\begin{array}{ccc} \mathsf{CP} & \frac{c=c' & c=d}{c'=d} & \text{if } c \succ c' \text{ and } c \succ d \\ \\ \mathsf{Cong}_1 & \frac{c_j=c_j' & f(c_1,...,c_j,...,c_n)=c_{n+1}}{f(c_1,...,c_j',...,c_n)=c_{n+1}} & \text{if } c_j \succ c_j' \\ \\ \mathsf{Cong}_2 & \frac{f(c_1,...,c_n)=c_{n+1}' & f(c_1,...,c_n)=c_{n+1}}{c_{n+1}=c_{n+1}'} \\ \\ \mathsf{DH} & \frac{c=c' & c\neq d}{c'\neq d} & \text{if } c\succ c' \text{ and } c\succ d \\ \\ \mathsf{UN} & \frac{c\neq c}{\Box} \end{array}$$

Notice that we only need to compare constants!

A decision procedure for conjunctions of arbitrary equational literals

Flatten literals

- Exhaustive application of the rules in the previous slide
- \bigcirc if \Box is derived, then return *unsatisfiable*
- ④ otherwise, return satisfiable

In the worst case, the complexity is **quadratic** in the number of sub-terms occurring in the input set of equational literals [Armando et al., 2003]

You can do better (i.e. $O(n \log n)$) by using a **dynamic** ordering over constants

See [Nelson and Oppen, 1980, Nieuwenhuis and Oliveras, 2007]

References

Armando, A., Ranise, S., and Rusinowitch, M. (2003). A rewriting approach to satisfiability procedures. *Inf. Comput.*, 183(2):140–164.

Nelson, G. and Oppen, D. C. (1980).

Fast decision procedures based on congruence closure. J. ACM, 27(2):356–364.

Nieuwenhuis, R. and Oliveras, A. (2007).

Fast congruence closure and extensions. Inf. Comput., 205(4):557–580.