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Equality
Extensions of Equality

Satisfiability Procedures for Equality

• Aka theory of uninterpreted function (UF) symbols
• Useful in virtually any verification problem

. uninterpreted function symbols provide a natural means
for abstracting data and data operations

. hardware, software, safety checking, ...
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Axiom schemas for the theory of UF

• Equality can be defined as a binary predicate = written infix
satisfying the following axioms:

∀x .(x = x) reflexivity
∀x , y .(x = y ⇒ y = x) symmetry

∀x , y , z.(x = y ∧ y = z ⇒ x = z) transitivity

∀x1, y1, ..., xn, yn.(
n∧

i=1

xi = yi ⇒ f (x1, ..., xn) = f (y1, ..., yn)) congruence

• Note: congruence is an axiom schema since it must be
instantiated for each function symbol f in the formula
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Decision Procedure for the full theory of UF

Superpos1
c = c′ c = d

c′ = d if c � c′, c � d

Superpos2
cj = c′

j f (c1, ..., cj , ..., cn) = cn+1

f (c1, ..., c′
j , ..., cn) = cn+1

if cj � c′
j

Superpos3
f (c1, ..., cn) = c′

n+1 f (c1, ..., cn) = cn+1

cn+1 = c′
n+1

Paramodul
c = c′ c 6= d

c′ 6= d if c � c′, c � d

Eq. Res.
c 6= c
⊥

Notice that we only need to compare constants!
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Decision Procedure for the full theory of UF: Summary

• Flatten literals
• Exhaustive application of the rules in the previous slide

. if ⊥ is derived, then unsatisfiability is reported

. if ⊥ is not derived and no more rule can be applied, then
satisfiability is reported
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Can we extend the approach to other theories?

• Yes, but using more general concepts:
. rewriting on arbitrary terms (not only constants)
. considering arbitrary clauses since many interesting

theories are axiomatized by formulae which are more complex
than simple equalities or disequalities, e.g. the theory of lists:

car(cons(X ,Y )) = X
cdr(cons(X ,Y )) = Y

where X ,Y are implicitly universally quantified variables
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Our goal

• Given
. a presentation of a theory T extending UF

(Notice that T is not restricted to equations!)
• We want to derive

. a satisfiability decision procedure capable of establishing
whether S is T -satisfiable, i.e. S ∪ T is satisfiable (where S is a
set of ground literals)
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Our approach to the problem

• Based on the rewriting approach
. uniform and simple
. efficient alternative to the congruence closure approach

• Tune a general (off-the-shelf)
refutation complete superposition inference system

(from, e.g. [Rus91,BacGan94]) in order to obtain
termination

on some interesting theories
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First step: flatten

• The first step is to flatten all the input literals by extending the
signature introducing “fresh” constants
• Example: {f (c, c′) = h(h(a)),h(h(h(a))) 6= a} is flattened to

{f (c, c′) = h(c1), c3 6= a} ∪ {c1 = h(a), c3 = h(c2), c2 = h(c1)}

Fact
Let S be a finite set of Σ-literals. Then there exists a finite set of
flat Σ′-literals S′ (where Σ′ is obtained from Σ by adding a finite
number of constants) such that S′ is T -satisfiable iff S is.
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Second step: apply superposition calculus SP

A calculus manipulating clauses (disjunctions of literals):
(s1 6= t1 ∨ · · · ∨ sk 6= tk ) ∨ (sk+1 = tk+1 ∨ · · · ∨ sm = tm)
also written s1 = t1, . . . , sk = tk → sk+1 = tk+1, . . . , sm = tm
• Inference rules: Superposition, Paramodulation, Reflection,
Factoring
• Simplification rules: Subsumption, Simplification, Deletion
• Reduction ordering � (total on ground terms)
• Refutation complete: any fair application of the rules to an
unsatisfiable set of clauses will derive the empty clause
• Saturation of a set of clauses is the final set of clauses
generated by a fair derivation
• A derivation is fair when all possible inferences are performed

See below for formal definitions of all these concepts!
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Superposition Calc. (Unit Clauses, Expansion Rules)

Superposition
l[u′] = r u = t
σ(l[t ] = r)

(i), (ii)

Paramodulation
l[u′] 6= r u = t
σ(l[t ] 6= r)

(i), (ii)

Reflection
u′ 6= u

2

where the substitution σ is the most general unifier of u
and u′ (i.e., σ(u′) = σ(u)), u′ is not a variable and the
following conditions hold:

(i) σ(u) 6� σ(t)
(ii) σ(l[u′]) 6� σ(r)

Figure: Expansion Rules of SP

Replacement of equal by equal performed up to unification
Rules controlled by a simplification ordering on terms
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Superposition Calc. (Unit Clauses, Contraction Rules)

Name Rule Conditions

Subsumption
S ∪ {L,L′}

S ∪ {L} for some θ, θ(L) = L′

Simplification
S ∪ {L[θ(l)], l = r}
S ∪ {L[θ(r)], l = r} θ(l) � θ(r), L[θ(l)] �

(θ(l) = θ(r))

Deletion
S ∪ {t = t}

S
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Orderings

• Requirement: f (c1, . . . , cn) � c0
for each non-constant symbol f and constant ci (i = 0,1, ...,n)
• [Definition:] (a = b) � (c = d) iff {a,b}��{c,d}
(where �� is the multiset extension of � on terms)
• multisets of literals are compared by the multiset extension of
� on literals
• clauses are considered as multisets of literals
• Intuition: the ordering � is such that only maximal sides of
maximal instances of literals are involved in inferences
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Ordering: Definitions

Definition (Well-founded Ordering)

> is well-founded if there is no infinite decreasing chain
t1 > t2 > . . .

Definition (Reduction Ordering)

> is a reduction ordering if
> is well-founded,
For any terms s, t and context u, s > t implies u[s] > u[t ],
For any terms s, t and substitution σ, s > t implies
σ(s) > σ(t),
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Well-Founded Ordering: Multiset Extension

Definition (Multiset Extension)

M >mult N if M 6= N and
N(t) > M(t)⇒ ∃t ′ : t ′ > t and M(t ′) > N(t ′)

Fact: The multiset extension of a well-founded ordering is
well-founded.

Example (Multiset set extension of the ordering on Naturals)

{3,3,3,2,1} >mult {3,3,2,2,2,1}
{3,3,1,2} >mult {1,1,2}
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Well-Founded Ordering: LPO

Example (Lexicographic Path Ordering)

s = f (s1, . . . , sn) >lpo g(t1, . . . , tm) = t if

1 f = g and (s1, . . . , sn) >
lex
lpo (t1, . . . , tm) and ∀j ∈ {1, . . . ,m} s >lpo tj

2 f >F g and ∀j ∈ {1, . . . ,m} s >lpo tj
3 ∃i ∈ {1, . . . , n} such that either si >lpo t or si = t

Remarks:

The lexicographic extension >lex is defined as follows:
(s1, . . . , sn) >

lex (t1, . . . , tn) if there exists some i ∈ [1, n] such that
si > ti and for any j smaller than i , sj = tj . The ordering >lex is
well-founded if > is well-founded.

LPO is a simplification ordering: for any term s and any context u,
u[s] > s

LPO is total on ground terms
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Reduction Ordering: Exercise

Termination of Ackermann Function

Ack(0, y) → s(y)
Ack(s(x), 0) → Ack(x , s(0))
Ack(s(x), s(y)) → Ack(x ,Ack(s(x), y))

With LPO? Which precedence to choose?
Let Ack > s > 0
Ack(0, y) > s(y) since Ack(0, y) > y

Ack(s(x), 0) > Ack(x , s(0)) since s(x) > x and Ack(s(x), 0) > x and
(Ack(s(x), 0) > s(0) since Ack(s(x), 0) > 0)

Ack(s(x), s(y)) > Ack(x ,Ack(s(x), y)) since s(x) > x and
Ack(s(x), s(y)) > x and (Ack(s(x), s(y)) > Ack(s(x), y) since s(y) > y and
Ack(s(x), s(y)) > s(x) and Ack(s(x), s(y)) > y )
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Syntactic Unification

Problem

Given two terms s and t , is there a substitution σ such that σ(s) and σ(t) are identical?

The substitution σ is called a unifier of s and t , equivalently it is a solution of the
unification problem s =? t .

In general, a unification problem P is a conjunction of equations
s1 =? t1 ∧ · · · ∧ sn =? tn, and a unifier σ of P is a substitution such that σ(si ) and σ(ti )
are identical for all i = 1, . . . , n.

Fact

If a unification problem admits a solution, then there exists a most general unifier µ
such that any unifier σ is an instance of µ.

Example

x =? f (a, y) has a unifier σ = {x 7→ f (a, a), y 7→ a} but σ is an instance of
µ = {x 7→ f (a, y)}.
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Rules for syntactic unification (computation of mgu)

Delete P ∧ s =? s 7→7→ P
Decompose P ∧ f (s1, . . . , sn) =? f (t1, . . . , tn) 7→7→ P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn
Conflict P ∧ f (s1, . . . , sn) =? g(t1, . . . , tp) 7→7→ ⊥

if f 6= g
Coalesce P ∧ x =? y 7→7→ {x 7→ y}(P) ∧ x =? y

if x , y ∈ Var(P) and x 6= y
Check* P ∧ x1 =? s1[x2] . . . ∧ xn =? sn[x1] 7→7→ ⊥

if si /∈ Var for some i ∈ [1..n]
Merge P ∧ x =? s ∧ x =? t 7→7→ P ∧ x =? s ∧ s =? t

if 0 < |s| ≤ |t |
Check P ∧ x =? s 7→7→ ⊥

if x ∈ Var(s) and s /∈ Var
Eliminate P ∧ x =? s 7→7→ {x 7→ s}(P) ∧ x =? s

if x /∈ Var(s), s /∈ Var , x ∈ Var(P)
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Examples

x =? a
x =? a ∧ y =? f (x ,a)
f (x , f (x ,a)) =? f (f (a,b), f (u, v))
x =? a ∧ x =? b
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Tree Solved form

A tree solved form for P is any conjunction Q of equations

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that for any i = 1, . . . ,n, xi is a variable
occurring only once in Q.
Example: x =? f (f (y)) ∧ z =? g(a)
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Computation of mgu

Theorem
Starting with a unification problem P and using the above rules
repeatedly until none is applicable
— results in ⊥ iff P has no solution, or else it
— results in a tree solved form x1 =? t1 ∧ · · · ∧ xn =? tn for P,
with the same set of solutions than P.
Moreover

σ = {x1 7→ t1, . . . , xn 7→ tn}

is a most general unifier of P, denoted by mgu(P).
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Redundancy and Saturation

Definition
A clause C is redundant with respect to a set S of clauses
if S can be obtained from S ∪ {C} by a sequence of
applications of contraction rules in SP.
An inference in SP is redundant with respect to a set S of
clauses if its conclusion is redundant with respect to S.
A set S of clauses is saturated if every inference in SP with
premises in S is redundant with respect to S.
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Fair derivation

Definition
A derivation is a sequence S0,S1, . . . ,Si , . . . of sets of
clauses where Si ⇒SP Si+1 via the application of
expansion rules or contraction rules in SP.
The limit of a derivation is defined as the set of persistent
clauses S∞ =

⋃
j≥0
⋂

i>j Si .
A derivation S0,S1, ...,Si , ... with limit S∞ is fair if every
inference in SP with premises in S∞ is redundant with
respect to some Sj .
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Refutation Completeness

Fair derivations compute saturated sets and generate the
empty clause iff the initial set is unsatisfiable.

Theorem (Nieuwenhuis-Rubio)
If S0,S1, . . . is a fair derivation of SP, then (i) its limit S∞ is
saturated with respect to SP, (ii) S0 is unsatisfiable iff the
empty clause is in Sj for some j, and (iii) if such a fair derivation
is finite, i.e. it is of the form S0, . . . ,Sn, then Sn is saturated and
logically equivalent to S0.

Problem: For which theories do we have finite fair derivations?
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Example: SP for lists (I)
• Consider the following (simplified) theory of lists

Ax(L) := {car(cons(X ,Y )) = X , cdr(cons(X ,Y )) = Y}

• Recall that a literal in S has one of the four possible forms:
(i) car(c) = d ,
(ii) cdr(c) = d ,
(iii) cons(c1, c2) = d ,
(iv) c 6= d .

• There are three cases to consider:
1. inferences between two clauses in S
2. inferences between two clauses in Ax(L)
3. inferences between a clause in Ax(L) and a clause in S
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Example: SP for lists (II)

• Case 1: inferences between two clauses in S
It has already been considered when considering equality only
(please, keep in mind this point)
• Case 2: inferences between two clauses in Ax(L)
This is not very interesting since there are no possible
inferences between the two axioms in Ax(L)
• Case 3: inferences between a clause in Ax(L) and a clause
in S

. a superposition between car(cons(X ,Y )) = X and
cons(c1, c2) = d yielding car(d) = c1 and

. a superposition between cdr(cons(X ,Y )) = Y and
cons(c1, c2) = d yielding cdr(d) = c2
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Example: SP for lists (III)

• We are almost done, it is sufficient to notice that
. only finitely many equalities of the form (i) and (ii) can be

generated this way out of a set of clauses built on a finite
signature

. so, we are entitled to conclude that SP can only generate
finitely many clauses on set of clauses of the form Ax(L) ∪ S
• A decision procedure for the satisfiability problem of L can be
built by simply using SP after flattening the input set of literals
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Deriving a Decision Procedure for Arrays (I)

Ax(A) :=

{
rd(wr(A, I,E), I) = E
I = J ∨ rd(wr(A, I,E), J) = rd(A, J)

}
Apply the methodology previously described using a
superposition calculus handling arbitrary clauses
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SP (Arbitrary Clauses, Expansion Rules)

Sup.
C ∨ l[u′] = r D ∨ u = t

σ(C ∨ D ∨ l[t] = r) (i), (ii), (iii), (iv)

Par.
C ∨ l[u′] 6= r D ∨ u = t

σ(C ∨ D ∨ l[t] 6= r) (i), (ii), (iii), (iv)

Ref.
C ∨ u′ 6= u
σ(C)

∀L ∈ C. σ(u′ = u) 6� σ(L)

Fac.
C ∨ u = t ∨ u′ = t ′

σ(C ∨ t 6= t ′ ∨ u = t ′) (i), ∀L ∈ {u′ = t ′} ∪ C. σ(u = t) 6≺ σ(L)

where the substitution σ = mgu(u =? u′), u′ is not a variable,
and the following conditions hold:

(i) σ(u) 6� σ(t)
(ii) ∀L ∈ D. σ(u = t) 6� σ(L)
(iii) σ(l[u′]) 6� σ(r)
(iv) ∀L ∈ C. σ(l[u′] ./ r) 6� σ(L)

Figure: Expansion Rules of SP
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SP (Arbitrary Clauses, Contraction Rules)

Name Rule Conditions

Subsumption
S ∪ {C,C′}

S ∪ {C}
for some θ, θ(C) ⊆ C′,
and there is no ρ s.t.
ρ(C′) = C

Simplification
S ∪ {C[θ(l)], l = r}
S ∪ {C[θ(r)], l = r} θ(l) � θ(r), C[θ(l)] �

(θ(l) = θ(r))

Deletion
S ∪ {C ∨ t = t}

S
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Deriving a Decision Procedure for Arrays (II)

Lemma
Let S be a finite set of flat literals. The clauses occurring in the
saturations of S ∪ Ax(A) by SP can only be:

i) the empty clause; ii) axioms iii) ground flat
literals

iv) clauses of type t ./ t ′ ∨ c1 = c′1 ∨ · · · ∨ cn = c′n
with t ./ t ′ ∈ {c 6= c′, rd(c, i) = c′, rd(c, i) = rd(c′, i ′)}

v) clauses of type rd(c, x) = rd(c′, x)∨ c1 = k1 ∨ · · · ∨ cn = kn,
where ki is either x or a constant among c, c1, . . . , cn

where i , c, c′, c1, c′1, . . . , cn, c′n are constants, and x is a variable.

Lemma
The saturations of S ∪ Ax(A) are finite
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Rewriting approach: drawbacks

• Unfortunately not all theories are finitely axiomatized
. Example: the usual theory of arithmetic does not admit a

finite axiomatization
• Because of this and the ubiquity of arithmetic in practically
any verification problem jointly with equational theories, we
need to combine the satisfiability procedure provided by SP
with a satisfiability procedure for the theory of arithmetic
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References on a rewriting approach to sat proc

• Armando, Ranise, Rusinowitch. “A Rewriting Approach to
Satisfiability Procedures,” Information and Computation,
183(2):140–164, June 2003. (Extended version of CSL’01).
• Armando, Bonacina, Ranise, Schulz. “On a rewriting
approach to satisfiability procedures: extension, combination of
theories, and an experimental apprisal,” presented at
FroCos’05, Vienna. (Experimental evaluation.)
• Nieuwenhuis, Rubio. “Paramodulation-based Theorem
Proving,” Handbook of Automated Reasoning, Volume 1,
Chapter 7, pages 371–444.
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