
1/14

SMT in practice. veriT

David Déharbe, Pascal Fontaine & Christophe Ringeissen

Procédures de décision et vérification de programmes: Lecture 8

2/14

SMT = SAT + expressiveness

I SAT solvers

¬
[
(p⇒ q)⇒

[
(¬p⇒ q)⇒ q

]]
I Congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f(a) 6= f(b) ∨ (p(a) ∧ ¬p(b))

]
I adding arithmetic

a ≤ b∧ b ≤ a+x∧x = 0∧
[
f(a) 6= f(b)∨ (p(a)∧¬p(b+x))

]
I . . .

Some examples: Alt-Ergo, Barcelogic, CVC4 (SVC, CVC, CVC-lite,
CVC3), MathSAT, OpenSMT, Yices, Z3 . . .

The solver

3/14

Standard input language: SMT-LIB 2.0

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
In SMT-LIB 2.0 format:

(set-logic QF_UFLRA)

(set-info :source | Example formula in SMT-LIB 2.0 |)

(set-info :smt-lib-version 2.0)

(declare-fun f (Real) Real)

(declare-fun q (Real) Bool)

(declare-fun a () Real)

(declare-fun b () Real)

(declare-fun x () Real)

(assert (and (<= a b) (<= b (+ a x)) (= x 0)

(or (not (= (f a) (f b)))

(and (q a) (not (q (+ b x)))))))

(check-sat)

(exit)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]

Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

4/14

From propositional SAT to SMT
Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

5/14

From propositional SAT to SMT: in practice

I online decision procedures
theory checks propositional assignment on the fly

I small explanations
unsat core of propositional assignment

discard classes of propositional assignments (not one by one)

I theory propagation
instead of guessing propositional variable assignments, SAT solver

assigns theory-entailed literals

I ackermannization, simplifications, and other magic

6/14

DPLL: abstract view

Rules handle a data-structure M || F where M is a partial
assignment of Boolean variables, and F is a set of clauses

Propagate M || F,C ∨ ` ` M ` || F,C ∨ `
if M |= ¬C, ` undefined in M

Decide M || F ` M `d || F
if ` or ` in F , ` undefined in M

Fail M || F,C ` ⊥
if M |= ¬C, no decision literals in M

Backtrack M `d N || F,C ` M ` || F,C

if

{
M `d N |= ¬C
no decision literals in N

7/14

CDCL: abstract view

Propagate, Decide, Fail as before

Learn M || F ` M || F,C

if

{
each atom of C in F or in M
F |= C

Backjump M `d N || F,C ` M `′ || F,C

if

M `d N |= ¬C
∃C ′, `′ : F,C |= C ′ ∨ `′

M |= ¬C ′

`′ undefined in M

`′ or `′ in F or in M `d N

Forget M || F,C ` M || F
if F |= C

8/14

CDCL: SMT level

T−Learn M || F ` M || F,C

if

{
each atom of C in F or in M
F |=T C

T−Forget M || F,C ` M || F
if F |=T C

T−Backjump M ld N || F,C ` M l′ || F,C

if

M ld N |= ¬C
∃C ′, l′ : F,C |=T C ′ ∨ l′

M |= ¬C ′

l′ undefined in M
l′ or ¬l′ in F or in M ld N

9/14

Theory reasoning and combinations in SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Some examples:

I uninterpreted symbols and equality: congruence closure

I linear arithmetic: mostly simplex

I non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation

I arrays: based on uninterpreted symbols

9/14

Theory reasoning and combinations in SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

Theory
reasoner

Some examples:

I uninterpreted symbols and equality: congruence closure

I linear arithmetic: mostly simplex

I non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation

I arrays: based on uninterpreted symbols

9/14

Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory
reasoner

Model UNSAT (proof/core)

Theory
reasoner

SMT solver

Some examples:

I uninterpreted symbols and equality: congruence closure

I linear arithmetic: mostly simplex

I non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation

I arrays: based on uninterpreted symbols

9/14

Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory
reasoner

Model UNSAT (proof/core)

Theory
reasoner

SMT solver

Theory reasoner

Decision Procedure 1

Decision Procedure 2

Decision Procedure n

...

Some examples:

I uninterpreted symbols and equality: congruence closure

I linear arithmetic: mostly simplex

I non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation

I arrays: based on uninterpreted symbols

9/14

Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory
reasoner

Model UNSAT (proof/core)

Theory
reasoner

SMT solver

Theory reasoner

Decision Procedure 1

Decision Procedure 2

Decision Procedure n

...

Some examples:

I uninterpreted symbols and equality: congruence closure

I linear arithmetic: mostly simplex

I non-linear arithmetic: CAD, Virtual Substitution, Gröbner Bases, Interval Propagation

I arrays: based on uninterpreted symbols

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Separate into pure literals

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Separate into pure literals

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Separate into pure literals

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y
v2 = v5

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities until unsatisfiability is deduced

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y
v2 = v5

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities until unsatisfiability is deduced

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y
v2 = v5

UN
SA

T

Sound: deduce only logical consequences

Complete: decidable theories with cardinality restrictions

10/14

Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities until unsatisfiability is deduced

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y
v2 = v5

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

11/14

Combinations of theories (1/2)
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x ≤ y, y ≤ x+ f(x), P (h(x)− h(y)),¬P (0), f(x) = 0

Exchange equalities until unsatisfiability is deduced

Arithmetic

x ≤ y
y ≤ x+ v1
v1 = 0

v2 = v3 − v4
v5 = 0
v3 = v4

Uninterpreted

P (v2)
¬P (v5)

v1 = f(x)
v3 = h(x)
v4 = h(y)
x = y
v2 = v5

UN
SA

T

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Separate into pure literals

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Separate into pure literals

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Separate into pure literals

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Exchange equalities

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Exchange disjunctions of equalities

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Exchange disjunctions of equalities: unpractical

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

12/14

Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

x2 = 1, P (x),¬P (−1),¬P (1)

Exchange disjunctions of equalities: unpractical

Arithmetic

x2 = 1
v1 = 1
v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)

On SAT, get a model from NLRA

Arithmetic

x2 = 1
v1 = 1
v2 = −1

x = 1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)

Pretend equalities in the model were in the input

Arithmetic

x2 = 1
v1 = 1
v2 = −1

x = 1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v1

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)

Compute conflict clause

Arithmetic

x2 = 1
v1 = 1
v2 = −1

x = 1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v1

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)

Add conflict clause to underlying SAT solver

Arithmetic

x2 = 1
v1 = 1
v2 = −1

x = 1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v1

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)

Update literals

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)

Get a model from NLRA (again)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1

x = −1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)

Pretend equalities in the model were in the input (again)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1

x = −1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v2

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)

Compute conflict clause (again)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1

x = −1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v2

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)
¬P (x) ∨ x 6= −1 ∨ P (−1)

Add conflict clause to underlying SAT solver (again)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1

x = −1, v1 = 1, v2 = −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v2

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)
¬P (x) ∨ x 6= −1 ∨ P (−1)

Update literals (again)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1
x 6= −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v2

13/14

Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

x2 = 1, P (x),¬P (−1),¬P (1)
¬P (x) ∨ x 6= 1 ∨ P (1)
¬P (x) ∨ x 6= −1 ∨ P (−1)
x = 1 ∨ x = −1 ∨ x2 = 1

Conclude unsatisfiability (finally)

Arithmetic

x2 = 1
v1 = 1
v2 = −1
x 6= 1
x 6= −1

Uninterpreted

P (x)
¬P (v1)
¬P (v2)
x = v2

14/14

Perspectives

I Quantifiers: better instantiations, superposition+SMT

I Higher-order

I More theories: data-structures, floating points. . .

I Higher efficiency

I Parallelism

	Introduction
	SMT loop
	Combinations
	Conclusion

