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Abstract. Formal verification techniques, such as deductive verifica-
tion, require a logic-based tool support to discharge proof obligations, in
other words, satisfiability procedures. We design satisfiability procedures
thanks to congruence closure methods applied to unions of axiomatized
theories, targeting equational axioms such as Associativity or Commu-
tativity. In the proposed approach, any function symbol can be unin-
terpreted, associative only, commutative only, but also associative and
commutative. To tackle the union of these theories, we introduce a com-
bined congruence closure procedure that can be viewed as a particular
Nelson-Oppen combination method using particular congruence closure
procedures for the individual theories. In this context, we consider ter-
minating congruence closure procedures, but also non-terminating ones.
Hence, we have terminating ones for Commutativity and Associativity-
Commutativity, while the one for Associativity is non-terminating. We
show how all the congruence closure procedures, including the combined
one, can be presented in a uniform and abstract way.

Keywords: Satisfiability Procedure · Congruence Closure · Commuta-
tivity · Associativity · Union of Theories

1 Introduction

Formal verification techniques, such as deductive verification, require a logic-
based tool support to discharge proof obligations, in other words, decision pro-
cedures to check whether a logic formula is satisfiable or not. Satisfiability Mod-
ulo Theories [5] (SMT, for short) is nowadays a very active research field, where
many efficient SMT solvers are developed concurrently following a common spec-
ification format, the SMT-Lib. In this context, several theories are very useful in
practice, such as the theory of equality, also called the empty theory or the the-
ory of uninterpreted function symbols. This particular theory admits an efficient
satisfiability procedure based on the construction of a congruence closure [14,15].

For sake of expressiveness, it is highly desirable to cope with function sym-
bols that are interpreted in some given theory. For instance, this given theory
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could be a large fragment of arithmetic, such as Linear Rational Arithmetic.
But this theory could be also specified by some equational axioms. For exam-
ple, Associativity-Commutativity is particularly interesting to reason modulo
(multi)sets, Associativity allows us to reason modulo lists, and Commutativity
is useful to reason modulo a symmetric relation.

Compared to Associativity-Commutativity and Commutativity where uni-
fication is finitary, Associativity is a challenging theory since associative unifi-
cation is known to be infinitary. Despite the lack of an associative unification
algorithm, it is possible to get useful procedures to reason modulo Associativity,
as shown in [12] for the variant-based unification and satisfiability problems.
Analogously, we believe that Associativity is a theory deserving to be investi-
gated in the context of a combined congruence closure procedure.

We design rule-based congruence closure procedures modulo union of axiom-
atized theories, targeting equational axioms such as Associativity or Commu-
tativity. In the proposed approach, any function symbol can be uninterpreted,
associative only, flat permutative only (e.g. commutative), but also associative
and commutative. To tackle the union of these theories, we introduce a combined
congruence closure procedure that can be viewed as a particular Nelson-Oppen
combination method [13] using particular congruence closure procedures for the
individual theories. The combined congruence procedure is based on the ping-
ponging of entailed equalities between (shared) constants. Actually, the congru-
ence closure procedures used for the individual theories allow us to deduce these
equalities. In this context, we consider terminating congruence closure proce-
dures, but also non-terminating ones. Hence, we have terminating congruence
closure procedures for flat permutation and Associativity-Commutativity, while
the one for Associativity is non-terminating. We show how all the congruence
closure procedures, including the combined one, can be presented in a uniform
and abstract way along the lines of [3,8,9,10,11].

Related Work. Congruence closure modulo Associativity-Commutativity has
been successfully investigated in [3,8]. It has been revisited more recently, show-
ing how the method can be extended to take into account additional orientable
axioms, for instance to handle the theory of Abelian Groups [9]. The case of flat
permutative axioms, such as Commutativity, has been considered in [11]. The
theory of Groups and all of its subtheories including Associativity is considered
in [10], where the related congruence closure procedure is not necessarily termi-
nating, contrarily to the one known for Associativity-Commutativity. In these
papers, some particular unions of theories are studied, for instance to handle
several symbols following the same equational axioms.

In our paper, we clearly focus on the combination of congruence closure pro-
cedures to cope with arbitrary unions of theories (sharing only constants). This
combination of congruence closure procedures can be seen as a particular case of
combination of deduction-complete satisfiability procedures, already investigated
in [20]. In addition to Associativity-Commutativity, we believe that it is inter-
esting to consider Associativity alone and flat permutation alone. On one hand,
Associativity provides a significant case study of a non-terminating congruence
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closure procedure. On the other hand, flat permutation (such as Commutativity)
leads to a simple extension of the congruence closure procedure known for the
theory of equality as done in [11].

Paper Outline. The paper is organized as follows. Section 2 introduces the main
notions and notations related to terms, term rewriting and satisfiability prob-
lems. In Section 3, we describe our combination method using two kinds of
processes: the orchestrator whose role is to prepare and handle a combination
of theories; a theory process whose role is to complete the set of rewrite rules
for a specific theory. The supported theories are detailed in Section 4. The com-
pleteness of the method is discussed in Section 5. The method is not necessarily
terminating, as shown in Section 6 in the case of Associativity. In Section 7,
we detail a running example involving an associative-commutative operator and
a commutative one. Eventually, Section 8 concludes discussing some possible
future developments.

2 Preliminaries

We assume the reader familiar with the notions of terms and term rewriting [1].
We consider n theories E1, . . . , En such that each theory Ei is defined by a

set of equalities over a signature Σi. 1 The theories E1, . . . , En are assumed to be
pairwise signature-disjoint or to share only constants, meaning that Σi ∩ Σj is
a set of constants which can be empty, for any i, j ∈ [1, n], i ̸= j. The union of
theories E1 ∪ · · · ∪ En is denoted by E and the union of signatures Σ1 ∪ · · · ∪Σn

is denoted by Σ. We assume a set of ground equalities Γ and a set of ground
disequalities ∆, where both Γ and ∆ are expressed over the signature Σ. Given
any theory E ′, =E′ denotes the congruence closure of the equalities in E ′ under
the law of substitutivity.

Terms. We denote T (Σ) the set of ground (without variables) terms built over
the signature Σ. A constant is a function symbol of Σ with arity 0. The set of
positions in a term t is written O(t). The subterm of a term t at position p is
written t|p. A subterm of t is strict if its position is not at the top of t. The term
obtained from t by replacing t|p by a term s is written t[s]p.
The process described in this paper relies on a flattening of terms. For theory Ei
including an operator, say +, such that (x + y) + z ≈ x + (y + z) occurs in Ei,
this flattening will be performed using + as a variadic operator, e.g. a+ (b+ c)
is flattened into +(a, b, c).

Equalities and Rewrite Rules. The initial set of ground equalities Γ will be
purified via flattening thanks to the introduction of new constants as in [7] (K
denotes the set of used new constants taken from an infinite countable set U
disjoint from Σ), generating pure flat rewrite rules for each theory Ei (denoted
by the set Ri); and further deductions between those rules may generate flat
1 The empty theory is defined by a signature, but with an empty set of equalities.
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equalities in this theory (denoted by the set Ei).
The rewrite rules in Ri can have two shapes: D-rules denoted by f(c1, . . . , cn)
→ c, where f ∈ Σi and c1, . . . , cn, c ∈ K; E-rules denoted by f(c1, . . . , cm) →
f(d1, . . . , dn), where f ∈ Σi is a variadic operator and c1, . . . , cm, d1, . . . ,
dn ∈ K. The equalities in Ei have the same two shapes: D-equalities denoted
by f(c1, . . . , cn) ≈ c; E-equalities denoted by f(c1, . . . , cm) ≈ f(d1, . . . , dn). An
equality c1 ≈ c2 between two constants of K is called a C-equality. E-rules and
E-equalities will be generated only for variadic operators by the Superposition
inference rule, because of the use of extended rewrite rules (see Section 3.2).
Considering a theory Ei, if two terms t1 and t2 are Ei-equal, we write t1 ↔∗

Ei
t2.

By (Ri, Ei) we denote the rewriting system defined by {u′ → v | u → v ∈
Ri and u′ ↔∗

Ei
u}. And by (Re

i , Ei) we denote the rewriting system extending
(Ri, Ei) with all possible extended rewrite rules from Ri.

Ordering. For any rewrite rule t → s, t has to be greater than s (t ≻ s); the def-
inition of an ordering may be difficult for deduction systems modulo equational
theories; but in our case the ordering is very simple as we only have to consider
D-rules and E-rules: for D-rules, it suffices to assume ∀f ∈ Σ,∀c ∈ K, f ≻ c; for
E-rules, we have to compare lists of constants: if of the same length, this can be
done with a lexicographic or a multiset extension of an arbitrary ordering com-
paring two constants of K (the choice is done for each theory), and if of different
length, the longest is the greatest. For example, for an associative theory the
lexicographic extension will be used, and for an associative-commutative theory
the multiset extension will be used.
The lexicographic extension of an ordering ≻ is defined by: (t1, . . . , tn) ≻lex

(s1, . . . , sn) if ∃i ∈ [1, n],∀j < i, tj =E sj and ti ≻ si.
The multiset extension of an ordering ≻ is defined by: T = {t1, . . . , tn} ≻mult

{s1, . . . , sn} = S if, given I the multiset E-intersection of T and S (where the
equality is checked w.r.t. =E), ∀si ∈ S\I, ∃tj ∈ T\I, tj ≻ si.

Satisfiability Problems. In the context of this paper, a satisfiability problem is
given by a finite set of ground literals, where a literal is either an equality or
a disequality. Given a theory T , a satisfiability problem φ expressed over the
signature of T is said to be T -satisfiable if T ∪ φ is consistent, i.e. T ∪ φ admits
a model. We say that a model is trivial when its domain is of cardinality 1.
A consistent theory is trivial when all its models are trivial. Notice that any
equational theory is consistent since it admits a trivial model. The equational
theories considered in this paper are non-trivial.

3 Combined Satisfiability Procedure

We describe in this section a procedure that aims at (semi-)deciding the satisfia-
bility of any set of ground equalities Γ together with any set of ground disequal-
ities ∆, modulo a combination of signature-disjoint equational theories Ei (or
sharing only constants). This procedure, called CombCC, is based on congruence
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closure and involves two kinds of processes: an orchestrator decomposing the
problem to separate the different theories, and theory processes that complete
rewrite rules, one process for each theory.

3.1 The Orchestrator

The role of the orchestrator is to purify and flatten the problem to be solved,
to send each theory process the rewrite rules it has to handle, and to detect
if any contradiction w.r.t. ∆ is generated by one of the theory processes. For
this purpose, several sets are handled in addition to Γ and ∆: the set of new
constants K, and for each equational theory Ei a set of rewrite rules Ri and a
set of equalities Ei. We denote RE the set of (Ri, Ei) for all theories Ei. In the
following inference rules, we will only indicate the involved sets.

The first task of the orchestrator is to transform the disequalities for “hiding”
the theories involved. This is done with the following inference rule that replaces
an arbitrary disequality by a disequality between two new constants together
with the equalities associating each of these constants to the corresponding term:

Splitting:
K,∆ ∪ {t1 ̸≈ t2}, Γ

K ∪ {c1, c2}, ∆ ∪ {c1 ̸≈ c2}, Γ ∪ {t1 ≈ c1, t2 ≈ c2}

if t1, t2 ̸∈ K, c1, c2 ∈ U \K.

Once all disequalities have been decomposed, the second task of the orches-
trator is to purify the equalities of Γ , by generating rewrite rules that are purely
in one theory. For this purpose, it applies the following inference rules:

Flattening:
K,Γ [t], Ri

K ∪ {c}, Γ [c], Ri ∪ {t → c}

if t → c is a D-rule, c ∈ U \K, t occurs in some equality in Γ that is not
a D-equality, and t is Σi-rooted.

Orientation:
K ∪ {c}, Γ ∪ {t ≈ c}, Ri

K ∪ {c}, Γ,Ri ∪ {t → c}
if t ≈ c is a D-equality
and t is Σi-rooted.

When all equations have been transformed (Γ = ∅), the orchestrator runs
one process per equational theory Ei, providing it two sets of information: the
set of new constants K and the set of D-rules Ri defined over Σi and K.

Its final task is to manage equalities between new constants, when generated
by a theory process in some set Ei; there are two possibilities: if the equality con-
tradicts a disequality of ∆ then the system stops, otherwise one of the constants
has to be replaced by the other one in all sets.

Contradiction:
K ∪ {c, d}, ∆ ∪ {c ̸≈ d}, RE ∪ {(Ri, Ei ∪ {c ≈ d})}

⊥

Compression:
K ∪ {c, d}, ∆,RE ∪ {(Ri, Ei ∪ {c ≈ d})}

K ∪ {d}, ∆⟨c 7→ d⟩, RE⟨c 7→ d⟩ ∪ {(Ri⟨c 7→ d⟩, Ei⟨c 7→ d⟩)}
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if c ≈ d ̸∈ ∆ and c ≻ d; the notation ⟨c 7→ d⟩ denotes the homomorphic
extension of the mapping σ defined as σ(c) = d and σ(x) = x for x ̸= c,
and S⟨c 7→ d⟩ denotes the set obtained by applying the mapping ⟨c 7→ d⟩
to each term in set S.

The strategy of the orchestrator can therefore be described by: Split∗·(Flat∗·
Ori)∗ · (Cont|Comp)∗.

3.2 A Theory Process

A process run for an equational theory Ei will use inference rules to complete
its term rewriting system Ri. Some inference rules are used for transforming
the rewrite rules (Composition), for deducing new equalities added to a set Ei

(Collapse, Superposition), or for handling those new equalities (Simplification,
Orientation, Deletion). The set of new constants K is never modified, so not
indicated, but it is useful in the process for checking if a constant is a new one
or belongs to the theory.

For some theories, the inference system has to consider extended rewrite
rules as we do not explicitly use the axioms of a theory: an extension is built
w.r.t. a context defined from the theory axioms; a context is a triplet: a term
Cont , a non variable position p of a strict subterm in Cont , and a set of Ei-
unification constraints UC . Let us denote ContEi

the set of contexts for the
theory Ei; given a D-rule or a E-rule u → v, its extended version by a con-
text (Cont , p,UC ) ∈ ContEi is written Cont [u]pσ → Cont [v]pσ, where σ is the
ground substitution in a minimal complete set of Ei-unifiers of Cont |p =?

Ei
u

and UC . These notions of extended rewrite rules and contexts were already
mentioned in [17,16], and the construction of contexts for generating extensions
has been explained in [21]. The principle is to start by identifying non variable
positions in the left-hand and right-hand sides of axioms of the theory, giving
an initial set of contexts. Then those contexts are combined by unification from
one context into the marked position of another context, and so on; each com-
bination adds unification constraints in the new context. A notion of redundant
context has been defined for keeping only useful contexts: a redundant context
will create extended rewrite rules that will generate by deduction either redun-
dant equalities/rules, or equalities/rules that can be generated using already
existing (simpler) contexts.

In this paper, as we want to handle only flat rewrite rules, we will consider
only theories for which extended rewrite rules have a flat form. For example,
if an operator f is associative, from the axiom of this theory f(f(x, y), z) ≈
f(x, f(y, z)), we can build three contexts:

(f(f(y1, y2), x1), 1, ∅), (f(x2, f(y1, y2)), 2, ∅) and (f(x3, f(y1, y2), x4), 2, ∅)

In each one, the left-hand side of the rewrite rule to be extended will have to
unify with f(y1, y2). So, a rewrite rule f(a, b) → c has three extensions, written
in flat form: f(a, b, x1) → f(c, x1), f(x2, a, b) → f(x2, c) and f(x3, a, b, x4) →
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f(x3, c, x4).

The inference rules used by a theory process are the following.

Simplification:
Ri, Ei[t]

Ri, Ei[s]

where t occurs in some equality of
Ei, and t →(Re

i
,Ei) s.

Orientation:
Ri, Ei ∪ {t ≈ s}
Ri ∪ {t → s}, Ei

if t ≻ s and t → s is a D-rule or a
E-rule.

Deletion:
Ri, Ei ∪ {t ≈ s}

Ri, Ei

if t ↔∗
Ei

s.

Composition:
Ri ∪ {t → s, u → v}, Ei

Ri ∪ {t → s′, u → v}, Ei

if s →({u→v}e,Ei) s
′.

Collapse:
Ri ∪ {t → s, u → v}, Ei

Ri ∪ {u → v}, Ei ∪ {t′ ≈ s}
if t →({u→v}e,Ei) t

′,
and if t ↔∗

Ei
u then s ≻ v.

Superposition:
Ri ∪ {t1 → s1, t2 → s2}, Ei

Ri ∪ {t1 → s1, t2 → s2}, Ei ∪ {Cont1[s1]p1
σ ≈ Cont2[s2]p2

σ}

if (Cont1, p1,UC 1), (Cont2, p2,UC 2) ∈ ContEi , 2 and the substitution
σ is the ground substitution in a minimal complete set of Ei-unifiers of
Cont1[t1]p1

=?
Ei

Cont2[t2]p2
, Cont1|p1

=?
Ei

t1, Cont2|p2
=?

Ei
t2, UC 1 and

UC 2; the resulting equality will be written in flat form.

A strategy for combining all those inference rules is: (Com∗ · (Col|Sup) ·
Sim∗ · (Del|Ori))∗
So this process handles a pair (Ri, Ei): it starts with (Ri, ∅) and, if terminating,
it ends with (R∞

i , ∅) where there is no more possible inference rule involving
rules of R∞

i . If an equality between two constants of K is generated, it will be
handled by the orchestrator.

For applying inference rules, this theory process has to use a Ei-matching al-
gorithm for applying rewriting steps w.r.t. (Re

i , Ei). It also needs a Ei-unification
algorithm, but which will have to solve only simple unification problems, of the
shape Cont1[t1]p1

=?
Ei

Cont2[t2]p2
, where t1 and t2 are ground; if there is a so-

lution, it will be the unique most general unifier since the variables occurring in
Cont i[·]pi

will be instantiated by subterms of the ground term t3−i.

4 Supported Theories

We detail now some of the input theories Ei that allow us to get a complete com-
bined satisfiability procedure. We consider three kinds of theories (in addition
to the empty theory of course), and discuss also about additional ones.

2 Note that according to the theory Ei, the contexts may be selected to guarantee a
useful ground new equality (see Section 4.2).
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4.1 Flat Permutative Theories

A flat permutative theory is represented by a set of axioms

{f(x1, . . . , xk) ≈ f(xσ(1), . . . , xσ(k)) | σ is a permutation of {1, . . . , k}}

where xi are variables that do not need to be all distinct.
With such a theory, there is no extension of rewrite rules to be considered, so the
Superposition inference rule cannot apply. For the ordering, we can compare the
arguments of two f -terms with a lexicographic extension of the ordering between
constants of K, and always use the biggest term of the equivalence class w.r.t.
this theory.
Commutative theories are a particular case of flat permutative theories where
all xi are distinct variables and any permutation is possible; for the ordering we
can use a multiset extension of the ordering between constants of K.

4.2 Associative Theories

An associative theory is represented by the axiom

f(f(x1, x2), x3) ≈ f(x1, f(x2, x3))

This axiom generates three possible extensions of rewrite rules whose left-hand
side is a f -term, with the contexts (f(f(y1, y2), x1), 1, ∅), (f(x2, f(y1, y2)), 2, ∅)
and (f(x3, f(y1, y2), x4), 2, ∅). Those three contexts can be used for applying
term rewriting steps w.r.t. (Re

i , Ei). But for the Superposition inference rule be-
tween two rules t1 → s1 and t2 → s2, we only need to consider their extensions
f(t1, x1) → f(s1, x1) and f(x2, t2) → f(x2, s2) because this is the only combina-
tion of contexts for which the unification problem (f(t1, x1) =

?
Ei

f(x2, t2)) can
generate a ground most general unifier, and any other combination of contexts
would generate a redundant equation. For the ordering, the arguments of an as-
sociative operator are compared with a lexicographic extension of the ordering
between constants of K.

4.3 Associative-Commutative Theories

An associative-commutative theory is represented by axioms

f(x1, x2) ≈ f(x2, x1) and f(f(x1, x2), x3) ≈ f(x1, f(x2, x3))

It generates only one possible extension of rewrite rules whose left-hand side is a
f -term, with the context (f(f(y1, y2), x1), 1, ∅), used for applying term rewriting
steps w.r.t. (Re

i , Ei), and the Superposition inference rule. For the ordering, the
arguments of an associative-commutative operator are compared with a multiset
extension of the ordering between constants of K.
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4.4 Additional Theories

The theory process defined in the previous section is very general and can apply
to many theories. We have given above three examples of theories that are often
necessary to theorem provers or SMT solvers.

It is possible to define some extensions to those three theories by considering
additional axioms that will be represented by a set of flat collapsing rewrite rules
REi

which is confluent and terminating, and so that those axioms do not intro-
duce new contexts w.r.t. ContEi , and extended rules from REi are redundant:
if t →∗

(Re
Ei

,Ei)
s and s is in normal form w.r.t. (Re

Ei
, Ei), then t →∗

(REi
,Ei)

s. The
right-hand side of a rewrite rule of REi

is either a subterm of the left-hand side,
or a constant. So their orientation from left to right does not need a specific
ordering.

The building of REi
from the added axioms uses the Flattening and Orien-

tation inference rules of the orchestrator; so, non-variable subterms in REi
are

new constants of K and they may be concerned by the Compression inference
rule. The use of REi in the theory process consists in normalizing w.r.t. (REi , Ei)
every equation or rule deduced.

The conditions defining those extensions are very restrictive. The reason is
that therefore they imply only minor modifications in our procedure. Without
such conditions, we would have either to handle additional contexts together with
extended matching and unification algorithms, or to add many rewrite rules for
each deduced rule as done in [9] for considering idempotency or nilpotency in
addition to associativity-commutativity. But even with those conditions, some
interesting examples can be considered. For theories generating contexts (such
as those including associativity of an operator f), extensions can include axioms
such as f(x, 1) ≈ x or f(x, 0) ≈ 0. For theories that do not generate contexts
(such as the commutativity of an operator f), extensions can include axioms like
f(x, x) ≈ x or f(x, x) ≈ 0.

5 Completeness of CombCC

The CombCC procedure is refutationally complete, provided that deductions are
fairly applied. Moreover, if the CombCC procedure terminates without finding a
contradiction with disequalities of ∆, it generates a terminating confluent term
rewriting system for the equational theory E ∪ Γ .

Theorem 1. Let E be any disjoint union of empty, flat permutative, associative,
and associative-commutative theories over the combined signature Σ which may
include uninterpreted function symbols and constants. Consider Γ is any set of
ground Σ-equalities and ∆ is any set of ground Σ-disequalities. Given the input
Γ ∪∆, the CombCC procedure halts on ⊥ if Γ ∪∆ is E-unsatisfiable. If the CombCC
procedure halts on an output distinct from ⊥, then Γ ∪ ∆ is E-satisfiable, and
the output provides a rewriting system R such that (1) R is terminating and
confluent modulo E on T (Σ ∪ K), and (2) any two ground terms in T (Σ) are
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E∪R-equal iff they are E∪Γ -equal. Moreover, the CombCC procedure is necessarily
terminating if E does not involve associative theories.

To prove the completeness of CombCC, we can rely on a Nelson-Oppen com-
bination method [13] based on the ping-ponging of entailed equalities between
(shared) constants. This combination method is applicable without loss of com-
pleteness because one can rely on a union of convex and stably infinite theories.
The same proof idea as the one initiated in [2] can be reused, by considering two
cases. In the simple case of the trivial model, a set of literals is satisfiable if and
only if it is a set of equalities. In the general case excluding the trivial model,
the underlying theories are stably infinite.

Lemma 1 ([2]). Let Ei be any non-trivial equational Σi-theory, Γ any finite set
of ground Σi-equalities, ∆ any finite set of ground Σi-disequalities, and a, b two
distinct fresh constants not occurring in Ei, Γ and ∆. Then, we have:

(i) Ei ∪ {a ̸≈ b} is convex and stably infinite,
(ii) Γ ∪∆ is (Ei ∪{a ̸≈ b})-unsatisfiable iff Γ ∪∆∪{a ̸≈ b} is Ei-unsatisfiable.

Proof. The statement (ii) is straightforward, so let us focus on (i): Ei∪{a ̸≈ b} is
convex since it is a Horn theory and any Horn theory is known to be convex [19].
Moreover, Ei ∪ {a ̸≈ b} is stably infinite since any convex theory with no trivial
models is known to be stably infinite [4].

The convexity induces a particular way to decide the satisfiability of equali-
ties plus a conjunction of disequalities: it allows us to consider each disequality
separately. This is a direct rewording of the definition of convexity.

Lemma 2. Let T be any convex theory. For any T -satisfiable finite set Γ of
ground equalities, and any finite set ∆ of ground disequalities, both expressed
over the signature of T , we have that Γ ∪ ∆ is T -unsatisfiable iff there exists
some disequality s ̸≈ t in ∆ such that Γ ∪ {s ̸≈ t} is T -unsatisfiable.

In CombCC, the input satisfiability problem is transformed via Splitting and
Flattening into an equisatisfiable problem including only flat literals, meaning
that all the disequalities in ∆ are of the form c ̸≈ d where c and d are constants.
Thus, we are looking for inference systems with the property of being deduction-
complete [20], in order to derive each equality c ≈ d such that Γ ⇒ c ≈ d is
valid in the underlying theory. This is exactly the purpose of a congruence closure
procedure when it applies to an input set of flat equalities Γ . It generates all the
equalities between constants that are logically entailed by Γ .

Compared to a classical application of the Nelson-Oppen combination method,
we have to accommodate congruence closure procedures that are not necessarily
terminating since E may include associative theories for which non-terminating
derivations are shown in Section 6. Let us shortly explain why CombCC is refuta-
tionally complete. According to the completeness of the Nelson-Oppen method,
the satisfiability problem in any disjoint union of stably infinite theories is re-
ducible to the satisfiability problems in the component theories, provided that
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all possible arrangements are guessed. Consequently, given any disjoint union
of stably infinite theories, using refutationally complete procedures for the sat-
isfiability problems in the component theories allows us to get a refutationally
complete procedure for the satisfiability problem in the union. In our context,
stably infinite theories are also convex and so the guessing of all possible ar-
rangements can be replaced by a ping-ponging of entailed equalities between
constants. Then, we use the property that all the entailed equalities between
constants are eventually generated since our congruence closure procedures are
deduction-complete.

Remark 1 (About theories sharing constants). Our combination procedure per-
mits theories to share constants, as exemplified in Section 4.4 by the addition of
axioms. Let us briefly explain how those shared constants are handled. Assume
that a constant a is shared by two theories E1 and E2. The orchestrator will
replace this constant by a new one by Flattening, generating a D-rule a → c
(c ∈ K). Then it will include this D-rule in the set of rewrite rules of each theory
(R1 and R2). The theory process of Ei may have to use this D-rule for transform-
ing rules of Ri and equations in Ei, eliminating all other occurrences of constant
a. And if later on an equation c ≈ d is generated, it will be propagated in all
other theory processes by the Compression inference rule of the orchestrator.
Thus, considering theories with shared constants preserves the way our CombCC
procedure works and its refutational completeness.

6 On Non-termination for Associative Theories

Our procedure may not terminate (if no contradiction exists) with associative
theories. For example, we consider the combination of two theories, one with an
associative operator f , and the empty theory with constants a, b, c and d, and
we are given the equalities

Γ = {f(a, b) ≈ c, f(d, a) ≈ c, f(a, c) ≈ f(c, a)}

For any precedence ordering between the four constants, an infinite number of
rewrite rules is generated as illustrated below by the following case study, where
traces are rebuilt from the output of our implementation. 3

If d ≺ c, the E-rules f(c, dn, c) → f(dn, c, c) are generated as follows:

> Equality: f(a, b) = c
D-rule f(a, b) → c generated (Orientation)

> Equality: f(d, a) = c
D-rule f(d, a) → c generated (Orientation)

> Equality: f(a, c) = f(c, a)
E-rule f(a, c) → f(c, a) generated (Orientation)

> Equality f(c, b) = f(d, c) generated

3 For clarity, constants a, b, c, d have not been replaced by new constants in the traces.
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(Superposition between f(d, a) → c and f(a, b) → c)
> Equality: f(c, b) = f(d, c)

E-rule f(c, b) → f(d, c) generated (Orientation)
> Equality f(c, c) = f(d, c, a) generated

(Superposition between f(d, a) → c and f(a, c) → f(c, a))
> Equality: f(c, c) = f(d, c, a)

E-rule f(d, c, a) → f(c, c) generated (Orientation)
> Equality f(c, c, b) = f(d, c, c) generated

(Superposition between f(d, c, a) → f(c, c) and f(a, b) → c)
> Equality: f(c, c, b) = f(d, c, c)

Subterm f(c, c, b) simplified into f(c, d, c) (with f(c, b) → f(d, c))
E-rule f(c, d, c) → f(d, c, c) generated (Orientation)

> Equality f(d, c, c, b) = f(c, d, d, c) generated
(Superposition between f(c, d, c) → f(d, c, c) and f(c, b) → f(d, c))

> Equality: f(d, c, c, b) = f(c, d, d, c)
Subterm f(d, c, c, b) simplified into f(d, c, d, c) (with f(c, b) → f(d, c))
Subterm f(d, c, d, c) simplified into f(d, d, c, c) (with f(c, d, c) → f(d, c, c))
E-rule f(c, d, d, c) → f(d, d, c, c) generated (Orientation)

...
> Equality f(dn, c, c, b) = f(c, dn+1, c) generated

(Superposition between f(c, dn, c) → f(dn, c, c) and f(c, b) → f(d, c))
%% extended term f(c, dn, c, b) generates f(dn, c, c, b) = f(c, dn, d, c)

> Equality f(dn, c, c, b) = f(c, dn+1, c)
Subterm f(dn, c, c, b) simplified into f(dn, c, d, c) (with f(c, b) → f(d, c))
Subterm f(dn, c, d, c) simplified into f(dn+1, c, c) (with f(c, d, c) → f(d, c, c))
E-rule f(c, dn+1, c) → f(dn+1, c, c) generated (Orientation)

Else (d ≻ c), if c ≺ b, the E-rules f(c, bn, c) → f(c, c, bn) are generated as follows:

> Equality: f(a, b) = c
D-rule f(a, b) → c generated (Orientation)

> Equality: f(d, a) = c
D-rule f(d, a) → c generated (Orientation)

> Equality: f(a, c) = f(c, a)
E-rule f(a, c) → f(c, a) generated (Orientation)

> Equality f(c, b) = f(d, c) generated
(Superposition between f(d, a) → c and f(a, b) → c)

> Equality: f(c, b) = f(d, c)
E-rule f(d, c) → f(c, b) generated (Orientation)

> Equality f(c, c) = f(d, c, a) generated
(Superposition between f(d, a) → c and f(a, c) → f(c, a))

> Equality: f(c, c) = f(d, c, a)
Subterm f(d, c, a) simplified into f(c, b, a) (with f(d, c) → f(c, b))
E-rule f(c, b, a) → f(c, c) generated (Orientation)

> Equality f(c, c, b) = f(c, b, c) generated
(Superposition between f(c, b, a) → f(c, c) and f(a, b) → c)

> Equality: f(c, c, b) = f(c, b, c)
E-rule f(c, b, c) → f(c, c, b) generated (Orientation)

> Equality f(c, b, b, c) = f(d, c, c, b) generated
(Superposition between f(d, c) → f(c, b) and f(c, b, c) → f(c, c, b))

> Equality: f(c, b, b, c) = f(d, c, c, b)
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Subterm f(d, c, c, b) simplified into f(c, b, c, b) (with f(d, c) → f(c, b))
Subterm f(c, b, c, b) simplified into f(c, c, b, b) (with f(c, b, c) → f(c, c, b))
E-rule f(c, b, b, c) → f(c, c, b, b) generated (Orientation)

...
> Equality f(c, bn+1, c) = f(d, c, c, bn) generated

(Superposition between f(d, c) → f(c, b) and f(c, bn, c) → f(c, c, bn))
%% extended term f(d, c, bn, c) generates f(c, b, bn, c) = f(d, c, c, bn)

> Equality: f(c, bn+1, c) = f(d, c, c, bn)
Subterm f(d, c, c, bn) simplified into f(c, b, c, bn) (with f(d, c) → f(c, b))
Subterm f(c, b, c, bn) simplified into f(c, c, bn+1) (with f(c, b, c) → f(c, c, b))
E-rule f(c, bn+1, c) → f(c, c, bn+1) generated (Orientation)

Else (d ≻ c ≻ b), the E-rules f(c, bn, c, b) → f(c, b, bn, c) are generated as follows:

> Equality: f(a, b) = c
D-rule f(a, b) → c generated (Orientation)

> Equality: f(d, a) = c
D-rule f(d, a) → c generated (Orientation)

> Equality: f(a, c) = f(c, a)
E-rule f(a, c) → f(c, a) generated (Orientation)

> Equality f(c, b) = f(d, c) generated
(Superposition between f(d, a) → c and f(a, b) → c)

> Equality: f(c, b) = f(d, c)
E-rule f(d, c) → f(c, b) generated (Orientation)

> Equality f(c, c) = f(d, c, a) generated
(Superposition between f(d, a) → c and f(a, c) → f(c, a))

> Equality: f(c, c) = f(d, c, a)
Subterm f(d, c, a) simplified into f(c, b, a) (with f(d, c) → f(c, b))
E-rule f(c, b, a) → f(c, c) generated (Orientation)

> Equality f(c, c, b) = f(c, b, c) generated
(Superposition between f(c, b, a) → f(c, c) and f(a, b) → c)

> Equality: f(c, c, b) = f(c, b, c)
E-rule f(c, c, b) → f(c, b, c) generated (Orientation)

> Equality f(c, b, c, b) = f(d, c, b, c) generated
(Superposition between f(d, c) → f(c, b) and f(c, c, b) → f(c, b, c))

> Equality: f(c, b, c, b) = f(d, c, b, c)
Subterm f(d, c, b, c) simplified into f(c, b, b, c) (with f(d, c) → f(c, b))
E-rule f(c, b, c, b) → f(c, b, b, c) generated (Orientation)

> Equality f(c, b, b, c, b) = f(d, c, b, b, c) generated
(Superposition between f(d, c) → f(c, b) and f(c, b, c, b) → f(c, b, b, c))

> Equality: f(c, b, b, c, b) = f(d, c, b, b, c)
Subterm f(d, c, b, b, c) simplified into f(c, b, b, b, c) (with f(d, c) → f(c, b))
E-rule f(c, b, b, c, b) → f(c, b, b, b, c) generated (Orientation)

...
> Equality f(c, bn+1, c, b) = f(d, c, bn+1, c) generated

(Superposition between f(d, c) → f(c, b) and f(c, bn, c, b) → f(c, b, bn, c))
%% extended term f(d, c, bn, c, b) generates f(c, b, bn, c, b) = f(d, c, b, bn, c)

> Equality: f(c, bn+1, c, b) = f(d, c, bn+1, c)
Subterm f(d, c, bn+1, c) simplified into f(c, b, bn+1, c) (with f(d, c) → f(c, b))
E-rule f(c, bn+1, c, b) → f(c, b, bn+1, c) generated (Orientation)
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There are also shorter examples, for instance with two associative operators
f and g and the equalities

Γ = {f(a, b) ≈ c, f(a, c) ≈ f(c, a), g(b, a) ≈ c, g(a, c) ≈ g(c, a)}

Either the theory process of f , or the one of g, will generate an infinite number
of rewrite rules, depending on the chosen ordering between constants a and c
deciding of the orientation of the second and fourth equalities.

For associativity, it is well-known that unification is infinitary. But with those
examples we illustrate that it is possible to generate infinite derivations, even if
we consider only ground equalities and unification problems with finitely many
most general unifiers.

7 Running Example

We have implemented the combination procedure described in this paper for
several theories: the empty theory, commutative theories, associative theories,
associative-commutative theories. It is written in C (6000 lines of code).

We detail below the trace obtained in 6ms for an example combining three
theories: one where the operator cp (a short-cut for compatible) is commutative,
one where the operator and is associative-commutative, and the empty theory
with all the constants and the owns operator. The initial set of equalities Γ is:

owns(Ali , and(cp(boat , engine), cp(engine, captain), cp(captain, boat))) ≈ true
and(cp(boat , captain), cp(boat , engine)) ≈ and(boat , cp(captain, engine))
and(cp(captain, engine), cp(captain, engine)) ≈ cp(captain, engine)
and(cp(engine, captain), boat) ≈ ready_boat
owns(Ali , ready_boat) ≈ false

and there is one disequality: ∆ = {true ̸≈ false}.
A contradiction is derived by the following deductions; 4 new constants (of

K) are written _i, where i is an integer.

> Equality: owns(Ali , rdy) = false
D-rule owns(Ali , rdy) → false generated (Orientation)

> Equality: and(cp(eng, cap), boat) = rdy
D-rule cp(cap, eng) → _1 generated (Extension)
D-rule and(boat, _1) → rdy generated (Orientation)

> Equality: and(cp(cap, eng), cp(cap, eng)) = cp(cap, eng)
Subterm cp(cap, eng) simplified into _1 (with cp(cap, eng) → _1)
Subterm cp(cap, eng) simplified into _1 (with cp(cap, eng) → _1)
Subterm cp(cap, eng) simplified into _1 (with cp(cap, eng) → _1)
D-rule and(_1, _1) → _1 generated (Orientation)

> Equality: and(cp(boat, cap), cp(boat, eng)) = and(boat, cp(cap, eng))
D-rule cp(boat, cap) → _2 generated (Extension)
D-rule cp(boat, eng) → _3 generated (Extension)

4 For clarity, in the trace the initial constants have been shortened: “eng” stands for
“engine”, “cap” stands for “captain”, “rdy” stands for “ready_boat”.
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Subterm cp(cap, eng) simplified into _1 (with cp(cap, eng) → _1)
Subterm and(boat, _1) simplified into rdy (with and(boat, _1) → rdy)
D-rule and(_3, _2) → rdy generated (Orientation)

> Equality: owns(Ali , and(cp(boat, eng), cp(eng, cap), cp(cap, boat))) = true
Subterm cp(boat, eng) simplified into _3 (with cp(boat, eng) → _3)
Subterm cp(cap, eng) simplified into _1 (with cp(cap, eng) → _1)
Subterm cp(boat, cap) simplified into _2 (with cp(boat, cap) → _2)
Subterm and(_3, _2, _1) simplified into and(_1, rdy) (with and(_3, _2) → rdy)
D-rule and(_1, rdy) → _4 generated (Extension)
D-rule owns(Ali , _4) → true generated (Orientation)

> Equality and(boat, _1) = and(_1, rdy) generated
(Superposition between and(boat, _1) → rdy and and(_1, _1) → _1)

> Equality: and(boat, _1) = and(_1, rdy)
Subterm and(boat, _1) simplified into rdy (with and(boat, _1) → rdy)
Subterm and(_1, rdy) simplified into _4 (with and(_1, rdy) → _4)
C-rule _4 → rdy generated (Orientation)

> Compression with _4 → rdy
D-rule and(_1, rdy) → _4 replaced by and(_1, rdy) → rdy
(Composition with _4 → rdy)
D-rule owns(Ali , _4) → true replaced by owns(Ali , rdy) → true
(Collapse with _4 → rdy)
D-rule owns(Ali , rdy) → false replaced by false → true
(Collapse with owns(Ali , rdy) → true)

> Compression with false → true
Disequality: true ̸= false simplified into true ̸= true (with false → true)

*** A contradiction has been found! ***

8 Conclusion

We have defined CombCC as an orchestrator that does not need to handle specific
algorithms related to theories Ei. It could be more efficient using some inference
rules of theory processes, like Simplification and Deletion. But we did this on
purpose for the clarity of the paper and to show that the orchestrator can be
defined independently from the theories. We are considering several extensions of
our procedure, to apply it to any theory having a deduction system preserving
the groundness of generated rules/equalities. This applies to flat permutative
theories, an extension of commutative theories. It also applies to extensions of
associative and/or commutative theories with axioms that can be used as flat
collapsing rewrite rules.

Our new implementation allows us to experiment extensions of Associativity
and/or Commutativity with orientable equational axioms specifying for instance
an idempotent or nilpotent operator, or an operator with a neutral or absorbent
element. This implementation is very helpful to identify counter-examples and
non-terminating examples.

In the future, we plan to investigate congruence closure procedures for the
unions of theories possibly sharing constructor symbols with associative and/or
commutative equational properties. It is clearly challenging to try to go beyond
the simple case of shared constants.
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Currently, we consider theories where classical equational completion tech-
niques are applicable. An interesting future work would be to study other com-
pletion techniques, such as unfailing completion, in the context of congruence
closure. In order to integrate various completion techniques within a uniform
framework, we could envision to reuse the notion of normalizing mapping ini-
tially introduced for the (combined) word problem [6], or study the combination
of extended canonizers [18] to go beyond the classical rewrite-based normaliza-
tion. Applying this notion to congruence closure remains to be studied. This
would pave the way of extending our combined abstract framework for congru-
ence closure to new equational theories.
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