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SMT = SAT + expressiveness

» SAT solvers

[p=a=[(p=0q=d]
» Congruence closure (uninterpreted symbols + equality)
a="bA[f(a) # Fb) V (p(a) A ~p(b))]
» adding arithmetic
a<bAb<a+zAz=0A[f(a)# f(b)V(p(a) A=p(b+z))]

> ..

Some examples: Alt-Ergo, Barcelogic, CVC4 (SVC, CVC, CVC-lite,
CVC3), MathSAT, OpenSMT, Yices, Z3 ...

The \ﬁﬁolver



Standard input language: SMT-LIB 2.0

a<bAb<a+azAz=0A[f(a)# f(b)V (q(a) A —q(b+z))]

In SMT-LIB 2.0 format:

(set-logic QF_UFLRA)
(set-info :source | Example formula in SMT-LIB 2.0 |)
(set-info :smt-lib-version 2.0)
(declare-fun f (Real) Real)
(declare-fun q (Real) Bool)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun x () Real)
(assert (and (<= a b) (<=b (+ a x)) (= x 0)

(or (not (= (f a) (f b)))

(and (q a) (not (q (+ b x)))))N))

(check-sat)
(exit)



From propositional SAT to SMT

Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

Input: a <bAb<a+zAz=0A[f(a)# f(b)V (¢(a) A—q(b+z))]
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From propositional SAT to SMT

Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver

SAT solver

Boolean Model

Input: a <bAb<a+zAz=0A[f(a)# f(b)V (¢(a) A—q(b+z))]
To SAT solver: po<p A Pv<ata N Pz=0 A [_‘pf(a):f(b) \% (pq(a) A —‘pq(b+m))]
Boolean model: pa<y, Po<atas Pa=0; "Pf(a)=F(b)



From propositional SAT to SMT

Reducing arbitrary boolean combinations to conjunctions

SMT formula

Th
r eory SAT solver

Boolean Model

SMT solver

Input: a <bAb<a+zAz=0A[f(a)# f(b)V (¢(a) A—q(b+z))]

To SAT solver: po<p A Pv<ata N Pz=0 A [_‘pf(a):f(b) V (Pg(a) N _‘pq(b+m))]
Boolean model: Pa<b; Pb<a+z;Pz=0, ﬁpf(a):f(b)

Theory reasoner: a < b,b<a+z,z =0, f(a) # f(b) unsatisfiable
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To SAT solver: po<p A Pv<ata N Pz=0 A [_‘pf(a):f(b) V (Pg(a) N _‘pq(b+m))]

Boolean model: Pa<b; Pb<a+z;Pz=0, ﬁpf(a):f(b)
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New clause: =pa<t V Do<atas V 7Po=0 V Pf(a)=f(b)
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From propositional SAT to SMT

Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver
Quantifier-free SMT solver
Instantiation
Th
module r eory SAT solver
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From propositional SAT to SMT

Reducing arbitrary boolean combinations to conjunctions

SMT formula

SMT solver
Quantifier-free SMT solver
Instantiation
Th
module r eory SAT solver

( Model )2\(UNSAT (proof/core) )

Input: a <bAb<a+zAz=0A[f(a)# f(b)V (¢(a) A—q(b+z))]
To SAT solver: po<p A Pv<ata N Pz=0 A [_‘pf(a):f(b) V (Pg(a) N _‘pq(b+m))]

Boolean model: Pa<b; Pb<a+z;Pz=0, ﬁpf(a):f(b)
Theory reasoner: a < b,b<a+z,z =0, f(a) # f(b) unsatisfiable

New clause: =pa<t V Do<atas V 7Po=0 V Pf(a)=f(b)




From propositional SAT to SMT: in practice

» online decision procedures
theory checks propositional assignment on the fly
» small explanations
unsat core of propositional assignment
discard classes of propositional assignments (not one by one)

> theory propagation
instead of guessing propositional variable assignments, SAT solver
assigns theory-entailed literals

» ackermannization, simplifications, and other magic



DPLL: abstract view

Rules handle a data-structure M || F' where M is a partial
assignment of Boolean variables, and F' is a set of clauses

Propagate M || F,CVv{ + MU F,CV/{
if M = —C, ¢ undefined in M

Decide M| F oM ed || F
if £or?in F, ¢ undefined in M

Fail M || F,C oL
if M = —C,no decision literals in M

Backtrack M (* N || F,C - MU/{|| F,C
M (4N = -C
I no decision literals in N



CDCL: abstract view

Propagate, Decide, Fail as before

Learn M| F F M| F,C
i€ { each atom of C in F or in M
FEC
Backjump M ¢* N || F,C - M/ | FC
M 4 N | -C
c' 0 F,.CEC VY
if ¢ MpE-C'

¢ undefined in M
¢ orf inForin M (N

Forget M || F,.C F M| F
if Fl=C



CDCL: SMT level

T —Learn M| F F M| FC
’ each atom of C'in F or in M
Fl=rC
T —Forget M || F,C H M| F
if ' =7 C
T—Backjump MI¢N||F,C + MI| FC
M4 N | -C
3¢ F,C = C' VT
if ¢ MpE-C'

!’ undefined in M
I”or=l"in Forin MI* N



Theory reasoning and combinations in SMT

SMT formula

SMT solver
Quantifier-free SMT solver
Instantiation
Theory
module reasoner SAT solver

Boolean Model

( Model )Z\CUNSAT (proof/core) )
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Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory
reasoner

( Model JJ\CUNSAT (proof/core) )




Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory reasoner

\Decision Procedure 1\

\Decision Procedure 2\

\Decision Procedure n\

( Model JJ\CUNSAT (proof/core) )




Theory reasoning and combinations in SMT

SMT formula

SMT solver

Theory reasoner

\Decision Procedure 1\

\Decision Procedure 2\

\Decision Procedure n\

( Model UNSAT (proof/core) )

Some examples:
> uninterpreted symbols and equality: congruence closure
> linear arithmetic: mostly simplex

> non—linear arith metic: CAD, Virtual Substitution, Grobner Bases, Interval Propagation

v

arrays: based on uninterpreted symbols



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0
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Combining theories: uninterpreted symbols and arithmetic.
v <y,y<z+ f(z), P(h(x) - h(y)), ~P(0), f(x) =0

Separate into pure literals



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Separate into pure literals

Arithmetic
<y
y<x+uv
v = 0
V2 = U3 — V4
V5 = 0

Uninterpreted
P(vs)
-P (US)

f(z)

v3 = h(x)

v = h(y)



Combinations of theories
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Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities
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V5 = 0

Uninterpreted
P(vs)
-P (US)

f(z)

v3 = h(x)

v = h(y)



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities

Arithmetic
<y
y<z+uv
V1 = 0
V2 = U3 — V4
V5 = 0

Uninterpreted
P(vs)
=P (vs)
v1 = f(x)
v3 = h(x)
vy = h(y)
T =

—~

<



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities

Arithmetic
<y
y<x+uv
v = 0
V2 = U3 — V4
V5 = 0
v3 = V4

Uninterpreted
P(v2)
—P(vs)

v = f()
v3 = h(x)
vy = h(y)
r=1y



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities

Arithmetic
<y
y<x+uv
v = 0
Vg = U3 — U4
V5 = 0
V3 = U4

Uninterpreted
P(v2)
—P(vs)
vy = f(x)
v3 = h(x)
v = h(y)
T=1
Vo = Vs



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities until unsatisfiability is deduced

Arithmetic
Ty
y<z+uv
v = 0
Vg = V3 — U4
V5 = 0
V3 = V4

Uninterpreted
P(v2)
=P (vs)

= f(z)

=h
r=1Y
Vo = Vs

S

U1
U3
Vg



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.

x <y, y <xz+ f(z), P(h(z) = h(y)),~P(0), f(x) =0

Exchange equalities until unsatisfiability is deduced

Arithmetic
Ty
y<zx+uv
v = 0
Vg = V3 — U4
V5 = 0
V3 = V4

Uninterpreted

V9 = Vs

Sound: deduce only logical consequences



Combinations of theories
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.
v <y,y<z+ f(z), P(h(x) - h(y)), ~P(0), f(x) =0

Exchange equalities until unsatisfiability is deduced

Arithmetic Uninterpreted
<y P(v9)
y<zx+wv —P(vs)
vy =0 vy = f(x)
Vo = Vg — U4 V3 =
V5 = 0 V4 = h
V3 = V4 r=1Y
V9 = Vs

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions



Combinations of theories (1/2)
Nelson-Oppen

Combining theories: uninterpreted symbols and arithmetic.
v <y,y<z+ f(z), P(h(x) - h(y)), ~P(0), f(x) =0

Exchange equalities until unsatisfiability is deduced

Arithmetic Uninterpreted
<y P(v9)
y<zx+wv —P(vs)
vy =0 vy = f(x)
Vo = Vg — U4 V3 =
V5 = 0 V4 = h
V3 = V4 r=1Y
V9 = Vs

Sound: deduce only logical consequences
Complete: decidable theories with cardinality restrictions



Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

2? =1, P(x),~P(-1),~P(1)
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Combinations of theories (2/2)

Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

2? =1, P(x),~P(-1),~P(1)

Separate into pure literals

Arithmetic
2 =1
V] = 1
Vo = -1

Uninterpreted

P(x)
—P(v1)
—|P(U2)



Combinations of theories (2/2)

Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

22 =1, P(x),~P(-1),-P(1)

Exchange equalities

Arithmetic
2 =1
V] = 1
Vo = —1

Uninterpreted

P(x)
~P(v1)
—|P(U2)



Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

22 =1, P(x),~P(-1),-P(1)
Exchange disjunctions of equalities

Arithmetic Uninterpreted

2 =1 P(z)
vy =1 —P(v1)
vy = —1 —P(v2)




Combinations of theories (2/2)

Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

22 =1, P(x),~P(-1),-P(1)

Exchange disjunctions of equalities: unpractical

Arithmetic
2 =1
V] = 1
Vo = —1

Uninterpreted

P(x)
~P(v1)
—|P(1}2)



Combinations of theories (2/2)
Nelson-Oppen

Non linear arithmetic is also stably infinite.
Uninterpreted symbols and non linear arithmetic:

22 =1, P(x),~P(-1),-P(1)
Exchange disjunctions of equalities: unpractical

Arithmetic Uninterpreted

2 =1 P(z)
vy =1 —P(v1)
vy = —1 —P(v2)

For non-convex theories, disjunctions have to be exchanged
Even deducing equalities is unpractical with a black box




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

2?2 =1, P(x),~P(-1),~P(1)

On SAT, get a model from NLRA

Arithmetic Uninterpreted
2 =1 P(x)
vy =1 _‘P('Ul)
vy = —1 —P(v9)
r=1,v1 =1,v9=—1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

22 =1, P(x),~P(-1),-P(1)

Pretend equalities in the model were in the input

Arithmetic Uninterpreted
2 =1 P(x)
vy =1 _‘P('Ul)
vy = —1 —P(v9)
rz=1v1=1v=-1 T =1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

2?2 =1, P(x),~P(-1),~P(1)

Compute conflict clause

Arithmetic Uninterpreted
2 =1 P(x)
vy =1 _‘P(Ul)
vy = —1 —P(v9)
rz=1v1=1v=-1 T =1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

22 =1, P(x),~P(-1),-P(1)
—P(x)Va#1V P(1)

Add conflict clause to underlying SAT solver

Arithmetic Uninterpreted
2 =1 P(x)
vy =1 _‘P<'U1)
vy = —1 —P(v9)
rz=1v1 =1v=-1 T =1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

22 =1, P(x),~P(-1),-P(1)
—P(x)Va#1V P(1)

Update literals

Arithmetic Uninterpreted
2 =1 P(x)
vy =1 _‘P('Ul)
vy = —1 —P(v9)
x#1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

2?2 =1, P(x),~P(-1),~P(1)
-P(x)Vae#1VP(1)

Get a model from NLRA (again)

Arithmetic Uninterpreted
2 =1 P(z)
v = 1 —|P(’Ul)
Vo = -1 —|P(U2)
x#1
r=—1v =1v=—1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

2?2 =1, P(x),~P(-1),~P(1)
-P(x)Vae#1VP(1)

Pretend equalities in the model were in the input (again)

Arithmetic Uninterpreted
2 =1 P(z)
v = 1 —|P(’01)
Vo = -1 —|P(U2)
x#1 T = vy
r=—-1v=1v=—-1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

2?2 =1, P(x),~P(-1),~P(1)
-P(x)Vae#1VP(1)

Compute conflict clause (again)

Arithmetic Uninterpreted
2 =1 P(z)
v = 1 —|P(’Ul)
vy = —1 —P(v9)
x#1 T = vy
r=—-1v=1v=—-1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

, P(x),~P(=1),~P(1)

2=1
( )Vax#1VP(1)
-P(x)Va#—-1V P(-1)

Add conflict clause to underlying SAT solver (again)

Arithmetic Uninterpreted
2 =1 P(z)
v = 1 —|P(’Ul)
Vo = -1 —|P(U2)
x#1 T = vy
r=—-1v=1v=—-1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

, P(x),~P(=1),~P(1)

2=1
( )Vax#1VP(1)
-P(x)Va#—-1V P(-1)

Update literals (again)

Arithmetic Uninterpreted
2 =1 P(z)
v = 1 —|P(’Ul)
Vo = -1 —|P(U2)
x#1 T = vy
x#—1




Combining theories: using model equalities

Open the box a bit: besides (un)sat, get “model” if sat

— 1, P(z),~P(~1),~P(1)
( )Vax#1VP(1)
-P(z)Vx#-1VP(-1)

T*l\/T:—l\/,T,Q:l

Conclude unsatisfiability (finally)

Arithmetic Uninterpreted
2 =1 P(x)
v = 1 —|P(’Ul)
Vo = -1 —|P(U2)
x#1 T =V
x#—1




Perspectives

v

Quantifiers: better instantiations, superposition+SMT

v

Higher-order

v

More theories: data-structures, floating points. . .

v

Higher efficiency

v

Parallelism
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