
Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Building Decision Procedures for Data
Structures

Silvio Ranise and Christophe Ringeissen

LORIA

Lecture 4

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Outline

1 Use of Superposition
Equality
Extensions of Equality

2 Superposition: Unit Clauses
Orderings
Unification
Saturation

3 Superposition: Arbitrary Clauses

4 References

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Satisfiability Procedures for Equality

• Aka theory of uninterpreted function (UF) symbols
• Useful in virtually any verification problem

. uninterpreted function symbols provide a natural means
for abstracting data and data operations

. hardware, software, safety checking, ...

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Axiom schemas for the theory of UF

• Equality can be defined as a binary predicate = written infix
satisfying the following axioms:

∀x .(x = x) reflexivity
∀x , y .(x = y ⇒ y = x) symmetry

∀x , y , z.(x = y ∧ y = z ⇒ x = z) transitivity

∀x1, y1, ..., xn, yn.(
n∧

i=1

xi = yi ⇒ f (x1, ..., xn) = f (y1, ..., yn)) congruence

• Note: congruence is an axiom schema since it must be
instantiated for each function symbol f in the formula

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Decision Procedure for the full theory of UF

Superpos1
c = c′ c = d

c′ = d if c � c′, c � d

Superpos2
cj = c′

j f (c1, ..., cj , ..., cn) = cn+1

f (c1, ..., c′
j , ..., cn) = cn+1

if cj � c′
j

Superpos3
f (c1, ..., cn) = c′

n+1 f (c1, ..., cn) = cn+1

cn+1 = c′
n+1

Paramodul
c = c′ c 6= d

c′ 6= d if c � c′, c � d

Eq. Res.
c 6= c
⊥

Notice that we only need to compare constants!

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Decision Procedure for the full theory of UF: Summary

• Flatten literals
• Exhaustive application of the rules in the previous slide

. if ⊥ is derived, then unsatisfiability is reported

. if ⊥ is not derived and no more rule can be applied, then
satisfiability is reported

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Can we extend the approach to other theories?

• Yes, but using more general concepts:
. rewriting on arbitrary terms (not only constants)
. considering arbitrary clauses since many interesting

theories are axiomatized by formulae which are more complex
than simple equalities or disequalities, e.g. the theory of lists:

car(cons(X ,Y)) = X
cdr(cons(X ,Y)) = Y

where X ,Y are implicitly universally quantified variables

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Our goal

• Given
. a presentation of a theory T extending UF

(Notice that T is not restricted to equations!)
• We want to derive

. a satisfiability decision procedure capable of establishing
whether S is T -satisfiable, i.e. S ∪ T is satisfiable (where S is a
set of ground literals)

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Our approach to the problem

• Based on the rewriting approach
. uniform and simple
. efficient alternative to the congruence closure approach

• Tune a general (off-the-shelf)
refutation complete superposition inference system

(from, e.g. [Rus91,BacGan94]) in order to obtain
termination

on some interesting theories

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

First step: flatten

• The first step is to flatten all the input literals by extending the
signature introducing “fresh” constants
• Example: {f (c, c′) = h(h(a)),h(h(h(a))) 6= a} is flattened to

{f (c, c′) = h(c1), c3 6= a} ∪ {c1 = h(a), c3 = h(c2), c2 = h(c1)}

Fact
Let S be a finite set of Σ-literals. Then there exists a finite set of
flat Σ′-literals S′ (where Σ′ is obtained from Σ by adding a finite
number of constants) such that S′ is T -satisfiable iff S is.

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Equality
Extensions of Equality

Second step: apply superposition calculus SP

A calculus manipulating clauses (disjunctions of literals):
(s1 6= t1 ∨ · · · ∨ sk 6= tk) ∨ (sk+1 = tk+1 ∨ · · · ∨ sm = tm)
also written s1 = t1, . . . , sk = tk → sk+1 = tk+1, . . . , sm = tm
• Inference rules: Superposition, Paramodulation, Reflection,
Factoring
• Simplification rules: Subsumption, Simplification, Deletion
• Reduction ordering � (total on ground terms)
• Refutation complete: any fair application of the rules to an
unsatisfiable set of clauses will derive the empty clause
• Saturation of a set of clauses is the final set of clauses
generated by a fair derivation
• A derivation is fair when all possible inferences are performed

See below for formal definitions of all these concepts!

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Superposition Calc. (Unit Clauses, Expansion Rules)

Superposition
l[u′] = r u = t
σ(l[t] = r)

(i), (ii)

Paramodulation
l[u′] 6= r u = t
σ(l[t] 6= r)

(i), (ii)

Reflection
u′ 6= u

2

where the substitution σ is the most general unifier of u
and u′ (i.e., σ(u′) = σ(u)), u′ is not a variable and the
following conditions hold:

(i) σ(u) 6� σ(t)
(ii) σ(l[u′]) 6� σ(r)

Figure: Expansion Rules of SP

Replacement of equal by equal performed up to unification
Rules controlled by a simplification ordering on terms

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Superposition Calc. (Unit Clauses, Contraction Rules)

Name Rule Conditions

Subsumption
S ∪ {L,L′}

S ∪ {L} for some θ, θ(L) = L′

Simplification
S ∪ {L[θ(l)], l = r}
S ∪ {L[θ(r)], l = r} θ(l) � θ(r), L[θ(l)] �

(θ(l) = θ(r))

Deletion
S ∪ {t = t}

S

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Orderings

• Requirement: f (c1, . . . , cn) � c0
for each non-constant symbol f and constant ci (i = 0,1, ...,n)
• [Definition:] (a = b) � (c = d) iff {a,b}��{c,d}
(where �� is the multiset extension of � on terms)
• multisets of literals are compared by the multiset extension of
� on literals
• clauses are considered as multisets of literals
• Intuition: the ordering � is such that only maximal sides of
maximal instances of literals are involved in inferences

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Ordering: Definitions

Definition (Well-founded Ordering)

> is well-founded if there is no infinite decreasing chain
t1 > t2 > . . .

Definition (Reduction Ordering)

> is a reduction ordering if
> is well-founded,
For any terms s, t and context u, s > t implies u[s] > u[t],
For any terms s, t and substitution σ, s > t implies
σ(s) > σ(t),

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Well-Founded Ordering: Multiset Extension

Definition (Multiset Extension)

M >mult N if M 6= N and
N(t) > M(t)⇒ ∃t ′ : t ′ > t and M(t ′) > N(t ′)

Fact: The multiset extension of a well-founded ordering is
well-founded.

Example (Multiset set extension of the ordering on Naturals)

{3,3,3,2,1} >mult {3,3,2,2,2,1}
{3,3,1,2} >mult {1,1,2}

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Well-Founded Ordering: LPO

Example (Lexicographic Path Ordering)

s = f (s1, . . . , sn) >lpo g(t1, . . . , tm) = t if

1 f = g and (s1, . . . , sn) >
lex
lpo (t1, . . . , tm) and ∀j ∈ {1, . . . ,m} s >lpo tj

2 f >F g and ∀j ∈ {1, . . . ,m} s >lpo tj
3 ∃i ∈ {1, . . . , n} such that either si >lpo t or si = t

Remarks:

The lexicographic extension >lex is defined as follows:
(s1, . . . , sn) >

lex (t1, . . . , tn) if there exists some i ∈ [1, n] such that
si > ti and for any j smaller than i , sj = tj . The ordering >lex is
well-founded if > is well-founded.

LPO is a simplification ordering: for any term s and any context u,
u[s] > s

LPO is total on ground terms

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Reduction Ordering: Exercise

Termination of Ackermann Function

Ack(0, y) → s(y)
Ack(s(x), 0) → Ack(x , s(0))
Ack(s(x), s(y)) → Ack(x ,Ack(s(x), y))

With LPO? Which precedence to choose?
Let Ack > s > 0
Ack(0, y) > s(y) since Ack(0, y) > y

Ack(s(x), 0) > Ack(x , s(0)) since s(x) > x and Ack(s(x), 0) > x and
(Ack(s(x), 0) > s(0) since Ack(s(x), 0) > 0)

Ack(s(x), s(y)) > Ack(x ,Ack(s(x), y)) since s(x) > x and
Ack(s(x), s(y)) > x and (Ack(s(x), s(y)) > Ack(s(x), y) since s(y) > y and
Ack(s(x), s(y)) > s(x) and Ack(s(x), s(y)) > y)

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Syntactic Unification

Problem

Given two terms s and t , is there a substitution σ such that σ(s) and σ(t) are identical?

The substitution σ is called a unifier of s and t , equivalently it is a solution of the
unification problem s =? t .

In general, a unification problem P is a conjunction of equations
s1 =? t1 ∧ · · · ∧ sn =? tn, and a unifier σ of P is a substitution such that σ(si) and σ(ti)
are identical for all i = 1, . . . , n.

Fact

If a unification problem admits a solution, then there exists a most general unifier µ
such that any unifier σ is an instance of µ.

Example

x =? f (a, y) has a unifier σ = {x 7→ f (a, a), y 7→ a} but σ is an instance of
µ = {x 7→ f (a, y)}.

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Rules for syntactic unification (computation of mgu)

Delete P ∧ s =? s 7→7→ P
Decompose P ∧ f (s1, . . . , sn) =? f (t1, . . . , tn) 7→7→ P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn
Conflict P ∧ f (s1, . . . , sn) =? g(t1, . . . , tp) 7→7→ ⊥

if f 6= g
Coalesce P ∧ x =? y 7→7→ {x 7→ y}(P) ∧ x =? y

if x , y ∈ Var(P) and x 6= y
Check* P ∧ x1 =? s1[x2] . . . ∧ xn =? sn[x1] 7→7→ ⊥

if si /∈ Var for some i ∈ [1..n]
Merge P ∧ x =? s ∧ x =? t 7→7→ P ∧ x =? s ∧ s =? t

if 0 < |s| ≤ |t |
Check P ∧ x =? s 7→7→ ⊥

if x ∈ Var(s) and s /∈ Var
Eliminate P ∧ x =? s 7→7→ {x 7→ s}(P) ∧ x =? s

if x /∈ Var(s), s /∈ Var , x ∈ Var(P)

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Examples

x =? a
x =? a ∧ y =? f (x ,a)
f (x , f (x ,a)) =? f (f (a,b), f (u, v))
x =? a ∧ x =? b

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Tree Solved form

A tree solved form for P is any conjunction Q of equations

x1 =? t1 ∧ · · · ∧ xn =? tn

equivalent to P such that for any i = 1, . . . ,n, xi is a variable
occurring only once in Q.
Example: x =? f (f (y)) ∧ z =? g(a)

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Computation of mgu

Theorem
Starting with a unification problem P and using the above rules
repeatedly until none is applicable
— results in ⊥ iff P has no solution, or else it
— results in a tree solved form x1 =? t1 ∧ · · · ∧ xn =? tn for P,
with the same set of solutions than P.
Moreover

σ = {x1 7→ t1, . . . , xn 7→ tn}

is a most general unifier of P, denoted by mgu(P).

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Redundancy and Saturation

Definition
A clause C is redundant with respect to a set S of clauses
if S can be obtained from S ∪ {C} by a sequence of
applications of contraction rules in SP.
An inference in SP is redundant with respect to a set S of
clauses if its conclusion is redundant with respect to S.
A set S of clauses is saturated if every inference in SP with
premises in S is redundant with respect to S.

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Fair derivation

Definition
A derivation is a sequence S0,S1, . . . ,Si , . . . of sets of
clauses where Si ⇒SP Si+1 via the application of
expansion rules or contraction rules in SP.
The limit of a derivation is defined as the set of persistent
clauses S∞ =

⋃
j≥0
⋂

i>j Si .
A derivation S0,S1, ...,Si , ... with limit S∞ is fair if every
inference in SP with premises in S∞ is redundant with
respect to some Sj .

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Refutation Completeness

Fair derivations compute saturated sets and generate the
empty clause iff the initial set is unsatisfiable.

Theorem (Nieuwenhuis-Rubio)
If S0,S1, . . . is a fair derivation of SP, then (i) its limit S∞ is
saturated with respect to SP, (ii) S0 is unsatisfiable iff the
empty clause is in Sj for some j, and (iii) if such a fair derivation
is finite, i.e. it is of the form S0, . . . ,Sn, then Sn is saturated and
logically equivalent to S0.

Problem: For which theories do we have finite fair derivations?

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Example: SP for lists (I)
• Consider the following (simplified) theory of lists

Ax(L) := {car(cons(X ,Y)) = X , cdr(cons(X ,Y)) = Y}

• Recall that a literal in S has one of the four possible forms:
(i) car(c) = d ,
(ii) cdr(c) = d ,
(iii) cons(c1, c2) = d ,
(iv) c 6= d .

• There are three cases to consider:
1. inferences between two clauses in S
2. inferences between two clauses in Ax(L)
3. inferences between a clause in Ax(L) and a clause in S

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Example: SP for lists (II)

• Case 1: inferences between two clauses in S
It has already been considered when considering equality only
(please, keep in mind this point)
• Case 2: inferences between two clauses in Ax(L)
This is not very interesting since there are no possible
inferences between the two axioms in Ax(L)
• Case 3: inferences between a clause in Ax(L) and a clause
in S

. a superposition between car(cons(X ,Y)) = X and
cons(c1, c2) = d yielding car(d) = c1 and

. a superposition between cdr(cons(X ,Y)) = Y and
cons(c1, c2) = d yielding cdr(d) = c2

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Orderings
Unification
Saturation

Example: SP for lists (III)

• We are almost done, it is sufficient to notice that
. only finitely many equalities of the form (i) and (ii) can be

generated this way out of a set of clauses built on a finite
signature

. so, we are entitled to conclude that SP can only generate
finitely many clauses on set of clauses of the form Ax(L) ∪ S
• A decision procedure for the satisfiability problem of L can be
built by simply using SP after flattening the input set of literals

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Deriving a Decision Procedure for Arrays (I)

Ax(A) :=

{
rd(wr(A, I,E), I) = E
I = J ∨ rd(wr(A, I,E), J) = rd(A, J)

}
Apply the methodology previously described using a
superposition calculus handling arbitrary clauses

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

SP (Arbitrary Clauses, Expansion Rules)

Sup.
C ∨ l[u′] = r D ∨ u = t

σ(C ∨ D ∨ l[t] = r) (i), (ii), (iii), (iv)

Par.
C ∨ l[u′] 6= r D ∨ u = t

σ(C ∨ D ∨ l[t] 6= r) (i), (ii), (iii), (iv)

Ref.
C ∨ u′ 6= u
σ(C)

∀L ∈ C. σ(u′ = u) 6� σ(L)

Fac.
C ∨ u = t ∨ u′ = t ′

σ(C ∨ t 6= t ′ ∨ u = t ′) (i), ∀L ∈ {u′ = t ′} ∪ C. σ(u = t) 6≺ σ(L)

where the substitution σ = mgu(u =? u′), u′ is not a variable,
and the following conditions hold:

(i) σ(u) 6� σ(t)
(ii) ∀L ∈ D. σ(u = t) 6� σ(L)
(iii) σ(l[u′]) 6� σ(r)
(iv) ∀L ∈ C. σ(l[u′] ./ r) 6� σ(L)

Figure: Expansion Rules of SP

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

SP (Arbitrary Clauses, Contraction Rules)

Name Rule Conditions

Subsumption
S ∪ {C,C′}

S ∪ {C}
for some θ, θ(C) ⊆ C′,
and there is no ρ s.t.
ρ(C′) = C

Simplification
S ∪ {C[θ(l)], l = r}
S ∪ {C[θ(r)], l = r} θ(l) � θ(r), C[θ(l)] �

(θ(l) = θ(r))

Deletion
S ∪ {C ∨ t = t}

S

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Deriving a Decision Procedure for Arrays (II)

Lemma
Let S be a finite set of flat literals. The clauses occurring in the
saturations of S ∪ Ax(A) by SP can only be:

i) the empty clause; ii) axioms iii) ground flat
literals

iv) clauses of type t ./ t ′ ∨ c1 = c′1 ∨ · · · ∨ cn = c′n
with t ./ t ′ ∈ {c 6= c′, rd(c, i) = c′, rd(c, i) = rd(c′, i ′)}

v) clauses of type rd(c, x) = rd(c′, x)∨ c1 = k1 ∨ · · · ∨ cn = kn,
where ki is either x or a constant among c, c1, . . . , cn

where i , c, c′, c1, c′1, . . . , cn, c′n are constants, and x is a variable.

Lemma
The saturations of S ∪ Ax(A) are finite

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

Rewriting approach: drawbacks

• Unfortunately not all theories are finitely axiomatized
. Example: the usual theory of arithmetic does not admit a

finite axiomatization
• Because of this and the ubiquity of arithmetic in practically
any verification problem jointly with equational theories, we
need to combine the satisfiability procedure provided by SP
with a satisfiability procedure for the theory of arithmetic

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

Use of Superposition
Superposition: Unit Clauses

Superposition: Arbitrary Clauses
References

References on a rewriting approach to sat proc

• Armando, Ranise, Rusinowitch. “A Rewriting Approach to
Satisfiability Procedures,” Information and Computation,
183(2):140–164, June 2003. (Extended version of CSL’01).
• Armando, Bonacina, Ranise, Schulz. “On a rewriting
approach to satisfiability procedures: extension, combination of
theories, and an experimental apprisal,” presented at
FroCos’05, Vienna. (Experimental evaluation.)
• Nieuwenhuis, Rubio. “Paramodulation-based Theorem
Proving,” Handbook of Automated Reasoning, Volume 1,
Chapter 7, pages 371–444.

Silvio Ranise and Christophe Ringeissen Building Decision Procedures for Data Structures

	Use of Superposition
	Equality
	Extensions of Equality

	Superposition: Unit Clauses
	Orderings
	Unification
	Saturation

	Superposition: Arbitrary Clauses
	References

