SMT in practice. veriT

David Déharbe, Pascal Fontaine & Christophe Ringeissen

Procédures de décision et vérification de programmes: Lecture 8

SMT = SAT + expressiveness

SAT solvers

$$\neg\big[\,(p \Rightarrow q) \Rightarrow \big[\,(\neg p \Rightarrow q) \Rightarrow q\big]\big]$$

► Congruence closure (uninterpreted symbols + equality) $a = b \land [f(a) \neq f(b) \lor (p(a) \land \neg p(b))]$

adding arithmetic

$$a \le b \land b \le a + x \land x = 0 \land \left[f(a) \ne f(b) \lor (p(a) \land \neg p(b+x)) \right]$$
...

Some examples: Alt-Ergo, Barcelogic, CVC4 (SVC, CVC, CVC-lite, CVC3), MathSAT, OpenSMT, Yices, Z3 ...

Standard input language: SMT-LIB 2.0

$$a \leq b \wedge b \leq a + x \wedge x = 0 \wedge \left[f(a) \neq f(b) \lor (q(a) \land \neg q(b + x)) \right]$$

In SMT-LIB 2.0 format:

```
(set-logic QF_UFLRA)
(set-info :source | Example formula in SMT-LIB 2.0 |)
(set-info :smt-lib-version 2.0)
(declare-fun f (Real) Real)
(declare-fun q (Real) Bool)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun x () Real)
(assert (and (<= a b) (<= b (+ a x)) (= x 0))
             (or (not (= (f a) (f b)))
                 (and (q a) (not (q (+ b x))))))
(check-sat)
(exit)
```

Reducing arbitrary boolean combinations to conjunctions

 $\mathsf{Input:} \ a \leq b \land b \leq a + x \land x = 0 \land \big[f(a) \neq f(b) \lor (q(a) \land \neg q(b+x)) \big]$

Reducing arbitrary boolean combinations to conjunctions

Reducing arbitrary boolean combinations to conjunctions

Input:
$$a \leq b \wedge b \leq a + x \wedge x = 0 \wedge [f(a) \neq f(b) \vee (q(a) \wedge \neg q(b+x))]$$

To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge [\neg p_{f(a)=f(b)} \vee (p_{q(a)} \wedge \neg p_{q(b+x)})]$
Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$

Reducing arbitrary boolean combinations to conjunctions

Input: $a \leq b \wedge b \leq a + x \wedge x = 0 \wedge [f(a) \neq f(b) \vee (q(a) \wedge \neg q(b+x))]$ To SAT solver: $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge [\neg p_{f(a)=f(b)} \vee (p_{q(a)} \wedge \neg p_{q(b+x)})]$ Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$ Theory reasoner: $a \leq b, b \leq a + x, x = 0, f(a) \neq f(b)$ unsatisfiable

Reducing arbitrary boolean combinations to conjunctions

From propositional SAT to SMT: in practice

- online decision procedures theory checks propositional assignment on the fly
- small explanations unsat core of propositional assignment discard classes of propositional assignments (not one by one)
- theory propagation instead of guessing propositional variable assignments, SAT solver assigns theory-entailed literals
- ackermannization, simplifications, and other magic

DPLL: abstract view

Rules handle a data-structure $M \mid\mid F$ where M is a partial assignment of Boolean variables, and F is a set of clauses

Propagate
$$M \parallel F, C \lor \ell$$
 \vdash $M \ell \parallel F, C \lor \ell$
if $M \models \neg C, \ell$ undefined in M

Decide
$$M || F \mapsto M \ell^d || F$$

if ℓ or $\overline{\ell}$ in F , ℓ undefined in M

Fail $M \parallel F, C \vdash \bot$ if $M \models \neg C$, no decision literals in M

$$\begin{array}{rcl} \mathsf{Backtrack} & M \; \ell^d \; N \; || \; F, C \; \vdash \; M \; \overline{\ell} \; || \; F, C \\ & \mathsf{if} \; \left\{ \begin{array}{l} M \; \ell^d \; N \models \neg C \\ \mathsf{no \; decision \; literals \; in \; } N \end{array} \right. \end{array}$$

CDCL: abstract view

Propagate, Decide, Fail as before

Learn
$$M \parallel F$$
 $\vdash M \parallel F, C$
if $\begin{cases} each atom of C in F or in M \\ F \models C \end{cases}$

Backjump
$$M \ell^d N \parallel F, C \vdash M \ell' \parallel F, C$$

if
$$\begin{cases}
M \ell^d N \models \neg C \\
\exists C', \ell' : F, C \models C' \lor \ell' \\
M \models \neg C' \\
\ell' \text{ undefined in } M \\
\ell' \text{ or } \overline{\ell'} \text{ in } F \text{ or in } M \ell^d N
\end{cases}$$

CDCL: SMT level

Some examples:

- uninterpreted symbols and equality: congruence closure
- linear arithmetic: mostly simplex
- non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation
- arrays: based on uninterpreted symbols

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, y \le x + f(x), P(h(x) - h(y)), \neg P(0), f(x) = 0$$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \, \neg P(0), \, f(x) = 0$$

Separate into pure literals

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \neg P(0), \, f(x) = 0$$

Separate into pure literals

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, y \le x + f(x), P(h(x) - h(y)), \neg P(0), f(x) = 0$$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, y \le x + f(x), P(h(x) - h(y)), \neg P(0), f(x) = 0$$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \neg P(0), \, f(x) = 0$$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \neg P(0), \, f(x) = 0$$

Arithmetic	Uninterpreted
$x \leq y$	$P(v_2)$
$y \le x + v_1$	$\neg P(v_5)$
$v_1 = 0$	$v_1 = f(x)$
$v_2 = v_3 - v_4$	$v_3 = h(x)$
$v_{5} = 0$	$v_4 = h(y)$
$v_3 = v_4$	x = y
	$v_2 = v_5$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \neg P(0), \, f(x) = 0$$

Exchange equalities until unsatisfiability is deduced

Arithmetic	Uninterpreted
$x \leq y$	$P(v_2)$
$y \le x + v_1$	$\neg P(v_5)$
$v_1 = 0$	$v_1 = f(x)$
$v_2 = v_3 - v_4$	$v_3 = h_{\text{UNSAT}}$
$v_5 = 0$	$v_4 = h(g)$
$v_3 = v_4$	x = y
	$v_2 = v_5$

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, \, y \le x + f(x), \, P(h(x) - h(y)), \neg P(0), \, f(x) = 0$$

Exchange equalities until unsatisfiability is deduced

Sound: deduce only logical consequences

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, y \le x + f(x), P(h(x) - h(y)), \neg P(0), f(x) = 0$$

Exchange equalities until unsatisfiability is deduced

Sound: deduce only logical consequences Complete: decidable theories with cardinality restrictions

Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

$$x \le y, y \le x + f(x), P(h(x) - h(y)), \neg P(0), f(x) = 0$$

Exchange equalities until unsatisfiability is deduced

Sound: deduce only logical consequences Complete: decidable theories with cardinality restrictions

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Separate into pure literals

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Separate into pure literals

Arithmetic	Uninterpreted
$x^2 = 1$ $v_1 = 1$ $v_2 = -1$	$P(x) \neg P(v_1) \neg P(v_2)$

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Arithmetic	Uninterpreted
$x^2 = 1$ $v_1 = 1$ $v_2 = -1$	$P(x) \neg P(v_1) \neg P(v_2)$

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Exchange disjunctions of equalities

Arithmetic	Uninterpretec
$x^2 = 1$ $v_1 = 1$ $v_2 = -1$	$P(x) \neg P(v_1) \neg P(v_2)$

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Exchange disjunctions of equalities: unpractical

Arithmetic	Uninterpreted
$x^2 = 1$ $v_1 = 1$ $v_2 = -1$	$P(x) \neg P(v_1) \neg P(v_2)$

Nelson-Oppen

Non linear arithmetic is also stably infinite. Uninterpreted symbols and non linear arithmetic:

$$x^2 = 1, P(x), \neg P(-1), \neg P(1)$$

Exchange disjunctions of equalities: unpractical

$\begin{array}{c c} x^2 = 1 & P(x) \\ v_1 = 1 & \neg P(v_1) \\ v_2 = -1 & \neg P(v_2) \end{array}$	Arithmetic	Uninterpreteo
	$x^2 = 1$ $v_1 = 1$ $v_2 = -1$	$P(x) \neg P(v_1) \neg P(v_2)$

For non-convex theories, disjunctions have to be exchanged Even deducing equalities is unpractical with a black box

Open the box a bit: besides (un)sat, get "model" if sat

 $x^{2} = 1, P(x), \neg P(-1), \neg P(1)$

On SAT, get a model from NLRA

Arithmetic $x^2 = 1$ $v_1 = 1$ $v_2 = -1$ $x = 1, v_1 = 1, v_2 = -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$

Open the box a bit: besides (un)sat, get "model" if sat

 $x^2 = 1, P(x), \neg P(-1), \neg P(1)$

Pretend equalities in the model were in the input

ArithmeticUninterpreted $x^2 = 1$ P(x) $v_1 = 1$ $\neg P(v_1)$ $v_2 = -1$ $\neg P(v_2)$ $x = 1, v_1 = 1, v_2 = -1$ $x = v_1$

Open the box a bit: besides (un)sat, get "model" if sat

 $x^2 = 1, P(x), \neg P(-1), \neg P(1)$

Compute conflict clause

Arithmetic $x^{2} = 1$ $v_{1} = 1$ $v_{2} = -1$ $x = 1, v_{1} = 1, v_{2} = -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$ $x = v_1$

Open the box a bit: besides (un)sat, get "model" if sat

$$x^{2} = 1, P(x), \neg P(-1), \neg P(1)$$

$$\neg P(x) \lor x \neq 1 \lor P(1)$$

Add conflict clause to underlying SAT solver

ArithmeticUninterpreted $x^2 = 1$ P(x) $v_1 = 1$ $\neg P(v_1)$ $v_2 = -1$ $\neg P(v_2)$ $x = 1, v_1 = 1, v_2 = -1$ $x = v_1$

Open the box a bit: besides (un)sat, get "model" if sat

$$x^{2} = 1, P(x), \neg P(-1), \neg P(1)$$

$$\neg P(x) \lor x \neq 1 \lor P(1)$$

Update literals

Arithmetic $x^2 = 1$ $v_1 = 1$ $v_2 = -1$ $x \neq 1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$

Open the box a bit: besides (un)sat, get "model" if sat

$$\begin{aligned} x^2 &= 1, P(x), \neg P(-1), \neg P(1) \\ \neg P(x) \lor x \neq 1 \lor P(1) \end{aligned}$$

Get a model from NLRA (again)

Arithmetic $x^{2} = 1$ $v_{1} = 1$ $v_{2} = -1$ $x \neq 1$ $x = -1, v_{1} = 1, v_{2} = -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$

Open the box a bit: besides (un)sat, get "model" if sat

$$\begin{aligned} x^2 &= 1, P(x), \neg P(-1), \neg P(1) \\ \neg P(x) \lor x \neq 1 \lor P(1) \end{aligned}$$

Pretend equalities in the model were in the input (again)

Arithmetic $x^{2} = 1$ $v_{1} = 1$ $v_{2} = -1$ $x \neq 1$ $x = -1, v_{1} = 1, v_{2} = -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$ $x = v_2$

Open the box a bit: besides (un)sat, get "model" if sat

$$\begin{aligned} x^2 &= 1, P(x), \neg P(-1), \neg P(1) \\ \neg P(x) \lor x \neq 1 \lor P(1) \end{aligned}$$

Compute conflict clause (again)

Arithmetic $x^{2} = 1$ $v_{1} = 1$ $v_{2} = -1$ $x \neq 1$ $x = -1, v_{1} = 1, v_{2} = -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$ $x = v_2$

Open the box a bit: besides (un)sat, get "model" if sat

$$\begin{aligned} x^2 &= 1, P(x), \neg P(-1), \neg P(1) \\ \neg P(x) \lor x \neq 1 \lor P(1) \\ \neg P(x) \lor x \neq -1 \lor P(-1) \end{aligned}$$

Add conflict clause to underlying SAT solver (again)

ArithmeticUninterpreted
$$x^2 = 1$$
 $P(x)$ $v_1 = 1$ $\neg P(v_1)$ $v_2 = -1$ $\neg P(v_2)$ $x \neq 1$ $x = v_2$

Open the box a bit: besides (un)sat, get "model" if sat

$$\begin{aligned} x^2 &= 1, P(x), \neg P(-1), \neg P(1) \\ \neg P(x) \lor x \neq 1 \lor P(1) \\ \neg P(x) \lor x \neq -1 \lor P(-1) \end{aligned}$$

Update literals (again)

Arithmetic $x^2 = 1$ $v_1 = 1$ $v_2 = -1$ $x \neq 1$ $x \neq -1$ Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$ $x = v_2$

Open the box a bit: besides (un)sat, get "model" if sat

$$x^{2} = 1, P(x), \neg P(-1), \neg P(1)$$

$$\neg P(x) \lor x \neq 1 \lor P(1)$$

$$\neg P(x) \lor x \neq -1 \lor P(-1)$$

$$x = 1 \lor x = -1 \lor x^{2} = 1$$

Conclude unsatisfiability (finally)

Uninterpreted P(x) $\neg P(v_1)$ $\neg P(v_2)$ $x = v_2$

Perspectives

- Quantifiers: better instantiations, superposition+SMT
- Higher-order
- More theories: data-structures, floating points...
- Higher efficiency
- Parallelism