
Deciding Knowledge Problems Modulo Classes
of Permutative Theories⋆

Serdar Erbatur 1, Andrew M. Marshall 2, Paliath Narendran 3, and
Christophe Ringeissen 4

1 University of Texas at Dallas, Richardson, TX, USA
serdar.erbatur@utdallas.edu

2 University of Mary Washington, Fredericksburg, VA, USA
marshall@umw.edu

3 University at Albany, SUNY, Albany, NY, USA
pnarendran@albany.edu
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Abstract. In the logic based approach to security protocol verification,
algorithms for verifying an intruder’s knowledge are critical. In this con-
text, the capabilities of an intruder are specified by an equational the-
ory, possibly expressed by a term rewrite system. Previous results have
developed algorithms for a number of knowledge problems in many dif-
ferent equational and rewrite theories, such as subterm-convergent. Per-
mutative theories such Associative-Commutative (AC) are of great in-
terest with several procedures having been developed for AC. This leads
to the question of decidability of the knowledge problems of deduction
and static equivalence in permutative theories in general. It was recently
shown that deduction is decidable in permutative theories. However, the
decidability of static equivalence (and the related frame distinguishabil-
ity problem) was still open. In this paper we show that static equivalence
is undecidable in permutative theories. In addition, we show that static
equivalence remains undecidable in the more restrictive case of leaf per-
mutative theories. On the positive side, static equivalence becomes de-
cidable for a further restricted form of permutative theories we define
here.

Keywords: Permutative Equational Theories · Static Equivalence · De-
duction

1 Introduction

Logic-based analysis and verification of security protocols has been a fruitful
area of research, particularly for the development of formal verification tools
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and procedures for checking various security properties of protocols, see for ex-
ample [1,8,11,12,15]. In this context, the capabilities of an intruder are specified
by an equational theory, possibly expressed by a term rewrite system, and the
procedure seeks to verify the knowledge a potential attacker could obtain on the
protocol. Two important models of intruder knowledge are, deduction and static
equivalence (or frame distinguishability) [1]. One of the most common classes
of equational theories is subterm convergent term rewrite systems, i.e., term
rewrite systems where the right-hand side of the rules are ground or strict sub-
terms of the left-hand side. For example, see the procedures developed in [1,12].
Non-orientable equalities are also useful and further results have considered spe-
cific equational theories that often arise in protocol verification. In particular,
the Associative-Commutative (AC) and Commutative (C) equational theories
are of great interest and have been investigated on their own, with algorithms
begin developed for both the deduction and static equivalence problems, see
for example [1,5,17]. Notice that the A = {f(x, f(y, z)) = f(f(x, y), z)} (As-
sociativity), C = {f(x, y) = f(y, x)} (Commutativity) and AC (Associativity-
Commutativity) theories are examples of permutative theories. These are the-
ories for which the left and right side of the equality have the same number of
symbols and variables (see the next section for a complete definition). Thus, the
decidability results developed for permutative cases, such as AC, lead to the
question of whether the knowledge problems of deduction, frame distinguisha-
bility, and static equivalence are decidable in all permutative theories. It has
already been shown that deduction is decidable in permutative theories [17]. In
this paper we show that for permutative theories frame distinguishability and
static equivalence are undecidable. It would then be natural to consider a more
restricted form of permutative theories such as leaf permutative. Notice that this
is still sufficient for the AC theory because we can reformulate the associativity
axiom as f(f(x, y), z) = f(f(z, y), x) in order to obtain, along with commuta-
tivity, a completely leaf permuting presentation. However, we show that even
when restricted to leaf permuting theories, frame distinguishability and static
equivalence are still undecidable.

Another interesting reason to investigate the decidability of these knowl-
edge problems beyond their criticality in the formal verification of protocols,
is their close connection to the problems of unification and matching. Unifica-
tion and matching are well established problems that arise in many applications
such as logic programming and automated theorem proving. The decidability of
these problems is well studied for many types of equational theories and rewrite
systems. For example, it was shown in [25] that unification is undecidable in
permutative theories. Later it was shown in [22] that unification is also undecid-
able in variable permutative theories, a subclass of permutative theories similar
to the leaf permutative theories. Thus, there is a general question about the
co-decidability of unification and static equivalence, and likewise matching and
deduction. While we don’t answer that question here we get closer by show-
ing, like unification, static equivalence is undecidable in permutative and leaf
permutative theories.
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Finally, on the positive decidability side, we are able to identify a general
subclass of the permutative theories for which all three knowledge problems
become decidable.

Paper Outline The paper proceeds as follows: Section 2 introduces some back-
ground material and the knowledge problems under consideration in this paper.
Section 3 recalls a decidability result for the deduction problem in permutative
theories, and discusses the undecidability of static equivalence in permutative
theories. Section 4 presents a new undecidability proof for static equivalence in
leaf-permutative theories. This proof also subsumes the proof for permutative
theories. Section 5 introduces a further restriction to the class of permutative
theories in order to obtain decidability. Finally, Section 6 concludes the paper
with a discussion, future research, and open problems.

2 Preliminaries

We use the standard notation of equational unification [7] and term rewriting
systems [6]. Given a first-order signature Σ and a (countable) set of variables V ,
the Σ-terms over variables V are built in the usual way by taking into account
the arity of each function symbol in Σ. Each Σ-term is well-formed: if it is rooted
by a n-ary function symbol in Σ, then it has necessarily n direct subterms. For
any term t, |t| denotes the number of symbols occurring in t. The set of Σ-terms
over variables V is denoted by T (Σ,V ). The set of variables from V occurring in
a term t ∈ T (Σ,V ) is denoted by Var(t). A term t is ground if Var(t) = ∅. For
any position p in a term t (including the root position ε), t(p) is the symbol at
position p, t|p is the subterm of t at position p, and t[u]p is the term t in which
t|p is replaced by u. A substitution is an endomorphism of T (Σ,V ) with only
finitely many variables not mapped to themselves. A substitution is denoted by
σ = {x1 7→ t1, . . . , xm 7→ tm}, where the domain of σ is Dom(σ) = {x1, . . . , xm}
and the range of σ is Ran(σ) = {t1, . . . , tm}. Application of a substitution σ to t
is written tσ. A Σ-equation is a pair of Σ-terms denoted by s =? t or simply
s = t when it is clear from the context that we do not refer to an axiom.

2.1 Equational Theories

Given a set E of Σ-axioms (i.e., pairs of terms in T (Σ,V ), denoted by l =
r), the equational theory =E is the congruence closure of E under the law of
substitutivity (by a slight abuse of terminology, E is often called an equational
theory). Equivalently, =E can be defined as the reflexive transitive closure ↔∗

E

of an equational step ↔E defined as follows: s ↔E t if there exist a position p
of s, l = r (or r = l) in E, and substitution σ such that s|p = lσ and t = s[rσ]p.

We also need to define the (sub)classes of permutative theories we consider
in this paper. This is important not only for properly defining the results proven
here but also because there are some previous definitions of leaf permutative
theories which don’t match the definition given here. For example, the definition
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of leaf permutative given in this paper differs from the one given in [9] (See
Definition 3 below). In [9] (Definition 3) the permutation is restricted to just the
variables and is only applicable to linear terms. Thus, the definition in [9] would
perhaps be better named as linear variable-permuting, while the one given here
is just a permutation of the leaf-nodes of the term, see Definition 2.

Definition 1 (Permutative Theory). An equational theory E is permutative
if for each axiom l = r in E, l and r contain the same symbols with the same
number of occurrences.

One can easily check that A = {f(x, f(y, z)) = f(f(x, y), z)} (Associativ-
ity), C = {f(x, y) = f(y, x)} (Commutativity) and AC = {f(x, f(y, z)) =
f(f(x, y), z), f(x, y) = f(y, x)} (Associativity-Commutativity) are permutative.

Two important subclasses of permutative theories are given by considering
the cases where the permutations only occur on leafs or on variables.

Definition 2 (Leaf Permutative Theory). An equational theory E is Leaf
permutative if for each axiom l = r in E, r is a leaf permutation of l, i.e.,
r = lσ, where σ is a permutation of the leaf nodes of l.

For example, C is leaf permutative, but A is not.

Definition 3 (Variable-Permuting Theory). An axiom l = r is said to be
variable-permuting [22] if all the following conditions are satisfied:

1. the set of occurrences of l is identical to the set of occurrences of r,
2. for any non-variable occurrence p of l, l(p) = r(p),
3. for any x ∈ Var(l)∪Var(r), the number of occurrences of x in l is identical

to the number of occurrences of x in r.

Definition 4 (Shallow Theory). An axiom l = r is shallow if variables can
only occur at a position at depth at most 1 in both l and r. An equational theory
is shallow if all its axioms are shallow.

For example, C is shallow and permutative, but A is not. Note that a shallow
theory is not necessarily permutative. For example, {x + 0 = x} is shallow but
not permutative.

2.2 Rewrite Relations

Given a signature Σ, an oriented Σ-axiom is called a rewrite rule of the form
l→ r such that l, r ∈ T (Σ,V ), l is not a variable and Var(r) ⊆ Var(l). A finite
set of rewrite rules is called a term rewriting system (TRS, for short). Let R be
any TRS. For any Σ-terms s and t, s R-rewrites to t, denoted by s →R t, if
there exist a position p of s, l → r ∈ R, and substitution σ such that s|p = lσ
and t = s[rσ]p. The term s is said to be R-reducible, s|p is called a redex, and
in the particular case where s|p = lσ, s R-rewrites to t, denoted by s →R t. A
TRS R is terminating if there are no infinite rewriting sequences with respect
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to →R. A term is an innermost redex if none of its proper subterms is a redex.
The symmetric relation ←R ∪ →R is denoted by ←→R. The rewrite relation
→R is confluent if ←→∗

R is included in →∗
R ◦ ←∗

R. The rewrite relation →R is
convergent if →R is both terminating and convergent. When →R is convergent,
we have that for any terms t, t′, t←→∗

R t′ iff t↓R = t′↓R, where t↓R (resp., t′↓R)
denotes the unique normal form of t (resp., t′) w.r.t →R.

Definition 5 (Unification). Given a signature Σ, an equational theory E,
and a set of Σ-equations, Γ = {s1 =? t1, . . . , sn =? tn}. The E-unification
decision problem asks if there exists a substitution σ such that siσ =E tiσ for all
1 ≤ i ≤ n. If E is presented as a rewrite relation R, then we ask if there exists
a substitution σ such that siσ ↔∗

R tiσ for all 1 ≤ i ≤ n.

2.3 Knowledge Problems

The applied pi calculus and frames are used to model attacker knowledge [2]. In
this model, the set of messages or terms which the attacker knows, and which
could have been obtained from observing one or more protocol sessions, are
the set of terms in Ran(σ) of the frame ϕ = νñ.σ, where σ is a substitution
ranging over ground terms. We also need to model cryptographic concepts such
as nonces, keys, and publicly known values. We do this by using names, which
are essentially free constants. Here also, we need to track the names which the
attacker knows, such as public values, and the names which the attacker does
not know a priori, such as freshly generated nonces. ñ consists of a finite set of
restricted names; these names represent freshly generated names which remain
secret from the attacker. The set of names occurring in a term t is denoted
by fn(t). For any frame ϕ = νñ.σ, let fn(ϕ) be the set of names fn(σ)\ñ where
fn(σ) =

⋃
t∈Ran(σ) fn(t); and for any term t, let tϕ denote — by a slight abuse

of notation — the term tσ. For any term t, we say that t satisfies the name
restriction of ϕ if fn(t) ∩ ñ = ∅.

Definition 6 (Deduction). Let ϕ = νñ.σ be a frame, and t a ground term.
We say that t is deduced from ϕ modulo E, denoted by ϕ ⊢E t, if there exists a
term ζ such that ζσ =E t and fn(ζ) ∩ ñ = ∅. The term ζ is called a recipe of t
in ϕ modulo E.

Notice that deduction is modeling the ability of an adversary to deduce some
secret, that is supposed to remain hidden, from a protocol. This is a critical
measure of security for key establishment protocols. Another measure of security
attempts to see if an adversary could tell two different runs of the same protocol
apart. This security requirement is not modeled by deduction but is important
for voting protocols. In such protocols you don’t want an observer to be able to
tell a vote for one candidate from another based on watching the protocol for
multiple runs. This form of security is modeled by statically equivalent modulo
E.
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Definition 7 (Static Equivalence). Two terms s and t are equal in a frame
ϕ = νñ.σ modulo an equational theory E, denoted (s =E t)ϕ, if sσ =E tσ, and
ñ ∩ (fn(s) ∪ fn(t)) = ∅. The set of all equalities s = t such that (s =E t)ϕ
is denoted by Eq(ϕ). Given a set of equalities Eq, the fact that (s =E t)ϕ for
all s = t ∈ Eq is denoted by ϕ |= Eq. Two frames ϕ = νñ.σ and ψ = νñ.τ
are statically equivalent modulo E, denoted as ϕ ≈E ψ, if Dom(σ) = Dom(τ),
ϕ |= Eq(ψ) and ψ |= Eq(ϕ).

There is a closely related problem, that asks if there exists a pair of recipe
terms that distinguish two different frames.

Definition 8 (Frame Distinguishability). Given frames ϕ = νñ.σ and ψ =
νñ.τ , we say that ϕ is distinguishable from ψ in theory E, denoted ϕ ̸≈E ψ, if
there exist two terms, t and s (with ñ∩ (fn(s)∪ fn(t)) = ∅), such that tσ =E sσ
and tτ ̸=E sτ .

Notice that in this paper we are considering the decision problem form of
each of the knowledge problems listed above. Thus, if an algorithm for frame
distinguishability returns true for an pair of frames, we know that the frames
are not static equivalent. Likewise, if and algorithm for static equivalence returns
true for a pair of frames, we know that there is no pair of recipes that distin-
guish the frames, i.e., frame distinguishability is false. Now, if were to considered
the form of the frame distinguishability problem that requires the algorithm to
produce the actual witness pair of recipes then the proof given in Theorem 3
would still show the undecidability of this form of the problem. However, the
relation to the static equivalence problem would be a little less clear since, since
if a static equivalence algorithm returns false, we know at least of pair of witness
recipes exists but to find them would possible require searching the sets Eq(ϕ)
and Eq(ψ).

Finally we can note that the above knowledge problems, deduction, static
equivalence, and frame distinguishable, are known to be decidable for subterm
convergent rewrite systems [1].

2.4 Turing Machines and Linear Bounded Automata

We need to recall some standard background material on Turing Machines
(TMs) and Linear Bounded Automata (LBA) for the later undecidability re-
sults; see [19] for a more complete background. We will represent a TM, M ,
as a 7-tuple, M = (Q,Σ, Γ, δ, q0, qa, qr), where Q is a finite set of states, Σ is
the input alphabet, Γ is the tape alphabet. Σ ⊆ Γ and ⊔ ∈ Γ , where ⊔ rep-
resents the blank symbol. δ : (Q \ {qa, qr} × Γ ) −→ (Q × Γ × {L,R}) is the
transition function, where R represents a right move and L a left move. q0 ∈ Q
is the unique initial state, qa ∈ Q is the unique accept state, and qr ∈ Q is
the unique reject state. LBA are Turing Machines with a tape that is bounded
by the size of the input string (plus two tape end-caps) [20,18]. That is, we
introduce two new tape symbols, {<, >} ∈ Γ . We restrict δ so that it can-
not move left of < or right of >, δ : (Q \ {qa, qr}× <) = (Q× < ×{R}) and
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δ : (Q \ {qa, qr}× >) = (Q× > ×{L}). The initial configuration of a LBA on
input word w ∈ Σ∗ is in state q0, the read-write head over the left end-cap < and
the tape containing < ·w· >. See Example 1 in Section 4 for a simple example.

3 Decidability of Knowledge Problems in Permutative
Theories

In this section we consider the decidability of both knowledge problems in classes
of permutative theories. In particular we consider permutative theories and leaf
permutative theories.

3.1 Decidability of Deduction in Permutative Theories

It has already been shown in [10] that deduction is decidable in permutative
theories.

Theorem 1 ([10]). Deduction is decidable for any permutative theory.

This is due to the fact that you can put a bound on the number of terms you
need consider since permutative theories are non-size reducing. However, when
considering static equivalence, the problem becomes more difficult. We briefly
consider permutative theories in the next section.

3.2 Undecidability of Frame Distinguishability in Permutative
Theories

While deduction is decidable it happens that frame distinguishability, and thus
static equivalence, are undecidable in permutative theories.

Theorem 2. Frame Distinguishability is undecidable in general for permutative
theories.

However, this result is subsumed by the result in the next section that shows
that frame distinguishability is also undecidable in the more restrictive leaf per-
mutative theories. Thus, we present the proof details for that more restrictive
case in the following section. However, one could prove the permutative case
directly by starting with the method developed in [25] for proving that the uni-
fication problem is undecidable in general for permutative theories. The key to
the proof is to show how for an arbitrary deterministic Turing Machine (TM
for short), M , a permutative and confluent TRS, RM , could be created that
simulates M . By starting with a suitable undecidable TM problem, one could
use the construction from [25] to reduce to the frame distinguishability problem.
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4 Static Equivalence in Leaf Permuting Theories

In this section we prove that the frame distinguishability problem, and thus static
equivalence, is undecidable for leaf permuting theories. The results proceeds as
follows, we first develop an undecidable result for Linear Bounded Automata
(LBA) which we will use in the reductions. Next, we show how to create a leaf
permuting TRS from a LBA. Finally, we use this TRS to show that the frame
distinguishability problem is undecidable.

Lemma 1. Given an arbitrary LBA, M , with input alphabet Σ, it’s undecidable
if there exists a string, w ∈ Σ∗, such that M accepts w.

Proof. Easy reduction from the LBA empty language problem proved undecid-
able in [3]. There it is shown that it is undecidable if L(M) = ∅ for an arbitrary
deterministic LBA M .

Next, we need to show how to obtain a leaf permuting TRS from a LBA.

Lemma 2. Given a deterministic LBA, M , one can construct a leaf permuting
TRS R such that ifM accepts a string w then there exists a term t which encodes
the initial configuration of M on input w and a term s that encodes the final
accepting configuration of M on w such that t ↓R= s.

Proof. Here we modify the encoding from [25] to obtain a conversion from
LBA to leaf permuting TRS. Let M = (Q,Σ, Γ, q0, qa, qr, δ). Assume Σ =
{a1, a2, . . . , an} and Γ = {<,>,⊔} ∪ Σ, where <,> are the left and right end
caps respectively, and ⊔ is the blank symbol. We now need to construct the terms
that will represent the tape of the LBA. We introduce three new non-constant
function symbols, f, g, h and three new constants, a, b, and P . We use each as
follows:

– h has arity |Q|+1 and is used to represent the state of the LBA. To represent
state qi, a constant b is placed at the ith position with the remaining positions
containing a constants. For example, if |Q| = 2 then q0 is represented as
h(b, a, a). The final configuration, with constant b in the final position, is
used to represent a non-state or “dummy state”, the use of which is described
below. We denote this dummy state as qd.

• We use the notation h(qi) to abbreviate the encoding of the
state qi using h.

– g has arity |Γ | and is used to encode the alphabet characters. We place a
constant b at position i in g with a constants placed at all other positions
to encode ai. Positions n + 1, . . . n + 3 are used to encode {<,>,⊔} in the
same way.

• We use the notation g(ai) to abbreviate the encoding of the
character ai using g.
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– f is used to form terms which consist of an encoding of a state, an encoding of
a single character, and an f -rooted subterm or the constant P . The subterm
is used to encode the rest of the string. The constant P is used to stop
the encoding. For example, the dummy state and the character ai can be
encoded as the term f(h(qd), g(ai), P ).

We now form terms representing the configurations of the LBA and its tape
as follows:

– For any string w ∈ Γ+ we represent w as a layered f -term, one layer per al-
phabet character. The last layer is ended using the P constant. The dummy
state is used by default for each of the state positions in the f -terms.

• We use the notation f(w) to abbreviate the encoding of the
string w using f-terms.

• For example, let <w1qiaiw2> be a configuration of the LBA. We repre-
sent this by an f rooted term as f(<w1, f(h(qi), g(ai), f(w2>))).

We now need to construct the leaf permuting TRS. Let’s consider the moves
of the transition function, δ, and construct from them a TRS R:

– For each right move, δ(qi, ai) = (qj , aj , R), we create a rule for each possible
character ak ∈ Γ \ {>} of the form:

f(h(qi), g(ai), f(h(qd), g(ak), x))→ f(h(qd), g(aj), f(h(qj), g(ak), x))

– For each left move, δ(qi, ai) = (qj , aj , L), we create a rule for each possible
character ak ∈ Γ \ {<} of the form:

f(h(qd), g(ak), f(h(qi), g(ai), x))→ f(h(qj), g(ak), f(h(qd), g(aj), x))

Finally, we need to describe the initial configurations for the LBA. The LBA will
start in the configuration qo < w > for input w. We encode this as an f -term,
where all the states are initially h(qd) accept the first (most left h). That is, we
encode using the term t = f(h(q0), g(<), f(w>)).

Notice that every rule in R is leaf permuting. In addition, the LBA accepts
the string w iff f(h(q0), g(<), f(w>))→∗

R s such that s is a term that encodes a
final accepting configuration of the LBA. This final configuration will have just
a single state h(qa) with all other state positions being dummy states h(qi).

Example 1. Let’s consider the following toy LBA and construct the correspond-
ing TRS.

q0start q1 q2

qa qr

<= (<,R)

1 = (0, R)

0 = (0, R)

>= (>,L)

0 = (0, R)

>= (>,L)

1 = (0, R)
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Notice for this simple example Γ = {<,>, 0, 1,⊔} and Q = {q0, q1, q2, qr, qa}.
To encode the symbol < we use g(b, a, a, a, a), and 0 is g(a, a, b, a, a). Now to
encode the state q0 we use h(b, a, a, a, a, a), and we use h(a, b, a, a, a, a) for q1.
Notice the additional final position in h(), this is to encode the dummy, qd, state
that is just used to track the current state of the LBA during rewriting, and we
encode this state with h(a, a, a, a, a, b).

Now let’s construct one of the rewrite rules based on the above transition
function in full without any of the shorthand developed above. We can then
construct several others using the shorthand. Consider δ(q0, <) = (q1, <,R) in
TRS rule form one of the instances of this rule would be:

f(h(b, a, a, a, a, a), g(b, a, a, a, a), f(h(a, a, a, a, a, b), g(a, a, b, a, a), x))→
f(h(a, a, a, a, a, b), g(b, a, a, a, a), f(h(a, b, a, a, a, a), g(a, a, b, a, a), x))

Notice that this is for the rule where 0 (encoded as g(a, a, b, a, a)) is on the right
of < on the tape. We would also need the same rule for each of the other symbols.

Let’s construct some of the rewrite rules for the above LBA using the more
compact notation. for the transition δ(q0, <) = (q1, <,R) some of the rules are:

f(h(q0), g(<), f(h(qd), g(0), x))→ f(h(qd), g(<), f(h(q1), g(0), x))

f(h(q0), g(<), f(h(qd), g(>), x))→ f(h(qd), g(<), f(h(q1), g(>), x))

f(h(q0), g(<), f(h(qd), g(1), x))→ f(h(qd), g(<), f(h(q1), g(1), x))

For the transition δ(q2, 1) = (q1, 0, R), some of the resulting rules are:

f(h(q2), g(1), f(h(qd), g(1), x))→ f(h(qd), g(0), f(h(q1), g(1), x))

f(h(q2), g(1), f(h(qd), g(0), x))→ f(h(qd), g(0), f(h(q1), g(0), x))

For the transition δ(q2, >) = (qr, >, L), some of the resulting rules are:

f(h(qd), g(0), f(h(q2), g(>), x))→ f(h(qr), g(0), f(h(qd), g(>), x))

f(h(qd), g(1), f(h(q2), g(>), x))→ f(h(qr), g(1), f(h(qd), g(>), x))

Finally let’s show an encoding of a string and a rewrite step. Assume we have
an initial configuration of q0<01>. This configuration is encoded as

f(h(q0), g(<), f(h(qd), g(0), f(h(qd), g(1), f(h(qd), g(>), P ))))

Notice that for any configuration encoding there is always only one position with
a non-dummy state. For this term we can apply the rule

f(h(q0), g(<), f(h(qd), g(0), x))→ f(h(qd), g(<), f(h(q1), g(0), x))

which results in the rewrite step:

f(h(q0), g(<), f(h(qd), g(0), f(h(qd), g(1), f(h(qd), g(>), P ))))→R

f(h(qd), g(<), f(h(q1), g(0), f(h(qd), g(1), f(h(qd), g(>), P ))))
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Notice that since the LBA is deterministic we obtain the following result.

Lemma 3. Let M be a deterministic LBA. Then the variable permuting TRS,
R, constructed from M is locally confluent. Furthermore, if M is both determin-
istic and terminating then the rewrite sequence t→∗

R s, terminates when t is the
term encoding of the start configuration for M on some input string w.

We now need to describe the LBA and TRS we will use in the Reduction.
First, from a LBA M1 we can easily construct the following LBA.

Lemma 4. Let M1 be a LBA that before accepting and halting it replaces the
tape (except the end caps) with blank symbols and stops (enters the accept or
reject state) with the tape head over the left end-cap. One can construct a LBA
M2 from M1 such that L(M2) = ∅ and every transition of M1 and M2 are the
same except the accepting transitions from M1 are now rejecting in M2.

Notice that for each LBAM1 andM2 there is a corresponding leaf permuting
TRS, R1 and R2 respectively. However, we need to combine these two TRS into
a single TRS.

Lemma 5. Given LBAs M1 and M2 and their leaf permutative TRSs R1 and
R2 respectively. Let q0i be the initial state for Mi. One can construct a leaf
permutative TRS R1,2 such that for input string w and term ti = f(h(q0i), g(<
), f(w>)), ti →∗

R1,2
si iff ti →∗

Ri
si, i ∈ {1, 2}.

Proof. One just needs to ensure that {Q1 \{qa, qr}}∩{Q2 \{qa, qr}} = ∅. Then,
the rules of R1 and R2 are disjoint.

We can now combine all the above into the final undecidability proof.

Theorem 3. Frame distinguishability is undecidable for leaf permuting theories.

Proof. We can proceed by reduction using Lemma 1. Assume we are given a
deterministic LBA M1. Without loss of generality assume that before halting
and entering qa or qr, M1 erases its tape and halts with the head over the left
end-cap. Furthermore, assume that as an initial step M1 scans the tape from
left to right end-cap and then back to the left. Finally, we can assume q0 is the
unique start state of M1 and after leaving this state the LBA never returns to
it. Since these steps could be added to any LBA without changing its language,
they don’t represent a restriction. We proceed as follows.

1. FromM1 construct the always reject LBAM2 as in Lemma 4. We can assume
w.l.o.g., that {Q1\{qa, qr}}∩{Q2\{qa, qr}} = ∅. This can be done by simply
creating a marked version of Q1 \ {qa, qr}, s.t. a qi2 ∈ Q2 for each qi1 ∈ Q1.
Let q0i be the start state for Mi.

– For any transition from M1, δ(qi1 , ai) = (qj1 , aj , x), if qj1 ̸= qa then for
M2, δ(qi2 , ai) = (qj2 , aj , x). If qj1 = qa then δ(qi2 , ai) = (qr, aj , x).

2. From M1 and M2 construct R1 and R2 as in Lemma 2.
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– Notice if a term t1 encodes a configuration and t1 →+
R1

t2 s.t. t2 doesn’t

encode an accepting configuration, then t′1 →+
R2

t′2, where ti = t′i except
each state qi1 is swapped for qi2 .

3. Construct R1,2 from R1 and R2 as in Lemma 5.

4. Construct two frames, such that ñ = ∅ for each frame::

ϕ1 = νñ.σ1 = νñ.{x 7→ h(q01)}a) ϕ2 = νñ.σ2 = νñ.{x 7→ h(q02)}b)

Assume that we have an algorithm for the frame distinguishability problem and
it returns true. Then, there exists a recipe pair (t, s) such that tσ1 ↔∗

R1,2
sσ1

and tσ2 ̸↔∗
R1,2

sσ2. We can assume the following about these two recipe terms:

(i) It can’t be that s = t, nor can t and s both be ground, otherwise tσ2 ↔∗
R1,2

sσ2. Thus, tσ1 ↔+
R1,2

sσ1.

(ii) For at least one of the terms, t and s, we have that t{x 7→ h(q01)} ≠ t and
(or) s{x 7→ h(q01)} ̸= s. That is, we use the substitution on x. If this was
not the case, then tσ2 ↔∗

R1,2
sσ2.

(iii) At least one of, sσ1 (and sσ2) or tσ1 (and tσ2), encodes a valid, single, start-
ing configuration, and this starting configuration is the entire term (not a
subterm of a larger term). This is due to the following (we consider tσi but
the same applies for sσi):

– Notice the rules of R1,2 can only be applied to redexes encoding valid
configurations and we have that tσ1 ↔+

R1,2
sσ1. SinceM1 (and thusM2)

first scan the tape from left to right, the rewrite derivation on tσ1 would
stop when any malformed subterm was reached and before the final
configuration. However, since the steps of M2, except the step entering
the final configuration, are the same as those for M1, M2 would stop
at the same point in the derivation from tσ2. That is, tσ2 →∗

R1,2
sσ2.

Thus, tσi must contain a valid configuration.

– Suppose all the redex for the rewrite derivation tσi ↔∗
R1,2

sσi are con-

tained in a proper subterm of t, t′. Then we could just consider the
recipe pair (t′, s). Likewise, if t encodes multiple disjoint configurations
as subterms, then there must be at least one of these subterms, say t′,
such that t′σ1 ↔∗

R1,2
sσ1 and t′σ2 ̸↔∗

R1,2
sσ2, otherwise tσ2 ↔∗

R1,2
sσ2.

Thus, we could just consider the recipe pair (t′, s). Thus, tσi encodes
a single valid configuration which is the entire term.

– tσi encodes an initial configuration since, by construction, q0i is only
used for the initial starting configuration ofMi and never reused. Thus,
if tσi ̸= t then tσi encodes an initial configuration. Therefore, tσi en-
codes a single valid initial configuration.

Let tσ1 →∗
R1,2

r ←∗
R1,2

sσ1. Without loss of generality we can assume the
following for this derivation:

(a) r encodes an accepting configuration, if not then tσ2 →∗
R1,2

r ←∗
R1,2

sσ2.



Knowledge Problems with Permutative Theories 13

Notice that (a) allows us to simplify the rewrite derivation. Without loss of gen-
erality we can assume that sσi = r. Since r must be an accepting configuration
and at least one side of the derivation tσi →∗

R1,2
r ←∗

R1,2
sσi must use the sub-

stitution on x, we can assume that side to be tσi →∗
R1,2

r (swap if not). Now the

pair (t, r) form a recipe pair s.t. tσ1 ↔∗
R1,2

rσ1 and tσ2 ̸↔∗
R1,2

rσ2. Therefore,

we can assume that tσ1 →+
R1,2

sσ1 and tσ2 ̸→+
R1,2

sσ2. Finally, from (i) - (iii)
above, tσi is a well formed term encoding an initial configuration of an LBA Mi

for some initial input string w. From Lemma 2, tσ1 →+
R1,2

sσ1 iff M1 accepts
some string w.

Therefore, a frame distinguishability algorithm would allow us to decide if
for an arbitrary LBAM1 if there exists some string w, accepted byM1, violating
Lemma 1.

If the frame distinguishability problem is undecidable then we also get unde-
cidability of the static equivalence problem and since distinguishability is unde-
cidable for leaf permutative theories it is also undecidable for the more general
permutative theories.

Corollary 1. Frame distinguishability is undecidable for permutative theories.

5 Decidable Static Equivalence in Subclasses of
Permutative Theories

A decision procedure for static equivalence in some permutative theories E
can obtained by computing a finite set of equalities bounded by |E|, where
|E| = max{l | l=r∈E} |l|. To define this particular finite set of equalities, we
first construct a frame saturation dedicated to permutative theories. Then, the
recipes of the (deducible) terms included in that saturation are used to build an
appropriate set of bounded equalities. Given a term t, St(t) is the smallest set
of terms including t such that

– if u′ =E u and u ∈ St(t), then u′ ∈ St(t),
– if u ∈ St(t) and p is a non-root position of u, then u|p ∈ St(t).

Notice that St(t) is finite since E is permutative. For a set of terms T , St(T ) =⋃
t∈T St(t), and for a substitution σ, St(σ) = St(Ran(σ)).

Definition 9 (Frame Saturation for Permutative Theories). Let E be a
permutative theory. For any frame ϕ = νñ.σ, let ESt(σ) = St(σ) ∪

⋃
t∈ET St(t)

where ET is the set of terms s[d] such that |s| ≤ |E|, fn(s) ∩ ñ = ∅, d ∈ St(σ)
and s[d]↔ϵ

E t′ for some term t′.

The set of terms satE(ϕ) is the smallest set D such that:

(1) Ran(σ) ⊆ D,
(2) if t1, . . . , tn ∈ D and f(t1, . . . , tn) ∈ ESt(σ) then f(t1, . . . , tn) ∈ D,
(3) if t ∈ D, t′ ∈ ESt(σ), t =E t′, then t′ ∈ D,
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For any frame ϕ = νñ.σ, σ∗ denotes the substitution defined as follows:

σ{χu 7→ u | u ∈ satE(ϕ)\Ran(σ)}

where χu is a fresh variable for any u ∈ satE(ϕ)\Ran(σ), and ϕ∗ denotes the
frame νñ.σ∗. Given a recipe ζu for each u ∈ satE(ϕ)\Ran(σ), the substitution
{χu 7→ ζu | u ∈ satE(ϕ)\Ran(σ)} is called a recipe substitution of ϕ and is
denoted by ζϕ.

For any set Eq of equalities between two terms satisfying the name restriction
of ϕ, we denote ϕ |= Eq if for any t = t′ ∈ Eq we have tϕ =E t′ϕ. The set EqB(ϕ)
is the set of equalities tζϕ = t′ζϕ such that t, t′ are terms satisfying the name
restriction of ϕ, |t| ≤ |E|, |t′| ≤ |E| and (tζϕ)ϕ =E (t′ζϕ)ϕ.

Definition 10. A permutative theory E is said to be locally stable permutative
(LSP, for short), if the following property holds: for any frame ϕ and any terms
s and t satisfying the name restriction of ϕ, if sϕ∗ =E tϕ∗ and ψ |= EqB(ϕ)
then (sζϕ)ψ =E (tζϕ)ψ.

LSP theories bear similarities with locally stable theories as defined in [1].
In the context of this paper, we consider a slight adaptation of local stability
by assuming a fixed finite set of deducible terms for all permutative theories
we want to target. Then, Definition 10 captures the main property to satisfy in
order to get local stability and then a decision procedure for static equivalence
based on checking finitely many equalities.

Lemma 6 ([17]). Any shallow permutative theory is LSP.

Remark 1. Unification in shallow permutative theories is decidable and finitary
since there exists a sound, complete and terminating unification procedure for
shallow theories [14].

Particular variable-permuting theories provide other examples of LSP theo-
ries.

Definition 11 (Separate Variable-Permuting Theory). An equational the-
ory E is said to be separate variable-permuting (SVP, for short) if E is variable-
permuting and for any l = r ∈ E, l and r are rooted by the same function symbol
that does not occur elsewhere in E.

Lemma 7 ([10]). Any SVP theory is LSP.

Remark 2. Unification in SVP theories is decidable and finitary since all SVP
theories are closed by paramodulation and there exists a sound, complete and
terminating unification procedure for theories closed by paramodulation [23,21].

Example 2. Consider

K = {keyexch(x, pk(x′), y, pk(y′)) = keyexch(x′, pk(x), y′, pk(y))}.
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K is a permutative theory which is not shallow. However, it is a SVP theory,
and so it is a LSP theory.

The equational theory K, combined with a subterm convergent term rewrite
system, is useful in practice to model a group messaging protocol [13]. One can
notice that the pk symbol occurs in K as an “inner” constructor. Thus, K can
be combined with a term rewrite system R sharing pk , provided that pk is a
constructor of R [16]. Consequently, variable-permuting theories like K provide
good examples to constructor-sharing combination. The application of shallow
permutative theories to constructor-sharing combination is quite limited: in that
case, the inner constructors can only occur in ground terms. For this reason, it
is clearly interesting to identity LSP theories beyond the case of shallow per-
mutative. We conjecture the existence of LSP theories that are neither shallow
permutative nor variable-permuting.

A decision procedure for static equivalence in LSP theories is given by the
following lemma:

Lemma 8. Let E be any LSP theory. For any frames ϕ and ψ, ϕ ≈E ψ iff
ψ |= EqB(ϕ) and ϕ |= EqB(ψ).

Proof. (If direction) Let Eq(ϕ) be the set of all equalities sζϕ = tζϕ such that
(sζϕ =E tζϕ)ϕ.

Consider any sζϕ = tζϕ ∈ Eq(ϕ). By definition of ζϕ and ϕ∗, we have
(sζϕ)ϕ =E sϕ∗ and (tζϕ)ϕ =E tϕ∗. Since (sζϕ)ϕ =E (tζϕ)ϕ, we obtain sϕ∗ =E

tϕ∗. Then, by Definition 10, we get (sζϕ)ψ =E (tζϕ)ψ, which means that ψ |=
Eq(ϕ). In a symmetric way, we show that ϕ |= Eq(ψ). Then, we can conclude
since ϕ ≈E ψ iff ψ |= Eq(ϕ) and ϕ |= Eq(ψ).

Theorem 4. Static equivalence is decidable in any LSP theory.

6 Conclusion

We have shown in this paper that static equivalence is undecidable in permuta-
tive theories and that it remains undecidable even if one restricts the equational
theory to just leaf permutative. It is interesting to note that the problem of uni-
fication is also undecidable in these theories and has a close connection to static
equivalence by definition. Thus, it would be interesting to know the relation be-
tween these two problems with respect to decidability. There are a number of
results on this question already, For example it’s shown in [2] that both static
equivalence and deduction are undecidable in general and that there are theories
for which deduction is decidable but static equivalence is undecidable. It’s shown
in [10] that deduction is decidable in permutative theories but we have in [22]
that unification is undecidable for both permutative and variable permutative
theories. Interestingly, in [4] a theory is developed for which unification is decid-
able but deduction is undecidable. Perhaps it would be possible to extend this
result in order to show that static equivalence is also undecidable.
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With respect to positive results, we have also identified a class of permutative
theories for which all knowledge problems are decidable.

We plan to continue the study of the knowledge problems in equational the-
ories given by rewrite systems modulo permutative axioms. On the one hand, it
is possible to consider extensions of subterm rewrite systems, such as contract-
ing rewrite systems [24,10]. On the other hand, static equivalence is decidable
in particular permutative theories defined by shallow permutative axioms or by
some specific “disjoint” variable-permuting axioms. We are working on finding
additional permutative theories with decidable static equivalence. Due to the
undecidability result reported here, it is clear now that we cannot consider any
arbitrary set of permutative axioms.
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