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Abstract

In this paper we outline a theoretical framework for the combination of decision
procedures for constraint satisfiability. We describe a general combination method
which, given a procedure that decides constraint satisfiability with respect to a
constraint theory T1 and one that decides constraint satisfiability with respect to a
constraint theory T2, produces a procedure that (semi-)decides constraint satisfiabil-
ity with respect to the union of T1 and T2. We provide a number of model-theoretic
conditions on the constraint language and the component constraint theories for
the method to be sound and complete, with special emphasis on the case in which
the signatures of the component theories are non-disjoint. We also describe some
general classes of theories to which our combination results apply, and relate our
approach to some of the existing combination methods in the field.
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1 Introduction

An established approach to problem solving is to recast problems in terms of
constraint satisfaction. For automated problem solving, a major advantage of
constraint-based approaches is efficiency. It is often possible to implement a
fast constraint solver for a given application domain by intelligently exploit-
ing some of the features of the domain itself. A major disadvantage is, of
course, specialization. If a problem also requires solving constraints outside
the constraint domain, a constraint reasoner alone is not enough. 2

Now, many potential applications of constraint-based approaches in fields as
diverse as software/hardware verification, program synthesis, computational
linguistics, expert systems, and so on, are often faced with heterogeneous prob-
lems , that is, problems spanning over several constraint domains at once. Se-
mantically, these are problems in a domain which is a combination of various
constraint domains. Syntactically, they are problems whose constraints are
expressed in a combination of the constraint languages of each constraint do-
main. To deal with heterogeneous problems, one can certainly try to build from
scratch a constraint reasoner for the combined domain. However, if constraint
reasoners are already available for the various components of the domain, it is
sensible to think of obtaining a reasoner for the combined domain by somehow
combining the available reasoners. Ideally, such a reasoner must be able to

• extract from the problem specification the constraints that can be handled
by a component reasoner, for each such reasoners,
• assign these extracted constraints to the corresponding reasoner, and
• compose, at least in principle, the local solutions from the various reasoners

into global solutions for the original problem.

To date, there are very few results on the combination of constraint domains
and their reasoners. The fact is that, as desirable as it is from both a knowl-
edge and a software engineering standpoint, this sort of combination raises
several challenging model-theoretic and computational issues. Although the
computational aspects of combination have been investigated for some time
(see (Schulz, 2000) for a recent account), only recently have people started
to study the logical and model-theoretic background of general methodologies
for combining constraint reasoners. This paper represents our contribution to

2 We use the term domain here in a loose sense. Typically a (constraint) domain, a
semantical notion, is represented by a logical (constraint) theory, a syntactical one,
which axiomatizes the domain’s properties of interest. Also, we speak generically
of constraint reasoners, as opposed to constraint solvers, to include those cases in
which it not necessary to actually produce a solution of the input constraints, but
it is enough to discover if the constraints are satisfiable, according to some adopted
notion of satisfiability.
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this study.

1.1 Previous Work

Most of the current work on the combination of constraints reasoners re-
gards the combination of solvers for equational constraints, in particular, al-
gorithms for E-unification (Herold, 1986; Schmidt-Schauß, 1989; Ringeissen,
1992; Boudet, 1993; Baader and Schulz, 1996) and related problems (Domen-
joud et al., 1994; Baader and Schulz, 1995b; Kirchner and Ringeissen, 1994a,b).
In this context, the constraint language is restricted to quantifier-free formulae
over a functional signature (no predicate symbols other than equality), each
component constraint domain is axiomatized by an equational theory and the
combined domain is axiomatized by the union of these theories.

The emergence of general constraint-based paradigms, such as constraint logic
programming (Jaffar and Maher, 1994), constrained resolution (Bürckert, 1994)
and what is generally referred to as theory-reasoning (Baumgartner et al.,
1992), raises the problem of combining reasoners for first-order , but not nec-
essarily equational, constraints. The existing work on the combination of such
reasoners is better understood by first realizing that combination problems
can be divided into two broad classes, depending on the kind of constraint
satisfiability considered by the component reasoners.

The first class comprises constraint reasoners for which satisfiability is de-
fined in terms of validity of existential closures in a given constraint theory:
a constraint is satisfiable if its existential closure is a logical consequence of
the constraint theory. Constraint-based reasoning frameworks using reasoners
of this sort are mostly based on the constraint logic programming scheme by
J. Jaffar and J.-L. Lassez (Jaffar and Maher, 1994).

The second class comprises constraint reasoners for which satisfiability is de-
fined in terms of consistency of existential closures with the constraint the-
ory: a constraint is satisfiable if its existential closure is true in at least one
model of the theory. Some constraint-based reasoning frameworks using rea-
soners of this sort are the constraint logic programming scheme of M. Höhfeld
and G. Smolka (Höhfeld and Smolka, 1988), the deduction with constraints
framework (Kirchner et al., 1990), constrained resolution (Bürckert, 1994),
constraint contextual rewriting (Armando and Ranise, 1998), and—at least at
the ground level—all theory-reasoning frameworks (Baumgartner et al., 1992).

Essentially all existing results in the combination of constraint reasoners in the
first class come from the work of F. Baader and K. Schulz (Baader and Schulz,
1995a,c; Kepser and Schulz, 1996; Baader and Schulz, 1998), which lifts and
extends to a first-order setting earlier combination results in the equational
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case.

In this paper, we are interested in the combination of constraint reasoners of
the second class. Early work on this topic comes from research in automated
software verification. The actual problem of interest there was the validity of
assertions (expressed as universal formulae) in theories axiomatizing common
data types. This problem, however, was conveniently recast as a satisfiability
problem since a formula is entailed by a theory exactly when its negation is
satisfiable in no models of that theory.

Initial combination results were provided by R. Shostak in (Shostak, 1979)
and in (Shostak, 1984). Shostak’s approach is limited in scope and not very
modular—admitedly on purpose, for efficiency reasons. A rather general and
completely modular combination method was proposed by G. Nelson and
D. Oppen in (Nelson and Oppen, 1979) and then slightly revised in (Nelson,
1984). Given, for i = 1, . . . , n, a procedure Pi that decides the satisfiabil-
ity of quantifier-free formulae in a universal theory Ti, their method yields
a procedure that decides the satisfiability of quantifier-free formulae in the
theory T1 ∪ · · · ∪ Tn. A declarative and non-deterministic view of the pro-
cedure was suggested by Oppen in (Oppen, 1980). In (Tinelli and Harandi,
1996), C. Tinelli and M. Harandi followed up on this suggestion describing
a non-deterministic version of the Nelson-Oppen combination procedure and
providing a simpler correctness proof. A similar approach had also been fol-
lowed by C. Ringeissen in (Ringeissen, 1993), which describes the procedure
as a set of derivation rules applied non-deterministically.

All the works mentioned above share one major restriction on the constraint
languages of the component reasoners: they must have no function or relation
symbols in common. (The only exception is the equality symbol, which is
however regarded as a logical constant.) This restriction has proven really
hard to lift. A testament of this is that, more than two decades after Nelson
and Oppen’s original work, their combination results are still state of the art.

Results on non-disjoint combination do exist, but they are still quite limited.
To start with, some results on the union of non-disjoint equational theories
can be obtained as a byproduct of the research on the combination of term
rewriting systems. Modular properties of term rewriting systems have been
extensively investigated (see the overviews in (Ohlebusch, 1995; Gramlich,
1996) for instance). Using some of these properties it is possible to derive
combination results for the word problem in the union of equational theories
sharing constructors. 3 Outside the work on modular term rewriting, the first

3 The word problem in an equational theory E is the problem of determining
whether a given equation s ≡ t is valid in E—or, equivalently, whether a dise-
quation ¬(s ≡ t) is (un)satisfiable in E. In a term rewriting system, a constructor
is a function symbol that does not appear as the top symbol of a rewrite rule’s
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combination results for the word problem in the union of non-disjoint con-
straint theories were given in (Domenjoud et al., 1994) as a consequence of
some combination techniques based on an adequate notion of (shared) con-
structors. The second of us used similar ideas later in (Ringeissen, 1996b) to
extend the Nelson-Oppen method to theories sharing constructors in a sense
close to that of (Domenjoud et al., 1994).

To our knowledge, the only new work since (Ringeissen, 1996b) on the com-
bination of constraint reasoners for constraint theories with symbols in com-
mon is the one described in this paper and in a series of related papers by
F. Baader and the first of us, the most recent and comprehensive of which
is (Baader and Tinelli, 2001). These papers discuss a very general decision
procedure for the word problem in the union of equational theories with non-
disjoint signatures. 4 The procedure’s correctness proof is based on some of
the model-theoretic results reported here. Part of the work reported in this
paper is also described in (Tinelli, 1999); a preliminary account was given in
(Tinelli and Ringeissen, 1998).

1.2 Our Contribution

In this paper we focus on constraint satisfiability problems—in the sense of
constrained consistency explained above—which are expressible in the lan-
guage of first-order logic, or a fragment of it. For these problems, a constraint
domain is formalized by a first-order structure (in the sense of Model Theory)
and axiomatized by a first-order theory. Problem constraints are represented
by sets of first-order formulae, constraint variables by free variables of formu-
lae, constraint solutions by mappings of free variables into the universe of a
constraint structure.

In this context, we are specifically concerned with the following combination
problem: given two constraint theories T1 and T2 and a class L of constraints,
how can a procedure deciding the satisfiability of L-constraints in T1 and a
procedure deciding the satisfiability of L-constraints in T2 be combined into
a procedure deciding the satisfiability of L-constraints in T1 ∪ T2?

This problem is unsolvable in its full generality as there exist union theories
T1 ∪ T2 in which constraint satisfiability is undecidable even if it is decid-
able in their component theories. Our main research effort then has consisted
in developing appropriate restrictions on T1, T2 and L that make the above

left-hand side.
4 An alternative but, as it turns out, equivalent approach to this topic has been
very recently proposed by C. Fiorentini and S. Ghilardi in (Fiorentini and Ghilardi,
2001).
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combination problem solvable. As mentioned earlier, Nelson and Oppen had
already identified some: L is the class of quantifier-free formulae and T1 and
T2 are universal with no non-logical symbols in common. This paper relaxes
those restrictions to languages that are not necessarily quantifier-free and to
theories that are not necessarily universal and have up to a finite number of
non-logical symbols in common.

We start to discuss the main issues of the combination problem above in Sec-
tion 3, after providing some formal preliminaries in Section 2. We first describe
what we consider the most basic notion of combined structure, which we call
fusion, and then provide a necessary and sufficient condition for two struc-
tures with arbitrary signatures to be combinable into a fusion: the structures
reducts to their common signature must be isomorphic. Then, we show under
what conditions the satisfiability of “mixed” constraints in a fusion structure
is reducible to the satisfiability of pure 5 constraints in the fusion’s compo-
nents. The main requirement is that the two component structures have a
set of elements X and Y , respectively, such that any injection from a finite
subset of X into Y extends to an isomorphism of the structures’ reducts to
the common signature.

In Section 4, we lift the results in the previous section from fusions of struc-
tures to unions of theories. This lifting is possible for theories that are N-O-
combinable over a given class L of constraints. The essence of N-O-combin-
ability, a rather technical notion, is that the satisfiability in a theory T1 ∪ T2

of the conjunction ϕ1 ∧ϕ2 of two pure constraints can be reduced to the local
satisfiability of ϕ1 in T1 and of ϕ2 in T2 by adding to both formulae an ap-
propriate Σ-restriction, a particular kind of first-order restriction on the free
variables shared by ϕ1 and ϕ2. Adding a restriction on the values of the shared
variables is in the spirit of the Nelson-Oppen combination procedure 6 , but
tailored to the case of theories with not necessarily disjoint signatures.

In Section 5, we then describe an extension of the Nelson-Oppen procedure
that, by guessing the right Σ-restrictions, is sound and complete for N-O-
combinable theories. Our combination procedure is only a semi-decision pro-
cedure in general because the set of possible Σ-restrictions is infinite whenever
the component theories share function symbols. Nonetheless, it yields the fol-
lowing modular decidability result for the union of two N-O-combinable and
axiomatizable theories T1 and T2: if the satisfiability in each Ti of pure con-
straints with Σ-restrictions is decidable then the satisfiability in T1 ∪ T2 of
mixed constrains with Σ-restrictions is also decidable. This generalizes both

5 By pure we mean made only of symbols from one of the two theories.
6 More precisely, of its non-deterministic version, where the added restrictions are
simply conjunctions of equations and disequations between shared variables. See,
e.g., (Tinelli and Harandi, 1996) for details.
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Nelson and Oppen’s combination results and Ringeissen’s initial results in
(Ringeissen, 1996b).

The definition of N-O-combinable theories is rather abstract and imposes con-
ditions on the two theories as a pair, not individually. As a consequence, it
is not immediate to tell when two theories are N-O-combinable. We dedicate
the rest of the paper to developing more “local” restrictions sufficient for N-
O-combinability.

In Section 6, we discuss some criteria for showing that two theories are N-
O-combinable. In particular, we define a local property for component theo-
ries that, with some additional conditions, makes them N-O-combinable. This
property, which we call stable Σ-freeness, is an extension of Nelson and Op-
pen’s idea of stable-infiniteness of a theory. In essence, a theory T is stably
Σ-free (over a certain constraint language) if every constraint (in the language)
satisfiable in T is satisfiable in a model of T whose Σ-reduct is a free structure
with infinitely-many generators.

As discovered by previous research on non-disjoint combination, it is easier
to combine theories whose shared function symbols are constructors in an
appropriate sense. In Section 7, we provide our own definition of constructors,
discuss its main properties, and argue that it generalizes previous notions of
constructors in the literature. The main idea is that a subsignature of a theory
T is a set of constructors for T if every term has a normal form (in T ) such
that its top part is made only of constructors and the equivalence in T of two
normal forms reduces, in a precise sense, to the equivalence of their top parts.
This notion of constructors is interesting in its own right, but we use it in this
paper mainly to provide an example of a large class of stably Σ-free theories.

In Section 8, we then present some examples of classes of stably Σ-free theories
that are N-O-combinable and discuss one of them in detail. In this class the
theories will share constructors in the sense of Section 7.

Section 9 concludes the paper with some directions for further research.

2 Formal Preliminaries

We start by introducing some of the basic notions from Model Theory and
Universal Algebra that we use in the paper. For the most part we will closely
adhere to the notation and terminology of (Hodges, 1993) and (Wechler, 1992).

A signature Σ consists of a set ΣP of relation symbols and a set ΣF of function
symbols, each with an associated arity, an integer n ≥ 0. A constant symbol
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is a function symbol of zero arity. A functional signature is a signature with
no relation symbols. We use the letters Σ,Ω,∆ to denote signatures.

Throughout the paper, we fix a countably-infinite set V of variables, disjoint
with any signature Σ. For any X ⊆ V , T (Σ, X) denotes the set of Σ-terms
over the variables X, i.e., first-order terms of signature ΣF and variables from
X. If t is a term, t(ε) denotes the top symbol of t, that is, t(ε) = t if t is a
variable in V , and t(ε) = f if t = f(t1, . . . , tn) for n ≥ 0. We generally use
u, v, w to denote logical variables, and r, s, t to denote Σ-terms.

We use ϕ, ψ, γ to denote first-order formulae. The symbols >,⊥ respectively
denote the universally true and universally false formula; ≡ denotes equality
in formulae; s 6≡ t is an abbreviation for ¬(s ≡ t). If t is a term and ϕ a
formula, Var(t) denotes the set of t’s variables while Var(ϕ) denotes the set
of ϕ’s free variables. This notation is extended in the obvious way to sets of
terms or formulae. As usual, we call a formula ground if it has no variables,
and a sentence if it has no free variables.

In general, L will denote a sub-language of the language of the first-order
formulae, that is, a syntactically definable class of first-order formulae (such
as, for instance, the class of atomic/existential/equational/. . . formulae). The
notation LΣ restricts the formulae of L to a specific signature Σ. Analogously,
Qff (Qff Σ) denotes the class of all quantifier-free (Σ-)formulae. For conve-
nience, we will always assume that > ∈ LΣ for any L and Σ.

Symbols with a tilde on top denote finite sequences. For instance, x̃ stands for
an n-sequence of the form (x1, x2, . . . , xn), for n ≥ 0. 7 We denote by x̃, ỹ the
sequence obtained by concatenating x̃ with ỹ. We use the tilde notation for
members of a Cartesian product as well. Whenever convenient, we will also
treat x̃ as the set of its elements.

The notation ϕ(v1, . . . , vn) indicates that the free variables of the formula ϕ
are exactly the ones in (v1, . . . , vn), i.e., Var(ϕ) = {v1, . . . , vn}. 8 Similarly for
t(v1, . . . , vn), where t is a term. In both cases it is understood that the elements
of (v1, . . . , vn) are pairwise distinct. We will also use the notation ϕ(ṽ) and
t(ṽ) whenever convenient. When we write f(ṽ), where f is a function symbol,
it is also understood that the length of ṽ equals the arity of f . For any formula
ϕ(v1, . . . , vn), ∃̃ϕ and ∀̃ϕ denote respectively the existential and the universal
closure of ϕ. For notational convenience, we will systematically identify finite
sets of formulae with the conjunction of their elements (and identify the empty

7 Notice that x̃1 denotes a sequence of index 1, not the first element of the sequence
x̃.
8 This notation is non-standard, as ϕ(v1, . . . , vn) generally indicates that the free
variables of ϕ are included in {v1, . . . , vn}. We use it here because it simplifies the
enunciation of most of our results.
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set of formulae with >).

We use the standard notion of substitution, extended from terms to arbitrary
first-order formulae (and sets thereof) by renaming quantified variables when
necessary to avoid capturing of free variables. We denote the empty substitu-
tion by ε and write substitution applications in postfix form. Also, if σ is a
substitution we call the sets

Dom(σ) := {v ∈ V | vσ 6= v} and Ran(σ) := {vσ | v ∈ Dom(σ)}

respectively the domain and the range of σ. A substitution σ such that
Dom(σ) = {v1, . . . , vn} and viσ = ti for all i ∈ {1, . . . , n} will be denoted
by {v1 ← t1, . . . , vn ← tn}. With no loss of generality we only consider idem-
potent substitutions, that is, substitutions σ such that σ ◦ σ = σ. For each
U ⊆ V , SUB(U) denotes the set of idempotent substitutions whose domain
(in the sense above) is included in U .

Capital letters in calligraphic style such as A, B, C, F denote first-order struc-
tures. The corresponding Roman letter denote the universe of the structure.
Unless otherwise specified, the symbol Σ subscripted with the corresponding
Roman letter (ΣA,ΣA1 ,ΣB, . . .) denotes the signature of the structure.

Let A be a structure of signature Σ. If f is a symbol of Σ, fA denotes the
interpretation of f in A. If Ω is a subsignature of Σ, AΩ denotes the reduct
of A to Ω, that is, the structure obtained from A by “forgetting” the symbols
not in Ω. If U is a set of variables in V , a valuation of U is a mapping of U into
A. The pair (A, α) defines an interpretation, mapping the terms in T (Σ, U)
to elements of A, and Σ-formulae ϕ with free variables in U to true or false.
For all t ∈ T (Σ, U), [[t]]Aα denotes the element of A which (A, α) assigns to t.
Using the function tA induced by t on A, we may also write such an element
as tA(ã), where ã is the tuple of values assigned by α to ṽ. We say that (A, α)
satisfies a Σ-formula ϕ(ṽ), or that α satisfies ϕ in A, if (A, α) maps ϕ to true.
In that case, we write (A, α) |= ϕ. Alternatively, if ã is the tuple of values
assigned by α to ṽ, we may write A |= ϕ[ã]. In either case, we will call α
an A-solution of ϕ. If ϕ has no free variables, the choice of α is irrelevant
and so we write just A |= ϕ. We say that ϕ is satisfiable in A if there is a
valuation of Var(ϕ) that satisfies ϕ in A (equivalently, if A |= ∃̃ ϕ). We write
A |= ϕ and say that A models ϕ if every valuation of Var(ϕ) into A satisfies
ϕ (equivalently, if A |= ∀̃ ϕ).

If K is a class of Σ-structures, we say that ϕ is satisfiable in K if it is satisfiable
in at least one member of K. We say that K entails ϕ and write K |= ϕ if
A |= ϕ for all A ∈ K. We say that K is non-trivial if it contains non-trivial
structures, that is, structures of cardinality greater than 1.
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IfA is a Σ-structure andX ⊆ A, 〈X〉A denotes the substructure ofA generated
by X. Recall that X is said to generate A, or to be a a set of generators for
A, if A = 〈X〉A. We say that X is a non-redundant set of generators for A if
X generates A and no proper subset of X generates A. While every structure
admits a set of generators (its whole universe, for instance), not every structure
admits a non-redundant set of generators. Non-redundant sets of generators
have the following, easily provable property.

Lemma 1 Let Y be a non-redundant set of generators for a structure A.
Then, for all X ⊆ Y , X is a non-redundant set of generators for 〈X〉A.

For brevity, we will often use the definitions below, where A is any structure
and Σ a subsignature of ΣA.

Definition 2 (Σ-generators) We say that A is Σ-generated by a set X ⊆ A,
or that X is a set of Σ-generators of A, if AΣ is generated by X.

It is immediate that when (ΣA)F ⊆ Σ ⊆ ΣA, the notions of generators and
Σ-generators coincide.

Definition 3 (Σ-Isolated Individual) An element a ∈ A is a Σ-isolated
individual of A if a is not in the range of the interpretation of any function
symbol of Σ, i.e., if there is no g ∈ ΣF of arity n ≥ 0 and n-tuple x̃ in A such
that a = gA(x̃).

We say that an individual a is, simply, an isolated individual of A if a is a ΣA-
isolated individual of A. Since the set of A’s Σ-isolated individuals coincides
with the set of AΣ’s isolated individuals, we will use Is(AΣ) to denote either
of them. Notice that each Σ-isolated individual of a structure is necessarily
included in every set of Σ-generators for that structure. Moreover, any set
of Σ-generators consisting only of Σ-isolated individuals is necessarily non-
redundant.

A structure B is an expansion of a structure A if A is a reduct of B. We
will implicitly appeal to the following fact almost constantly in the rest of the
paper.

Lemma 4 Let A be an Σ-structure, ϕ(ṽ) a Σ-formula, and α a valuation of
ṽ into A. Then, for any expansion B of A to a signature Ω ⊇ Σ, (A, α) |= ϕ
iff (B, α) |= ϕ.

A first-order theory is a set of first-order sentences. A Σ-theory is a theory
all of whose sentences have signature Σ. All the theories we consider will be
first-order theories with equality , which means that equality symbol ≡ will
always be interpreted as the identity relation.
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As usual, a Σ-structureA is a model of a Σ-theory T ifAmodels every sentence
in T . We denote by ModΣ(T ), or just Mod(T ) when Σ is clear from context,
the class of all the Σ-models of T . We say that T is non-trivial if Mod(T ) is
non-trivial. A Σ-formula ϕ is satisfiable in T if it is satisfiable in Mod(T ). By
the above, a formula ϕ is satisfiable in T exactly when the theory T ∪ {∃̃ ϕ}
has a model. Two Σ-formulae ϕ and ψ are equisatisfiable in T if for every
model A of T , ϕ is satisfiable in A if and only if ψ is satisfiable in A. We say
simply that two formulae are equisatisfiable if they are equisatisfiable in the
empty theory. 9

The Σ-theory T entails ϕ, written T |= ϕ, if Mod(T ) |= ϕ. If T ′ is another
Σ-theory, we write T |= T ′ if T entails every sentence in T ′. For all Σ-terms
s, t, we write s =T t and say that s and t are equivalent in T iff T |= s ≡ t. If
Ω is a subsignature of Σ we call Ω-restriction of T , or also Ω-theory of T , the
set TΩ of all the Ω-sentences entailed by T .

A class of Σ-structures or a Σ-theory is collapse free if it entails no sentences
of the form ∀̃ (v ≡ t) where v is a variable and t a Σ-term different from v. 10

Notice that a theory T is collapse-free iff the class Mod(T ) is collapse-free and
that every collapse-free theory admits non-trivial models (otherwise, it would
entail ∀̃ (u ≡ v)).

In Universal Algebra, equational theories are defined as theories axiomatized
by a set of (universally quantified) equations. Here, we extend such a notion
to theories whose signature may include predicate symbols as well. We say
that a theory is atomic if it is axiomatized by a set of sentences of the form
∀̃ ϕ, where ϕ is an atomic formula. We use the symbol H to denote a given
atomic theory. It can be shown (see, e.g., (Hodges, 1993)) that a class K
of Σ-structures is closed under the formation of substructures, homomorphic
images, and direct products exactly when it is axiomatized by some atomic Σ-
theory H. In analogy to the equational case then, we call Mod(H) a Σ-variety.

If T is a Σ-theory, At(T ) denotes the atomic theory of T , the set of all the
universally quantified Σ-atoms entailed by T . For any Ω ⊆ Σ, we then call
At(TΩ), the set of all universally quantified Ω-atoms entailed by T , the atomic
Ω-theory of T . Similarly, we call atomic Ω-theory of Σ-structure A, and denote
by At(AΩ), the set of all the universally quantified Ω-atoms modeled by A. We

9 Note that although logically equivalent formulae are equisatisfiable, the converse
is not true. For instance, the formulae x ≡ a and x ≡ a ∧ y ≡ a, where x, y
are variables and a is a constant symbol, are equisatisfiable but are not logically
equivalent.
10 Our definition is slightly more restrictive than the standard one, in which t is
required to be a non-variable term. According to that definition, if Σ has no function
symbols the trivial Σ-theory is collapse-free. In any case, the two definitions coincide
for non-trivial theories, the theories of interest in this paper.
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refer to Mod(At(TΩ)) as the Ω-variety of T and often identify it with At(TΩ).

3 Combining Constraint Domains

As mentioned in the introduction, we are mainly concerned with the ques-
tion of how to solve constraint satisfiability problems with respect to several
constraint theories by combining in a modular fashion the satisfiability pro-
cedures available for the single theories. We will tackle this question at the
domain level first and then extend our approach to the theory level in the
next section. To start with, we must be able to recast a given satisfiability
problem as a combined satisfiability problem. That is, we must be able to,
first, describe the solution structure as a proper combination of two or more
distinct component structures; second, decompose the problem into a num-
ber of “pure” subproblems, each solvable over a component structure; third,
combine the subproblem solutions, each ranging over one of the component
structures, into a solution for the original problem, ranging over the combined
structure.

We begin by proposing a general notion of combined structure, which we call
fusion 11 . Our primary goal is to identify a minimal set of requirements that
make a structure a viable combination of a number of given structures. As
it turns out, the notion of fusion, which we give below, is general enough
to include the type of combined structures found in the literature and, at the
same time, provide the basis for all the combination results given in this paper.
For simplicity, we will mostly consider combinations of just two component
structures.

In the following, and in the rest of the paper, we rely on the standard notions of
morphisms of structures from Model Theory (Hodges, 1993). We write A ∼= B
to state that the structures A and B are isomorphic, and write h : A ∼= B to
state that h is an isomorphism of A onto B.

Definition 5 (Fusion) Given two structures A and B, a (ΣA∪ΣB)-structure
F is a fusion of A and B iff there exist a map hA−F and a map hB−F such
that

11 We initially chose the term “fusion” to avoid overloading the term “amalgama-
tion”, which has a more specific meaning in the Model Theory literature. We have
later discovered that (Pillay and Tsuboi, 1997) does use “amalgamation” for the
same type of combined structure as ours while (Holland, 1995) uses “fusion” for a
rather different type of combined structure. Our notion of fusion is closely related to
the one employed in algebraic approaches to modal logics (see, e.g., (Wolter, 1998)).
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hA−F : A ∼= FΣA and hB−F : B ∼= FΣB .

We will sometimes use the notation 〈F , hA−F , hB−F 〉 to indicate the fusion
structure and the relative isomorphisms. Essentially, a fusion of two structures
A and B, when it exists, is a structure that, if seen as a ΣA-structure, is
identical to A, and, if seen as a ΣB-structure, is identical to B. Notice that
the signatures of the two structures are not necessarily disjoint.

Baader and Schulz’s free amalgamated product (Baader and Schulz, 1998) and
Kepser and Schulz’s rational amalgamation (Kepser and Schulz, 1996) of two
quasi-free structures are both readily shown to be a fusion of those structures.
Similarly, the amalgamation construction given by Ringeissen in (Ringeissen,
1996b) can also be shown to produce a fusion.

In principle, one could imagine a notion of fusion based on more general mor-
phisms than isomorphisms. For instance, we could say that a structure F is
a fusion of the structures A and B in Definition 5 if A is embeddable in FΣA

and B is embeddable in FΣB . A justification that the definition we give is the
right one for our purposes will be provided in Section 4, where we show that
all models of a union theory are fusions of models of its component theories.

We denote by Fus(A,B) the set of all the fusions of two structuresA and B. By
Definition 5, it is immediate that Fus(A,B) = Fus(B,A) and that Fus(A,B)
is an abstract class, i.e., it is closed under isomorphism. Note that Fus(A,B)
will usually contain non-isomorphic structures. 12 Intuitively, however, all of its
members should be isomorphic over the symbols shared by A and B. Such an
intuition is confirmed by the proposition below, which establishes a necessary
and sufficient condition for the existence of fusions.

Proposition 6 For all structures A and B,

Fus(A,B) 6= ∅ iff AΣA∩ΣB ∼= BΣA∩ΣB .

PROOF. Let Σ := ΣA ∩ ΣB. 13

(⇒) Let C ∈ Fus(A,B). By definition we have that A ∼= CΣA and B ∼= CΣB .
From the fact that Σ ⊆ ΣA and Σ ⊆ ΣB it follows immediately that AΣ ∼= CΣ

12 For example, assume that the signatures of A and B are disjoint and each contains
some constant symbol. Then, these two symbols may denote the same individual in
one fusion of A and B and distinct individuals in another.
13 To simplify the notation, here and in the rest of the paper we adopt the following
notational convention. If h : C → D is a map and c̃ ∈ Cn, the expression h(c̃)
denotes the tuple (h(c1), . . . , h(cn)). If R is an n-ary relation over C, the expression
h(R) denotes the relation {h(c̃) | c̃ ∈ R}.
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and BΣ ∼= CΣ, which implies that AΣ ∼= BΣ.

(⇐) Let h be a (bijetive) map such that h : AΣ ∼= BΣ. Consider a (ΣA ∪ ΣB)-
structure C with universe B and such that

for all P ∈ (ΣA ∪ ΣB)P,

P C :=

h(PA) if P ∈ (ΣA \ΣB)

PB if P ∈ ΣB

for all n-ary g ∈ (ΣA ∪ ΣB)F and b̃ ∈ Bn,

gC(b̃) :=

h(gA(h−1(b̃))) if g ∈ (ΣA \ΣB)

gB(b̃) if g ∈ ΣB

The structure C interprets ΣB-symbols the way B does and ΣA-symbols as
images, through h, of the corresponding function/relations in A. We prove
below that h : A ∼= CΣA .

If P is an n-ary predicate symbol of ΣA \Σ, for each ã ∈ An,

ã ∈ PA iff h(ã) ∈ h(PA) (by def. of h(PA) and injectivity of h)

iff h(ã) ∈ P C (by constr. of C);

if P is an n-ary predicate symbol of Σ, for each ã ∈ An,

ã ∈ PA iff h(ã) ∈ PB (h : AΣ ∼= BΣ)

iff h(ã) ∈ P C (by constr. of C);

if g is an n-ary function symbol of ΣA \Σ, for each ã ∈ An,

h(gA(ã)) = h(gA(h−1(h(ã)))) (by bijectivity of h)

= gC(h(ã)) (by constr. of C);

if g is an n-ary function symbol of Σ, for each ã ∈ An,

h(gA(ã)) = gB(h(ã)) (h : AΣ ∼= BΣ)

= gC(h(ã)) (by constr. of C);

14



By construction of C, it is immediate that id : B ∼= CΣB , where id is the identity
of B. It follows from the definition of fusion that 〈C, h, id〉 is a fusion of A and
B. 2

In essence, two structures admit a fusion exactly when they have the same
cardinality and interpret in the same way the symbols shared by their signa-
tures.

Given an isomorphism h of AΣ and BΣ, we will call canonical fusion of A and
B induced by h the fusion of A and B constructed like the fusion 〈C, h, id〉 in
the proof above.

We know that for each structure there is at least one set of individuals, the
set of generators, that determines the structure univocally. For pairs of struc-
tures admitting fusions it is sometimes possible to identify a pair of sets of
individuals that, in a sense, determines the possible fusions between the two
structures.

Definition 7 (Fusible Structures) Consider two structures A and B, a set
X ⊆ A, and a set Y ⊆ B with X’s cardinality. We say that A is fusible with B
over 〈X, Y 〉 if every injection from a finite subset of X into Y can be extended
to an isomorphism of AΣA∩ΣB onto BΣA∩ΣB .

SinceA is fusible with B over 〈X, Y 〉 whenever B is fusible withA over 〈Y, X〉,
for brevity we will simply say that A and B are fusible over 〈X, Y 〉. In analogy
with generators, we call fusors the elements of X and those of Y .

Observe that A and B admit a fusion whenever A and B are fusible over some
〈X, Y 〉. In that case in fact, according to the definition above, the empty
mapping from X to Y extends to an isomorphism of AΣA∩ΣB onto BΣA∩ΣB .
But then, Fus(A,B) is non-empty by Proposition 6.

We will provide some sufficient conditions for the fusibility of two structures
in Section 6.2. For now, our interest in fusions in general and fusible struc-
tures in particular is motivated by the fact that, under the right conditions,
satisfiability in a fusion of two fusible structures reduces to satisfiability in
each of them. To show this we will start with the simplest type of combined
satisfiability problem: given a formula ϕ satisfiable in a structure A and a
formula ψ satisfiable in a structure B, what can we say about the satisfiability
of their conjunction?

Lemma 8 Let A and B be two structures of respective signatures Ω and ∆
such that A and B are fusible over some pair 〈X, Y 〉. Let ϕ(ũ, ṽ) be an Ω-
formula and ψ(w̃, ṽ) a ∆-formula such that ũ ∩ w̃ = ∅. If ϕ is satisfiable in
A with ṽ taking distinct values over X and ψ is satisfiable in B with ṽ taking
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distinct values over Y , then ϕ ∧ ψ is satisfiable in a fusion of A and B.

PROOF. Let Σ := Ω ∩∆ and ṽ := (v1, . . . , vm). Assume that

A |= ϕ[ã, x̃] and B |= ψ[b̃, ỹ]

where ã, b̃ consist of arbitrary elements of A, B, respectively, x̃ := (x1, . . . , xm)
is in X, ỹ := (y1, . . . , ym) is in Y , and neither x̃ nor ỹ contains repetitions.
Consider the map h : x̃→ Y such that,

h(xj) = yj for all j ∈ {1, . . . ,m}.

By construction of x̃ and ỹ, h is injective. Since A is fusible with B over
〈X, Y 〉, h can be extended to an isomorphism hA−B of AΣ onto BΣ. Now,
where K := {k1, . . . , km} is a set of constant symbols not appearing in Ω∪∆,
we define AΩ∪K as the expansion of A to Ω ∪K and B∆∪K as the expansion
of B to ∆ ∪K such that, for every j ∈ {1, . . . ,m},

kA
Ω∪K

i = xi and kB
∆∪K

i = yi.

It is not difficult to see that hA−B is an isomorphism of AΣ∪K onto BΣ∪K as
well. By Prop. 6, it follows that Fus(AΩ∪K ,B∆∪K) is not empty. Consider any
F ∈ Fus(AΩ∪K ,B∆∪K). We show that ϕ1∧ϕ2 is satisfiable in FΩ∪∆. The claim
will then follow from the easily proven fact that FΩ∪∆ ∈ Fus(A,B).

Consider the instantiation σ := {v1 ← k1, . . . , vm ← km}. By assumption,
A |= ϕ[ã, x̃] and so, by construction of AΩ∪K and σ, AΩ∪K |= ∃̃ (ϕσ). From
the fact that FΩ∪K ∼= AΩ∪K it follows that F |= ∃̃ (ϕσ). Similarly, we can
show that F |= ∃̃ (ψσ). By elementary logical reasoning and the fact that
Var(ϕσ) ∩ Var(ψσ) = ∅, it follows that F |= ∃̃ (ϕσ ∧ ψσ) and therefore that
F |= ∃̃ (ϕ ∧ ψ), which implies, by Lemma 4, that FΩ∪∆ |= ∃̃ (ϕ ∧ ψ). 2

The lemma above contains the most important model-theoretic result of this
paper, in the sense that all the combination results we present here will ul-
timately rest on it. To be able to use it effectively, however, we need a more
syntactical characterization. We will give this characterization in two steps,
starting with the simple case of structures with disjoint signature and then
moving to the general case.
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3.1 Disjoint Signatures

Consider the structuresA and B, and the sentences ϕ and ψ given in Lemma 8.
When the signatures of A and B have no symbols in common, the sufficient
condition for the satisfiability of ϕ∧ψ can be expressed syntactically by adding
to both ϕ and ψ a simple constraint on the free variables they share. We will
define this constraint using the notion of variable identification.

Definition 9 (Identification) Given a finite set U of variables, the set of
identifications of U is defined as follows, 14

ID(U) := {ξ ∈ SUB(U) | Ran(ξ) ⊆ U \Dom(ξ)}.

Every substitution in ID(U) defines a partition of U and identifies all the
variables in the same block with a representative of that block. To each ξ ∈
ID(U) we will associate the set of constraints

dif ξ(U) :=
⋃

u,v∈Uξ, u6=v

{u 6≡ v}

expressing the fact that any two variables not identified by ξ must take distinct
values. We will write just dif ξ when the set U is clear from context.

Observe that the empty substitution over the variables U always belongs to
ID(U) and that the associated set of constraints, which we will denote simply
by dif (U), is made of all the possible disequations between distinct elements
of U . Also observe that dif (U) is satisfied exactly when no two variables in U
are assigned to the same individual.

We can now use dif (U) to obtain an immediate special case of Lemma 8.

Lemma 10 Let A1 and A2 be two signature-disjoint structures with same
cardinality and, for i = 1, 2, consider the ΣAi

-formula ϕi(ũi, ṽ), where ũ1∩ũ2 =
∅. If ϕi ∧ dif (ṽ) is satisfiable in Ai, for i = 1, 2, then ϕ1 ∧ ϕ2 is satisfiable in
a fusion of A1 and A2.

PROOF. For i = 1, 2, let αi be a valuation such that (Ai, αi) |= ϕi ∧ dif (ṽ).
Observe that, because of dif (ṽ), αi assigns pairwise distinct individuals to the
shared variables of ϕi. The result follows then from Lemma 8 noting that two
equinumerous structures A and B are trivially fusible over 〈A, B〉 when their
signatures are disjoint. 2

14 Recall that SUB(U) is the set of idempotent substitutions whose domain is in-
cluded in U .
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This last result can be interpreted in constraint solving terms as follows. Each
ϕi represents a problem in the variables ũi∪ ṽ over the domain modeled by Ai,
while ϕ := ϕ1∧ϕ2 represents a (composite) problem in the variables ũ1∪ ũ2∪ ṽ
over the domain modeled by some fusion of A1 and A2. In order to merge a
solution s1 of ϕ1 and a solution s2 of ϕ2 into a solution of ϕ, it is necessary
that s1 and s2 agree, so to speak, on the values they assign to the shared
variables, if any. The role of dif (ṽ) is exactly that of assuring such a merging
by requiring that the shared variables take distinct values over the fusors of
A1 and A2.

Now, what if either ϕi is satisfiable only with valuations that assign the same
value to some of the shared variables? For instance, what if A1 |= ϕ1 ⇒
(vi ≡ vj) for some vi, vj ∈ ṽ? It should be clear that, if all the A1-solutions
of ϕ1 identify some variables in ṽ, for ϕ1 ∧ ϕ2 to be satisfiable in a fusion
of A1 and A2

15 there must exist an A2-solution of ϕ2 that also identifies
these variables. We can then generalize Lemma 10 to encompass the case just
illustrated by considering a formula of the form ϕiξ, where ξ ∈ ID(ṽ); more
precisely, a formula obtained from ϕi by a syntactical identification of those
shared variables that will be (semantically) identified by the Ai-solutions.
Then, the constraint dif ξ, which is nothing but dif (ṽξ), can be used in the
same way dif (ṽ) was used before.

Proposition 11 For i = 1, 2, let Ai and ϕi be as in Lemma 10. If, for i = 1, 2,

ϕiξ ∧ dif ξ

is satisfiable in Ai for some ξ ∈ ID(ṽ), then ϕ1 ∧ ϕ2 is satisfiable in a fusion
of A1 and A2.

The above proposition is the syntactic counterpart of Lemma 8 in the case of
signature-disjoint structures. The addition of a simple constraint guarantees
that the shared variables (after the identification) take distinct values over the
fusors of the component structures, as the lemma requires. Since equinumerous
structures with disjoint signatures are fusible over their whole carriers, the task
here was essentially trivial.

The converse of Proposition 11 holds as well—we will prove a more general
version of it in the next subsection for structures with non-necessarily disjoint
signature. This already provides a sound and complete combination method to
decide the satisfiability in Fus(A1,A2) of a formula ϕ1∧ϕ2 like the one in the
proposition: consider all possible identifications ξ of the variables shared by ϕ1

and ϕ2 until one is found that makes ϕiξ ∧ dif ξ satisfiable in Ai, for i = 1, 2.
The combination method is also always terminating in this case because there

15 That is, for subproblems solutions to be mergeable into solutions of the composite
problem.
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are only finitely-many identifications to consider. Unfortunately, things are
not so nice and simple when A1 and A2 have symbols in common.

3.2 Non-disjoint Signatures

When two structures are not signature-disjoint, they are likely to be fusible
only over sets of fusors that are properly contained in their universes. Now,
since the property of being a fusor does not appear to be first-order definable,
this means that, in general, it may not be possible to force a variable to range
over a set of fusors by the simple addition of a first-order constraint like dif ξ,
as we did in the previous subsection. One case in which it is possible is when
the fusors in question are also Σ-isolated, where Σ is a finite set of symbols
shared by the two structures’ signatures. But to see that we will need some
more definitions and notation.

Definition 12 (Instantiation) Given a finite set U of variables and a finite
signature Σ, the set of Σ-instantiations of U is defined as follows,

INΣ(U) := {ρ ∈ SUB(U) | Ran(ρ) ⊆ T (Σ, V ) \V }.

Note that a Σ-instantiation of U either fixes an element of U or maps it to a
non-variable Σ-term. To avoid name conflicts, given that an instantiation may
introduce variables not in its domain, we will only consider Σ-instantiations ρ
such that the variables occurring inRan(ρ) are all fresh. To every instantiation
ρ ∈ INΣ(U), we will associate the set

isoΣ
ρ (U) :=

⋃
v∈Var(Uρ), fi∈ΣF

{∀ũi v 6≡ fi(ũi)},

which we will denote just by isoρ when Σ and U are clear from the context.

Observe that the set isoΣ
ρ is satisfied by a valuation α if and only if α maps the

variables in Uρ to individuals that are not in the range of any Σ-function, i.e.,
Σ-isolated individuals. Also observe that the empty substitution belongs to
INΣ(U) for any U and Σ. We will denote its associated set simply by isoΣ(U).

As we did in the previous subsection, we can use isoΣ(U) together with dif (U)
to obtain a special case of Lemma 8.

Lemma 13 Let A1 and A2 be two structures and let Σ be a finite subset of
ΣA1 ∩ ΣA2. Assume that for i = 1, 2, there is a set Xi such that Is(Ai

Σ) ⊆
Xi ⊆ Ai and A1 and A2 are fusible over 〈X1, X2〉. For i = 1, 2, consider the
ΣAi

-formula ϕi(ũi, ṽ), where ũ1 ∩ ũ2 = ∅. If the formula

ϕi ∧ isoΣ(ṽ) ∧ dif (ṽ)
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is satisfiable in Ai for i = 1, 2, then ϕ1 ∧ ϕ2 is satisfiable in a fusion of A1

and A2.

PROOF. By assumption, for i = 1, 2, there is a sequence ãi and a sequence x̃i

of individuals of Ai such that Ai |= ϕi[ãi, x̃i]∧ isoΣ[x̃i]∧ dif [x̃i]. By Lemma 8,
all we need to show is that x̃i is composed of pairwise distinct elements of Xi.

That x̃i does not contain repetitions is entailed by the fact that dif [x̃i] is true
in Ai. To see that x̃i is included in Xi, just recall that isoΣ[x̃i] is true exactly
when x̃i is a set of Σ-isolated individuals and that all Σ-isolated individuals
of Ai are in Xi by assumption. 2

From the proof above and that of Lemma 8 it is clear that we actually have a
slightly stronger result: when the conditions of the Lemma 13 hold, the whole
formula ϕ1 ∧ ϕ2 ∧ isoΣ(ṽ) ∧ dif (ṽ) is in fact satisfiable in a fusion of A1 and
A2.

In Lemma 13, the requirement that both sets of fusors contain the Σ-isolated
individuals of their respective structures allows us to use a first-order formula,
isoΣ(ṽ) ∧ dif (ṽ), to force the variables shared by the two pure formulae to
take distinct values over the fusors. But now, what if either ϕi is satisfiable
only with valuations that map some shared variables to individuals that are
not Σ-isolated? We can still apply the above result if these individuals are
Σ-generated by Σ-isolated elements. We do this by first instantiating each
shared variable in question with a suitable Σ-term over fresh variables, and
then forcing both the new variables and the untouched shared variables to
range over the Σ-isolated individuals, as we did before.

To formalize the intuitions above it is convenient to introduce the following
restricted notion of fusibility.

Definition 14 (Σ-fusibility) Let A1 and A2 be two structures and Σ be a
finite subset of ΣA1 ∩ΣA2. We say that A1 and A2 are Σ-fusible iff for i = 1, 2
there is a set Xi such that Is(Ai

Σ) ⊆ Xi ⊆ Ai and A1 and A2 are fusible over
〈X1, X2〉.

A little clarification on the above definition is in order here. Recalling the
definition of fusibility, it is not difficult to see that when two structures A1

and A2 as above are fusible over some pair 〈X1, X2〉, every bijection between
two finite subsets of Xi extends to an automorphism of Ai

Σ (i = 1, 2). This
entails, in particular, that all the elements of Xi satisfy exactly the same Σ-
formulae in one variable. As a consequence, we obtain that a member of Xi

is Σ-isolated in Ai only if every member of Xi is Σ-isolated in Ai. Therefore,
unless Is(A1

Σ) and Is(A2
Σ) are empty, if A1 and A2 are Σ-fusible, the pair
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of sets on which they are fusible is univocally determined and coincides with
〈Is(A1

Σ), Is(A2
Σ)〉.

Proposition 15 Let A1 and A2 be two structures Σ-fusible for some finite
Σ ⊆ ΣA1∩ΣA2. For i = 1, 2, consider the ΣAi

-formula ϕi(ũi, ṽ), where ũ1∩ũ2 =
∅. If

(ϕiρ ∧ isoρ)ξ ∧ dif ξ

is satisfiable in Ai for some ρ ∈ INΣ(ṽ) and ξ ∈ ID(Var(ṽρ)), then ϕ1 ∧ ϕ2 is
satisfiable in a fusion of A1 and A2.

PROOF. For i = 1, 2, assume that (ϕiρ ∧ isoρ)ξ ∧ dif ξ is satisfiable in Ai,
where ρ and ξ are as described above. Where ϕ′i := ϕiρξ and w̃ := Var(ṽρ)ξ,
it is easy to see that isoρξ = isoΣ(w̃) and dif ξ = dif (w̃), which means that
(ϕiρ ∧ isoρ)ξ ∧ dif ξ has actually the form

ϕ′i(ũi, w̃) ∧ isoΣ(w̃) ∧ dif (w̃).

From the assumptions and Lemma 13 we have that ϕ′1 ∧ ϕ′2 is satisfiable in a
fusion of A1 and A2. The claim follows then immediately from the observation
that (ϕ′1 ∧ ϕ′2) = (ϕ1 ∧ ϕ2)ρξ. 2

This proposition is both a syntactic specialization of Lemma 8 and a proper
generalization of Proposition 11 to the case of structures with arbitrary signa-
tures. It should already be clear though that any combination method based
on it will not in general be terminating, as the number of possible instantia-
tions ρ above becomes infinite once the structures share a function symbol of
non-zero arity.

Furthermore, being a specialization of Lemma 8, Proposition 15 provides just
a sufficient condition for the joint satisfiability of ϕ1 ∧ϕ2. The satisfiability of
(ϕiρ∧ isoρ)ξ∧dif ξ in Ai, although sufficient, is typically not necessary for the
satisfiability of ϕ1 ∧ ϕ2 in Fus(A1,A2). It does become necessary, however, if
A1 and A2 have a fusion Σ-generated by its Σ-isolated individuals alone.

Proposition 16 Let A1,A2 be two structures with respective signatures Σ1,
Σ2 and admitting a fusion F which is Σ-generated by its Σ-isolated individuals,
for some finite Σ ⊆ Σ1 ∩ Σ2. For i = 1, 2, consider the Σi-formula ϕi(ũi, ṽ),
with ũ1 ∩ ũ2 = ∅. Then, if ϕ1 ∧ ϕ2 is satisfiable in F , there is a ρ ∈ INΣ(ṽ)
and a ξ ∈ ID(Var(ṽρ)) such that (ϕiρ ∧ isoρ)ξ ∧ dif ξ is satisfiable in Ai for
i = 1, 2.

PROOF. Let X be the set of F ’s Σ-isolated individuals. By assumption,
there is a valuation α such that (F , α) |= ϕ1 ∧ ϕ2. We show that α and X
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induce an instantiation ρ and identification ξ that satisfy the claim.

For all vj ∈ ṽ, such that α(vj) 6∈ X, we choose any non-variable Σ-term tj(w̃j)
and sequence x̃j in X such that α(vj) = tFj [x̃j].

16 We assume, with no loss
of generality, that all the variables in each w̃j are new and expand α to these
variables by mapping each of them to the corresponding element of x̃j. Then,
we choose the instantiation ρ ∈ INΣ(ṽ) such that, for all vj ∈ ṽ,

vjρ =

 vj if α(vj) ∈ X

tj(w̃j) otherwise

and the identification ξ ∈ ID(ṽρ) such that, for all v, w ∈ Var(ṽρ),

vξ = wξ iff α′(v) = α′(w),

where α′ is the expansion of α just described. We leave it to the reader to
verify that (F , α′) |= (ϕiρ∧ isoρ)ξ ∧ dif ξ for i = 1, 2. Now, (ϕiρ∧ isoρ)ξ ∧ dif ξ

is actually a Σi-formula and so is also satisfied by FΣi . The claim then follows
from the fact that FΣi is isomorphic to Ai by definition of fusion. 2

It should be noted that the requirement that a structure (in the case above,
a fusion) be Σ-generated by its Σ-isolated individuals is rather strong. It is
easy to find natural examples of structures that are not. For instance, let A be
the integers with zero, successor and predecessor and let Σ consist of the zero
and successor symbols. Now, although the set of A’s Σ-isolated individuals is
empty—as every integer is the successor of another one—the structure A is
not Σ-generated by the empty set. However, we will see in Section 7 that there
is a large and interesting class of structures Σ-generated by their Σ-isolated
individuals.

3.3 Σ-Restricted Formulae

We will use formulae with an added constraint of the form isoΣ(ṽ) ∧ dif (ṽ)
often enough to justify the following definition.

Definition 17 (Σ-Restricted Formula) Given a finite signature Σ and a
(possibly empty) tuple of variables ṽ we say that a formula ψ is Σ-restricted

16 The existence of such a term and sequence is guaranteed by the assumption that
X Σ-generates F .
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on ṽ, or simply, Σ-restricted, if it has the form

ϕ ∧ isoΣ(ṽ) ∧ dif (ṽ).

We call ϕ the body of ψ and isoΣ(ṽ) ∧ dif (ṽ) the Σ-restriction of ψ.

We will often use the abbreviation resΣ(ṽ) for the Σ-restriction isoΣ(ṽ)∧dif (ṽ).
According to the above definition, a formula of the form (ϕρ ∧ isoρ)ξ ∧ dif ξ

(like those seen in Proposition 15), where ρ ∈ INΣ(ũ) with ũ = Var(ϕ) and
ξ ∈ ID(Var(ṽρ)), is in fact a Σ-restricted formula with body ϕρξ and Σ-
restriction isoρξ ∧ dif ξ.

All combination results in this paper will require Σ-restricted formulae. Many
of them will hold only for formulae Σ-restricted on all of their free variables. We
call such formulae totally Σ-restricted. More precisely, a Σ-restricted formula
ϕ∧ resΣ(ṽ) is totally Σ-restricted if Var(ϕ) ⊆ ṽ. Notice that closed formulae,
and ground formulae in particular, are always totally Σ-restricted for any Σ.

Where L is a class of formulae and Σ a finite subset of a signature Ω, we will
denote by Res(LΩ,Σ) the class of all the Σ-restricted formulae whose body
belongs to LΩ. Similarly, we will denote by TRes(LΩ,Σ) the class of all the
totally Σ-restricted formulae whose body belongs to LΩ.

By definition, LΩ and TRes(LΩ,Σ) are always included in Res(LΩ,Σ). For the
common case in which L is Qff , notice that Qff Ω is usually strictly included
in Res(Qff Ω,Σ). In fact, unless Σ contains at most constant symbols (or ṽ is
empty), the isoΣ(ṽ) component of every Σ-restricted formula contains univer-
sal quantifiers. Finally, notice that when Σ is empty, every ψ ∈ Res(LΩ,Σ)
is simply of the form ϕ ∧ dif (ṽ). Then, LΩ, TRes(LΩ,Σ) and Res(LΩ,Σ) all
coincide if L is closed under conjunction with disequations—as is the case
with Qff .

Understanding Σ-restrictions

The effect of Σ-restrictions is clear by looking at the definition of isoΣ and dif :
they constraint some variables to be distinct Σ-isolated individuals. Given that
the notion of Σ-isolated individual is quite technical, what may not be clear at
this point is whether Σ-restrictions have a place in common constraint solving
practice. We show below that there are situations in which Σ-restrictions arise
naturally.

In this discussion, we will identify a Σ-restriction with its isoΣ component
and ignore the dif component as the latter is essentially unproblematic for
satisfiability concerns. In fact, the satisfiability of a formula ϕ(ṽ) is reducible
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to the satisfiability of the formula

(ϕ ∧ dif (ṽ))ξ1 ∨ · · · ∨ (ϕ ∧ dif (ṽ))ξn

where ξ1, . . . , ξn are all the (finitely many) identifications of ṽ. Therefore, by
considering a finite number of identifications we can turn any satisfiability
problem into one with additional dif constraints without changing its set of
solutions. That is not the case for isoΣ constraints because in general we may
need to consider infinitely many Σ-instantiations of the constraint ϕ; and even
that will not be enough if ϕ is satisfied only by values that are not Σ-generated
by Σ-isolated individuals.

Now, as in many applications of logics to computer science, Σ-restrictions are
better understood in terms of (data) types, or sorts, in logic parlance. Even if
classical first-order logic—the one used in this paper—has no explicit notion
of sort, we do think of elements in a given domain as naturally grouped in
sorts, sets of individuals with common features. Correspondingly, we think of
functions as mapping tuples of values of certain sorts to values of some fixed
sort, and of relations as subsets of the Cartesian products of certain sorts. 17

We show that under the right—and quite reasonable—conditions, a constraint
like isoΣ(v) on a variable v amounts to requiring that the value of v does not
belong to a certain sort.

In fact, suppose Ω is the signature of interest and Σ collects only function
symbols f of Ω that have some fixed sort S as codomain (i.e., the intended type
of f is S1×· · ·×Sn → S). In every Ω-structure including S in its universe and
in which all the elements of S are Σ-generated, the only Σ-isolated individuals
are those that do not belong to S. For such structures then, a Σ-restriction of
the form isoΣ(v) denotes the restriction that α(v) 6∈ S for every valuation α
of v.

Example 18 With Ω := {0, s, nil, cons, length}, consider the Ω-structure A
whose universe A is made of pairwise disjoint sorts N , L and I where N is the
set of the natural numbers, L the set of the LISP lists over A (including non-
nil terminated lists), and I a set of ill-sorted individuals . The constants 0 and
nil are interpreted by A in the obvious way. The interpretation of the other
symbols is such that a) consA is the injective function behaving as the LISP
list constructor and mapping values of A into L as expected, b) sA coincides
over N with the successor function and injects the elements of L∪ I into I, c)
lengthA coincides over L with the list length function and injects the elements
of N ∪ I into I. Now let Σ := {nil, cons}. The Σ-isolated individuals of A are

17 Notoriously, this picture is complicated by the fact that all functions and relations
are total in classical first-order logic and so each first-order structure also has to
specify how a function or relation behaves over input values that do not have the
intended sort.

24



exactly the elements of N∪I. Therefore, the Σ-restriction isoΣ(v) is equivalent
in A to the requirement that v is not a list.

The above example provides insights on Σ-instantiations as well. In fact, L
contains by construction no circular lists 18 : every list in A is a (possibly
nested) list of atoms , the elements of N ∪ I. In our terminology, this is the
same as saying that A is Σ-generated by its Σ-isolated individuals.

Now, let ϕ be an Ω-formula satisfiable in A and assume for simplicity that
ϕ has just one free variable, v. If the value of v that satisfies ϕ is not a list,
then this value is Σ-isolated and so it satisfies ϕ∧ isoΣ(v) as well. If the value
of v is a list, then it can be denoted by some Σ-term t(ũ) whose variables
are mapped to non-lists values; these values satisfy the formula ϕρ ∧ isoΣ

ρ (ũ)
where ρ is the Σ-instantiation {v ← t(ũ)}. From this it is not hard to see that
an Ω-formula ϕ(ṽ) is satisfiable in the structure A above if and only if there
is a ρ ∈ INΣ(ṽ) and a ξ ∈ ID(Var(ṽρ)) such that (ϕiρ ∧ isoρ)ξ ∧ dif ξ.

To conclude this section, we show another structure B that combines in a
natural way LISP lists with some other data-type, is Σ-fusible with the struc-
ture A above, and has a fusion with A that is Σ-generated by its Σ-isolated
individuals.

Example 19 Let ∆ := {a, b, ·, nil, cons} and consider the ∆-structure B whose
universe B is made of pairwise disjoint sorts W , L and J , where L is again
the set of the LISP lists but over B this time, W is the set of strings over the
characters a, b, and J is the set of B’s ill-sorted individuals. The symbols in
Σ := {nil, cons} are interpreted by B in a way similar to that of the previous
example. The characters are interpreted as distinct elements of S. The binary
symbol · is interpreted an associative operator that behaves over W ×W as
string concatenation and maps pairs not in W ×W to elements of J . In this
structure, the Σ-isolated individuals are exactly the elements of W ∪ J .

First we show that A and B have a fusion. Observing that the sets N ∪ I
and W ∪ J are both countably infinite, let h be any bijection of the former
onto the latter. Recalling that A is Σ-generated by N ∪ I, let hA−B be the
(necessarily) unique Σ-homomorphic extension of h to A mapping nilA to nilB

and consA(a1, a2) to consB(hA−B(a1), hA−B(a2)) for all a1, a2 ∈ A. One can
easily show that hA−B is in fact a bijection of A onto B, which entails that
hA−B : AΣ ∼= BΣ. It follows from Proposition 6 that A and B have a fusion.
Now, let F be the canonical fusion of A and B induced by hA−B. Since FΣ

coincides with BΣ it is immediate that F is Σ-generated by its Σ-isolated
individuals.

18 Formally, there are no Σ-terms t such that (A, α) |= v ≡ t for some v ∈ Var(t)
and valuation α.
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Finally, we claim that A and B are Σ-fusible. But instead of proving it directly,
we will do it by applying some general results about the fusibility of free
structures. But for that we must wait until Section 6.

4 Fusions and Unions of Theories

The combined satisfiability results of the previous section can be lifted from
structures to theories. What makes this possible is the close link between
fusions and unions of theories, as illustrated in the proposition below. If T1

and T2 are two theories, let Fus(T1, T2) denote the following class of structures:

Fus(T1, T2) :=
⋃

A∈Mod(T1), B∈Mod(T2)

Fus(A,B).

Proposition 20 For any theories T1 and T2, Fus(T1, T2) = Mod(T1 ∪ T2).

PROOF. For i = 1, 2, let Σi be the signature of Ti.

(⊆) Assume that F is a fusion of some A ∈ Mod(T1) and B ∈ Mod(T2). From
the definition of fusion we have that A ∼= FΣ1 and B ∼= FΣ2 . Therefore, F
models every sentence of T1 and every sentence of T2. It follows immediately
that F models T1 ∪ T2.

(⊇) Immediate consequence of the obvious fact that any C ∈ Mod(T1 ∪ T2) is
a fusion of CΣ1 and CΣ2 and that CΣi models Ti, for i = 1, 2. 2

Recalling Proposition 6 on the existence of fusions, we have the following
corollary, first proved, independently, in (Ringeissen, 1996b) and (Tinelli and
Harandi, 1996).

Corollary 21 The union of a Σ1-theory T1 and a Σ2-theory T2 is consistent
iff there is a model of T1 and a model of T2 such that their reducts to Σ1 ∩Σ2

are isomorphic.

We will see later that all the theories we consider for combination satisfy the
right-hand-side condition in the above corollary, therefore it will indeed make
sense to work with their union.

In the rest of the paper, we will be mostly interested in pairs of formulae
belonging to the Cartesian product LΣ1 ×LΣ2 , for a given class L of formulae
and signatures Σ1 and Σ2. For technical reasons we explain later, we will only
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consider pairs in which at most one of the members is or contains a formula
made entirely of shared symbols, i.e., symbols in Σ1 ∩ Σ2. We formalize this
restriction in the definition below.

Definition 22 Where L is a class of formulae and Σ1 and Σ2 two signatures,
we call disjoint product of LΣ1 and LΣ2 and denote by LΣ1⊗LΣ2 the following
subset of LΣ1 × LΣ2:

LΣ1 ⊗ LΣ2 := {〈ϕ1, ϕ2〉 ∈ LΣ1 × LΣ2 | no subformula of ϕ2 is in LΣ1 \ {>}}

∪ {〈ϕ1, ϕ2〉 ∈ LΣ1 × LΣ2 | no subformula of ϕ1 is in LΣ2 \ {>}}

Since LΣ1 ⊗ LΣ2 is a subset of LΣ1 × LΣ2 , all of its pairs 〈ϕ1, ϕ2〉 are such
that ϕi contains predicate and function symbols from Σi only (i = 1, 2). For
this reason, we call ϕi the i-pure component of 〈ϕ1, ϕ2〉. 19 For convenience,
we say that the pair 〈ϕ1, ϕ2〉 is satisfiable in a structure (theory) iff ϕ1 ∧ ϕ2

is satisfiable in the structure (theory).

We are now ready to identify a class of theories whose satisfiability procedures
can be combined in a modular way to yield a satisfiability procedure for their
union, as we will see in Section 5.

Definition 23 (N-O-combinable Theories) Let L be a class of formulae
and T1, T2 two theories with respective signatures Σ1,Σ2 such that Σ := Σ1∩Σ2

is finite.

• We say that T1 and T2 are partially N-O-combinable over L if Condition 4.1
below holds for all 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2.

• We say that T1 and T2 are (totally) N-O-combinable over L if both Condi-
tion 4.1 and Condition 4.2 below hold for all 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2.

Condition 4.1 For all ρ ∈ INΣ(ṽ) and ξ ∈ ID(Var(ṽρ)) with ṽ := Var(ϕ1)∩
Var(ϕ2), if

ψi := (ϕiρ ∧ isoρ)ξ ∧ dif ξ

is satisfiable in Ti for i = 1, 2, then ψi is satisfiable in a model Ai of Ti such
that A1 and A2 are Σ-fusible.

Condition 4.2 If ϕ1 ∧ ϕ2 is satisfiable in T1 ∪ T2, it is satisfiable in a model
of T1 ∪ T2 that is Σ-generated by its Σ-isolated individuals.

19 Observe that LΣ1 ⊗ LΣ2 also contains pairs of the form 〈ϕ1, >〉 or 〈>, ϕ2〉—
effectively making every i-pure formula a member of LΣ1 ⊗ LΣ2 .
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While Condition 4.2 is straightforward and easy to understand, Condition 4.1
may be hard to grasp at an intuitive level. To get a better idea it is helpful
to concentrate on the case in which ρ is the empty instantiation, as the other
cases are reducible to this one. For that case, the condition is roughly saying
that if each set T ∪ {ϕi} is satisfied by Σ-isolated individuals, the only way
for T ∪ {ϕ1} and T ∪ {ϕ2} to contradict each other is to disagree on which
variables of ṽ get the same value and which don’t.

The use of LΣ1⊗LΣ2 in the definition above instead of LΣ1×LΣ2 is a necessary
technicality to guarantee the existence of pairs of N-O-combinable theories at
all. As an example of what can go wrong with LΣ1 × LΣ2 , assume that L is
closed under conjunction and negation and take any two theories T1 and T2

of signature Σ1 and Σ2, respectively, with Σ := Σ1 ∩ Σ2 non-empty. Then,
〈ϕ1 ∧ ϕ, ϕ2 ∧ ¬ϕ〉 ∈ LΣ1 × LΣ2 for any ϕ ∈ LΣ, ϕ1 ∈ LΣ1 and ϕ2 ∈ LΣ2 ; but
it is obvious that, against the requirements of Condition 4.1, for no ρ and ξ is
a model of T1 satisfying ((ϕ1 ∧ ϕ)ρ ∧ isoρ)ξ ∧ dif ξ fusible with a model of T2

satisfying ((ϕ2 ∧ ¬ϕ)ρ ∧ isoρ)ξ ∧ dif ξ.
20

We point out that even the current definition of LΣ1⊗LΣ2 could be improved,
as it still rules out many theories that one would like to be N-O-combinable.
A simple example of such theories is any pair of theories of the form T1 ∪ T2

and T2∪T3 where T1, T2 and T3 are pairwise signature-disjoint. Not all of such
pairs are N-O-combinable even if they represent a trivial case of non-disjoint
combination. To see that, let

T1 := {∀x, y. P1(x, y)⇒ x ≡ y}, T2 := {a ≡ a, b ≡ b}, and

T3 := {∀x, y. P3(x, y)⇒ x 6≡ y}.

Then consider the pair of pure formulae 〈P1(x, y), P3(x, y)〉, the instantiation
ρ := {x← a, x← b} and the identification ξ := {}. Again, models of T1 ∪ T2

satisfying (P1(x, y)ρ ∧ isoρ)ξ ∧ dif ξ = P1(a, b) and models T2 ∪ T3 satisfying
(P3(x, y)ρ∧isoρ)ξ∧dif ξ = P3(a, b) do exist, but they are obviously not fusible.

In any case, we doubt that the current definition of LΣ1⊗LΣ2 can be drastically
improved unless one renounces to a strictly syntactical definition.

When combining two theories one should make sure that their combination
is meaningful to start with, that is, it is not inconsistent (or trivial). This is
particularly important when one considers, as we do, theories that share non-
logical symbols, as it is much easier for such theories to have contradicting con-
sequences. Now, a first consequence of Definition 23 is that N-O-combinable

20 We do not even need L to be closed under negation and conjunction. It is enough
that there is a formula ϕ ∈ LΣ1 , say, and a formula ψ ∈ LΣ such that T1 |= ¬∃̃(ϕ∧ψ).
Then, for no theory T2 will 〈ϕ, ψ〉 satisfy Condition 4.1.
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consistent theories do have a consistent union, and so it does make sense to
combine them.

Proposition 24 Let T1 and T2 be partially N-O-combinable over L. If T1 and
T2 are consistent, then T1 ∪ T2 is consistent.

PROOF. Let ϕ1 and ϕ2 both be >. From an earlier observation we know
that 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2 . If, for i = 1, 2, Ti is consistent, then ϕi is triv-
ially satisfiable in a model of Ti. Observing that Var(ϕ1) ∩ Var(ϕ2) = ∅, we
can conclude from Condition 4.1 (by considering the empty instantiation and
identification) that ϕ1 ∧ ϕ2 is satisfiable in a fusion of a model of T1 and a
model of T2. By Proposition 20, this fusion is a model of T1 ∪ T2. 2

If the class L contains disequations of variables, we can show in a similar
way that T1 ∪ T2 is non-trivial whenever T1 and T2 are N-O-combinable and
non-trivial.

N-O-combinable theories are suitable candidates for combination methods for
satisfiability thanks to the properties below. Let T1, T2, Σ1, Σ2, Σ, and L be
as in Definition 23.

Proposition 25 Assume T1 and T2 are partially N-O-combinable over L.
Then, for all 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2 and ṽ = Var(ϕ1) ∩ Var(ϕ2), ϕ1 ∧ ϕ2

is satisfiable in T1∪T2 if there is a ρ ∈ INΣ(ṽ) and ξ ∈ ID(Var(ṽρ)) such that
(ϕiρ ∧ isoρ)ξ ∧ dif ξ is satisfiable in Ti for i = 1, 2.

PROOF. Immediate consequence of Condition 4.1, Proposition 15 and Pro-
position 20. 2

If T1 and T2 satisfy Condition 4.2 as well, the implication in the proposition
above becomes a full equivalence.

Theorem 26 When T1 and T2 are totally N-O-combinable over L the follow-
ing are equivalent for all 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2 and ṽ = Var(ϕ1) ∩ Var(ϕ2).

(1) There exists a ρ ∈ INΣ(ṽ) and ξ ∈ ID(Var(ṽρ)) such that, for i = 1, 2,
(ϕiρ ∧ isoρ)ξ ∧ dif ξ is satisfiable in Ti.

(2) ϕ1 ∧ ϕ2 is satisfiable in T1 ∪ T2.

PROOF. It is enough to show that (2 ⇒ 1). But that is an immediate
consequence of Condition 4.2, Proposition 20 and Proposition 16. 2

29



Input: 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2

Instantiation Generate the pair 〈γ1, γ2〉 := 〈ϕ1ρ ∧ isoρ, ϕ2ρ ∧ isoρ〉
for some ρ ∈ INΣ(ṽ) with ṽ := Var(ϕ1) ∩ Var(ϕ2).

Identification Generate the pair 〈ψ1, ψ2〉 := 〈γ1ξ ∧ dif ξ, γ2ξ ∧ dif ξ〉
for some ξ ∈ ID(Var(ṽρ)).

Check Succeed if ψ1 is satisfiable in T1 and ψ2 is satisfiable in T2.
Fail otherwise.

Fig. 1. The Combination Procedure.

We exploit the above properties of N-O-combinable theories in the next section
where we describe a sound and complete general procedure for combining
constraint reasoners for N-O-combinable theories.

5 Combining Satisfiability Procedures

We show in this section that when a certain type of satisfiability problem is
decidable for two N-O-combinable theories, it is possible to build a decision
procedure for a corresponding satisfiability problem in the union theory, using
the very decision procedures for the component theories. We do this by means
of a combination procedure whose correctness relies on the combination results
of the previous section.

In the following, we will fix

• a class of formulae L closed under identification and instantiation of free
variables;
• two countable signatures Σ1 and Σ2 such that Σ := Σ1 ∩ Σ2 is finite;
• a Σ1-theory T1 and a Σ2-theory T2.

Our combination procedure is defined in Figure 1. It considers the satisfiability
in T1 ∪ T2 of formulae from LΣ1 ⊗LΣ2 by reducing it non-deterministically to
the satisfiability in T1 and in T2 of pure Σ-restricted formulae. Given the
input problem 〈ϕ1, ϕ2〉, the procedure first applies to 〈ϕ1, ϕ2〉 an arbitrary
instantiation ρ (into Σ-terms) of the variables shared by ϕ1 and ϕ2. Then, it
applies an arbitrary identification ξ of the shared variables in the new pair.
Lastly, it checks that each member ϕiρξ of the final pair is satisfiable in the
corresponding theory under the restriction isoρξ ∧ dif ξ, succeeding only when
both members are satisfiable.
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In essence, the procedure is a non-deterministic version of the Nelson-Oppen
combination procedure (Nelson and Oppen, 1979), but it extends that proce-
dure in a number of ways: (1) it does not require that the input formulae be
quantifier-free, (2) it does not require (correspondingly) that the component
theories be universal, (3) it allows the signatures of the component theories
to share up to a finite number of symbols, (4) it considers only identifications
over the free variables shared by the two input formulae, whereas Nelson and
Oppen’s considers identifications over all the variables. The latter improve-
ment is significant for practical computational concerns if not theoretical ones
because it reduces the number of possibles choices in the identification and
instantiation steps. It has also been considered by Baader and Schulz in their
own combination methods, starting with the one described in (Baader and
Schulz, 1996).

Proposition 25 immediately tells us that for partially N-O-combinable com-
ponent theories T1 and T2 the procedure in Figure 1 is sound in this sense:
an input pair 〈ϕ1, ϕ2〉 is satisfiable in T1 ∪ T2 if one of the possible outputs
of the identification step is a pair 〈ψ1, ψ2〉 such that ψi is satisfiable in Ti for
i = 1, 2. For totally N-O-combinable component theories the procedure is also
complete: an input pair 〈ϕ1, ϕ2〉 is satisfiable in T1∪T2 only if one of the pairs
〈ψ1, ψ2〉 above is such that ψi is satisfiable in Ti for i = 1, 2.

The formula ψi = (ϕiρ ∧ isoρ)ξ ∧ dif ξ (i = 1, 2) generated by the procedure’s
identification step is a Σ-restricted formula in the sense of Definition 17. More
precisely, ψi is an element of Res(LΣi ,Σ), given that ϕi ∈ LΣi and L is closed
under identification and instantiation. For the check step of procedure to be
effective then it must be able to resort, for i = 1, 2, to a procedure that decides
the satisfiability in Ti of formulae in Res(LΣi ,Σ). In that case, recalling that
non-deterministic procedures are said to succeed iff one of their possible runs
is successful, we can claim by the above the following result.

Proposition 27 Assume that T1 and T2 be totally N-O-combinable over L
and the satisfiability in Ti of formulae in Res(LΣi ,Σ) is decidable, for i = 1, 2.
Then, the combination procedure succeeds on an input 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2

iff 〈ϕ1, ϕ2〉 is satisfiable in T1 ∪ T2.

We point our that, contrary to what Proposition 27 might seem to imply, the
combination procedure is in general only able to semi-decide the satisfiability
in T1 ∪ T2 of formulae in LΣ1 ⊗LΣ2 . The problem lies in the unbounded non-
determinism of the identification step. As we have already observed, whenever
Σ contains a function symbol of non-zero arity and the set of variables shared
by the two formulae in the input is nonempty, there is an infinite number
of possible instantiations over that set. In that case, if the input pair is un-
satisfiable in the union theory, by the procedure’s soundness, none of these
instantiations will lead to formulae ψ1 and ψ2 in the check step that are both
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satisfiable in their respective theory. It follows that the procedure will in gen-
eral diverge 21 on unsatisfiable inputs.

Note that the procedure can be easily reformulated so that it will not diverge
on input pairs containing an i-pure formula that is already unsatisfiable in
Ti, and hence in T1 ∪ T2. The non-termination problem arises only for gen-
uine combination questions, input pairs that are unsatisfiable in the union
theory even if each of their pure members is satisfiable in the corresponding
component theory. We will illustrate later some special cases in which the
combination procedure can be modified so that it always terminates.

Interestingly, even if it is only a semi-decision procedure, the procedure does
yield decidability results when the component theories are axiomatizable. 22

In fact, as pointed out, the procedure will diverge only on those inputs that
are not satisfiable in the union theory. This means that when the procedure
is applicable, the set of pairs satisfiable in the union theory is recursively
enumerable. Now, by the completeness of first-order predicate calculus, the
set of formulae unsatisfiable in an axiomatizable theory is also recursively
enumerable. It follows that if our procedure is applicable to two theories T1

and T2 such that T1∪T2 is axiomatizable, the set of pairs satisfiable in T1∪T2

is recursive. Although this observation does not provide us with a practical
decision procedure for satisfiability in T1 ∪ T2, it does lead to the following
decidability result—together with the observation that T1∪T2 is axiomatizable
whenever both T1 and T2 are.

Proposition 28 Assume that, for i = 1, 2, Ti is axiomatizable and the satis-
fiability in Ti of formulae of Res(LΣi ,Σ) is decidable. If T1 and T2 are N-O-
combinable over L, then the satisfiability in T1 ∪ T2 of formulae in LΣ1 ⊗LΣ2

is decidable.

Up to now, we have used a rather weak language for (mixed) constraints,
namely LΣ1 ⊗ LΣ2 . We have considered only constraints expressible as the
conjunction of two pure formulae which, in addition, share non-logical symbols
is a very limited way. In general however, combined satisfiability problems are
not expressed in the nice separated format given by LΣ1 ⊗LΣ2 , but rather as
mixed constraints in LΣ1∪Σ2 . Our combination results would certainly be more
useful then if they could be given in terms of LΣ1∪Σ2 instead. This is in fact

21 Strictly speaking, we should say something like: “it will infinitely fail”. It should
be clear that, at the cost of a less elegant definition, we could give an equivalent
reformulation of the procedure according to the standard (that is, bounded) notion
of non-determinism. (For instance, by considering all instantiations ρ into terms of
height n first, then those into terms of height n+ 1, and so on.) According to that
definition, the procedure would diverge in the conventional sense.
22 A theory is axiomatizable if its deductive closure coincides with the deductive
closure of a recursive set of sentences.
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possible, but at the cost of some closure assumptions on L. 23 We describe
such assumptions in the following and then show, as an example, how they let
us improve on Proposition 28.

Definition 29 Given two signatures Ω1 and Ω2, we say that a class L of
formulae is purifiable w.r.t. 〈Ω1, Ω2〉 if for every ϕ ∈ LΩ1∪Ω2, there is a finite
set {〈ϕ1

j , ϕ
2
j〉}j<m ⊆ LΩ1 ⊗ LΩ2 such that

(1) ϕ1
j ∧ ϕ2

j ∈ LΩ1∪Ω2 for all j < m,
(2) ϕ and

∨
j<m (ϕ1

j ∧ ϕ2
j) are equisatisfiable.

We call
∨

j<m (ϕ1
j ∧ ϕ2

j) a disjunctive pure form of ϕ (w.r.t. 〈Ω1, Ω2〉). We say
that L is effectively purifiable w.r.t. 〈Ω1, Ω2〉 if for each formula ϕ ∈ LΩ1∪Ω2,
a disjunctive pure form of ϕ is effectively computable.

If the class L specified at the beginning of this section is effectively purifiable
with respect to our initial pair of signatures 〈Σ1, Σ2〉, we can modify the
combination procedure of Figure 1, by adding a “preprocessing” step that,
given an input formula ϕ from LΣ1∪Σ2 , computes a disjunctive pure form ψ
of ϕ and the returns—in a don’t know non-deterministic way—one of ψ’s
disjuncts.

Given that ϕ is satisfiable in T1∪T2 if and only if some disjunct of its disjunc-
tive pure form is satisfiable in T1 ∪T2, it is immediate that the new procedure
is correct as well. With the new procedure we can then conclude by Proposi-
tion 28 that when T1 and T2 are N-O-combinable over L and the satisfiability
in Ti of formulae of Res(LΣi ,Σ) is decidable for i = 1, 2, then the satisfiability
in T1 ∪ T2 of formulae of LΣ1∪Σ2 is also decidable. As a matter of fact, we can
prove something a little stronger, going from the satisfiability in Res(LΣi ,Σ)
to the satisfiability in Res(LΣ1∪Σ2 ,Σ).

Proposition 30 Assume that L is effectively purifiable w.r.t. 〈Σ1, Σ2〉, T1

and T2 are N-O-combinable over L, and Ti is axiomatizable for i = 1, 2. If the
satisfiability in Ti of formulae of Res(LΣi ,Σ) is decidable, then the satisfiability
in T1 ∪ T2 of formulae of Res(LΣ1∪Σ2 ,Σ) is also decidable.

The result above is interesting not only because it allow us to work in LΣ1∪Σ2 ,
as opposed to LΣ1 ⊗ LΣ2 , but also because it can lead to decidability results
for more than two theories by iteration. Suppose in fact that, in addition to
the theories in the proposition, there is a third axiomatizable theory T3 of
signature Σ3 whose common signature with T1∪T2 is also Σ and for which the
satisfiability of formulae of Res(LΣ3 ,Σ) is decidable. Then, if L is effectively
purifiable w.r.t. 〈Σ1∪Σ2, Σ3〉 and T1∪T2 and T3 are N-O-combinable over L,
by the above, the satisfiability in T1∪T2∪T3 of formulae of Res(LΣ1∪Σ2∪Σ3 ,Σ)

23 Notice that we have hardly made any assumptions on L so far.
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is also decidable.

Proving Proposition 30 is easy but tedious. The following informal argument
should suffice. Recall that given a formula ϕ, the new combination proce-
dure first purifies it into a pair 〈ϕ1, ϕ2〉, then specializes 〈ϕ1, ϕ2〉 into a pair
〈ϕ1ρξ, ϕ2ρξ〉, and finally adds to each ϕiρξ the Σ-restriction isoρξ∧dif ξ before
passing the pair to Sat i. It is possible to show that all our combination results
lift to the case in which non-shared variables are also considered for possible
instantiation and identification. 24 Now, if the input ϕ is already of the form
ϕ ∧ resΣ(ṽ) with ϕ ∈ LΣ1∪Σ2 , it is enough for the procedure to purify ϕ into
〈ϕ1, ϕ2〉 and then generate the formulae (ϕ′iρ ∧ isoρ)ξ ∧ dif ξ as before with
the only differences that ϕ′i is now ϕi∧ resΣ(ṽ), ρ is chosen so that it does not
instantiate any variables in ṽ, and ξ is chosen so that it does not identify any
two variables in ṽ. It is a simple exercise to show that each (ϕ′iρ∧ isoρ)ξ∧dif ξ

can be effectively reduced 25 to a logically equivalent formula in Res(LΣi ,Σ),
which can then be processed by Ti’s satisfiability procedure.

5.1 An Effectively Purifiable Class of Formulae

We conclude this section by showing that an important class of formulae, the
quantifier-free formulae, is effectively purifiable w.r.t. any pair of signatures.
For that we first need to give a precise definition to some concepts we have
been using only informally so far.

Let us fix again two arbitrary countable signatures Σ1 and Σ2 and let Σ :=
Σ1 ∩ Σ2. We call shared symbols the elements of Σ and shared terms the
elements of T (Σ, V ). Observe that when Σ is empty, the only shared terms
are the variables. We call (strict) 1-symbols the elements of Σ1 (Σ1 \Σ) and
(strict) 2-symbols the elements of Σ2 (Σ2 \Σ). Shared symbols are both 1- and
2-symbols, and they are strict for neither signature. A term t ∈ T (Σ1 ∪ Σ2, V )
is an i-term iff its top symbol t(ε) is an element of V ∪Σi (i = 1, 2). Variables
and terms t with top symbol in Σ1 ∩Σ2 are both 1- and 2-terms. For i = 1, 2,
an i-term is pure iff it contains only i-symbols and variables.

There is a standard purification procedure that when Σ1 and Σ2 are disjoint
can convert any set S of literals of signature Σ1 ∪Σ2 into a set of pure literals
(see (Baader and Schulz, 1995a) among others). The purification process is
achieved by replacing “alien” subterms by new variables and adding appropri-
ate new equations to S. Intuitively, an alien subterm of an i-term t is a maximal

24 Considering only shared variables is in a sense an optimization of this more general
case.
25 Exploiting the associativity, commutativity, and idempotency of ∧.
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subterm of t that is not itself an i-term. The gist of the procedure then is to
abstract by a fresh variable vs each alien subterm s of an atom in S and add
the equation vs ≡ s to S. The abstraction process is applied repeatedly to S
until no more subterms can be abstracted. This procedure always terminates
and produces a set of literals that is satisfiable in a (Σ1 ∪ Σ2)-structure A iff
the original set S is satisfiable in A.

Now, for disjoint Σ1 and Σ2 a formal definition of the notion of alien subterm
to be used by the purification procedure is straightforward. If one allows Σ1

and Σ2 to share symbol, however, things gets tricky because one has to decide
how to consider shared function symbols (see (Baader and Tinelli, 2001) for
a detailed discussion). We adopt the following definition among a number of
possible ones.

Definition 31 (Alien subterms) Let t ∈ T (Σ1 ∪ Σ2, V ). If the top symbol
of t is a strict i-symbol, then a subterm s of t is an alien subterm of t iff it is
not an i-term and it is maximal with this property, i.e., every proper superterm
of s in t is an i-term.

If the top symbol of t is a shared symbol, then for i = 1, 2, let Si be the set of
all (proper) maximal subterms of t whose top symbol is a strict i-symbol.

• If S1 6= ∅, then t is considered to be a 1-term, i.e., a subterm s of t is an
alien subterm of t iff it is not a 1-term and it is maximal with this property.

• If S1 = ∅ and S2 6= ∅, then t is considered to be a 2-term, i.e., a subterm
s of t is an alien subterm of t iff it is not a 2-term and it is maximal with
this property. 26

We extend the definition of alien subterm from terms to atomic formulae by
treating the formula’s predicate symbol as if it was a function symbol—with
the equality symbol being treated a shared symbol.

With this definition of alien subterm, the purification procedure described
earlier can be applied, unchanged and with the same results, to a set of (Σ1 ∪
Σ2)-literals regardless of whether Σ1 and Σ2 are disjoint or not. Relying on
this procedure, we can finally show the following.

Proposition 32 The class Qff of quantifier-free formulae is effectively puri-
fiable w.r.t. 〈Σ1, Σ2〉.

PROOF. Let ϕ ∈ Qff Σ1∪Σ2 . We first convert ϕ into its disjunctive normal
form, a logically equivalent formula of the form

∨
j<m ϕj, where every disjunct

ϕj is a conjunction of literals. Then, for each j < m, we apply the purification

26 If S1 = ∅ and S2 = ∅, then t is pure and so it has no aliens subterms.
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procedure to the set of literals in ϕj and produce a set Sj of pure literals.
Finally, we collect the Σ1-literals of Sj into a conjunction ϕ1

j and the Σ2-literals
of Sj into a conjunction ϕ2

j , making sure that Σ-literals are either all collected
in ϕ1

j or all collected in ϕ2
j . This process is clearly effective. Furthermore, it is

easy to verify that
∨

j<m (ϕ1
j ∧ ϕ2

j) is a disjunctive pure form of ϕ. 2

Incidentally, notice that even if the process described in the proof above is
non-deterministic (because of the choice of where to collect shared literals),
for our purposes this is a don’t-care kind of non-determinism since all the
disjunctive pure forms that can be obtained this way are equisatisfiable with
the original formula.

6 Identifying N-O-combinable Theories

The combination method presented in the previous section applies correctly
to pairs of N-O-combinable theories. Now, as defined in Definition 23, N-O-
combinability is a rather abstract notion, expressing conditions not on the
single theories but on both of them as a pair. As a consequence, it is not
immediate to see whether two given theories are N-O-combinable.

In this section, we attempt to establish sufficient conditions for N-O-combinability
that are less abstract and more “local” to the theories. As we will see, our at-
tempts are only partially successful. More research, and maybe new insights,
on this are needed. Once again, it will be beneficial to start with the simple
case of theories with disjoint signatures, and then move to the general case.

6.1 Disjoint Signatures

A sufficient, and local, condition for the N-O-combinability of two signature-
disjoint theories over the language of quantifier-free formulae has been known
for quite some time. It was introduced in (Oppen, 1980) to justify the cor-
rectness of the Nelson-Oppen combination method. There, each theory Ti is
required to be stably-infinite, that is, universal and such that every quantifier-
free formula satisfiable in Ti is satisfiable in an infinite model of Ti. In the
following, we show that the notion of stable-infiniteness can be extended to
arbitrary theories and parameterized by the language of interest. Then, we use
this extended and parameterized notion to show how the original combination
results by Nelson and Oppen are subsumed by ours.

Looking back at Lemma 10 one realizes that, with disjoint signatures, all is
needed for the combination result there is that the component structures that
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satisfy the pure formulae have the same cardinality. One way to guarantee
this with theories is to restrict one’s attention to those satisfying the following
property.

Definition 33 (Stably-Infinite Theory) Let L be a class of formulae and
T a consistent theory of signature Ω. We say that T is stably-infinite over LΩ

iff every formula of LΩ satisfiable in T is satisfiable in an infinite model of T .

It is immediate that complete theories admitting infinite models are stably-
infinite over the whole language of first-order formulae. In (Baader and Tinelli,
1997), it is shown that equational theories augmented with the non-triviality
axiom ∃x∃y.x 6≡ y are stably infinite over the class of quantifier-free formulas.
We prove below that this result can be generalized to any theory axiomatized
by Horn sentences. 27

Proposition 34 Every consistent Horn theory T of signature Ω such that
T |= ∃x∃y.x 6≡ y is stably infinite over LΩ, where L is the class of Horn
formulae or the class of quantifier-free formulae.

PROOF. Let L be the class of Horn formulae first and ϕ a member of LΩ

satisfiable in T . It is enough to show that the theory T ′ := T ∪ {∃̃ ϕ} has an
infinite model.

Observe that ∃̃ ϕ is a Horn sentence, which entails that T ′ is Horn theory as
well. From the consistency of T and the assumption that T |= ∃x∃y.x 6≡ y,
we know that T ′ admits a non-trivial model A. By a result originally due
to Alfred Horn, the class of models of a Horn theory is closed under direct
products (see, e.g. (Hodges, 1993)). This means that the direct product B of
A with itself countably infinitely many times, say, is a model of T ′. Now, B is
infinite by definition of direct product and the fact that the set A has at least
two elements.

If L is Qff , we can prove the claim by reduction to the previous case, ob-
serving that a quantifier-free formula is satisfiable in T iff one of the disjuncts
of its disjunctive normal form is, and that conjunctions of literals are Horn
formulae. 2

Some specific examples of stably-infinite theories, useful in software verifica-
tion, can be found in (Oppen, 1980).

27 A Horn formula is a first-order formula of the form Q. ϕ1 ∧ · · · ∧ ϕn, where Q is
an arbitrary quantifier prefix and each ϕi is a disjunction of literals other than ⊥
and ¬>, at most one of which is positive.
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One consequence of Definition 33 is that stably-infinite theories admit infinite
models and so, by the Upward and Downward Löwenheim-Skolem theorems
(Hodges, 1993), admit models of any infinite cardinality 28 . This entails, first,
that if a formula is satisfiable in a stably-infinite theory, it is satisfiable in
models of the theory of arbitrary, infinite cardinality; second (by an applica-
tion of Corollary 21), that the union of two stably-infinite, signature-disjoint
theories is always consistent. In addition, for classes of formulae closed under
variable identification we have the following.

Proposition 35 Let L be a class of formulae closed under variable identi-
fication and T1, T2 two theories with respective signatures Σ1,Σ2 such that
Σ := Σ1 ∩ Σ2 = ∅. If Ti is stably-infinite over Res(LΣi ,Σ) for i = 1, 2, then
T1 and T2 are totally N-O-combinable over L.

PROOF. First we show that T1 and T2 satisfy Condition 4.1. Let 〈ϕ1, ϕ2〉 ∈
LΣ1 ⊗ LΣ2 , ṽ := Var(ϕ1) ∩ Var(ϕ2), ρ ∈ INΣ(ṽ) and ξ ∈ ID(Var(ṽρ)). Now,
each (ϕiρ∧ isoρ)ξ ∧ dif ξ is logically equivalent to the formula ψi := ϕiξ ∧ dif ξ

since ρ necessarily coincides with the empty instantiation (as Σ = ∅) and isoρ

with the empty set. Given that L is closed under variable identification, it is
immediate that ψi ∈ Res(LΣi ,Σ). From the stable-infiniteness of Ti it follows
that if ψi is satisfiable in Ti, it is satisfiable in a model Ai of Ti of cardinality
κ, for any infinite κ greater than or equal to the cardinality of Σ1 ∪ Σ2. We
have already seen that structures like A1 and A2 are trivially Σ-fusible.

To see that T1 and T2 satisfy Condition 4.2 as well, simply notice that since
Σ is empty, every individual of any model of T1 ∪ T2 is Σ-isolated. 2

As a consequence of the above proposition, we obtain the following simplified
version of Theorem 26.

Theorem 36 Let L a class of formulae closed under variable identification
and T1, T2 two theories with disjoint signatures Σ1,Σ2, respectively. For i =
1, 2, assume that Ti is stably-infinite over Res(LΣi , ∅) and let ϕi ∈ LΣi. Then,
where ṽ := Var(ϕ1) ∩ Var(ϕ2), the following are equivalent:

(1) ϕiξ ∧ dif ξ is satisfiable in Ti for each i = 1, 2 and some ξ ∈ ID(ṽ);
(2) ϕ1 ∧ ϕ2 is satisfiable in T1 ∪ T2.

The soundness and completeness of the Nelson-Oppen combination method
(in the case of two component theories) can be proved by an application
of the theorem above, observing that the class Qff is closed under variable

28 Greater than, or equal to, the cardinality of their signature, to be precise.
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identification and that Res(Qff Ω, ∅) coincides with Qff Ω for any signature Ω.
See (Ringeissen, 1996b) or (Tinelli and Harandi, 1996) for more details.

6.2 Non-disjoint Signatures

We now move to the question of finding local sufficient conditions for N-O-
combinability for theories that might share function or predicate symbols. We
first focus on the problem of showing that two theories are partially N-O-
combinable (that is, satisfying Condition 4.1). Then we consider what extra
conditions must hold for them to be totally N-O-combinable (that is, to satisfy
Condition 4.2 as well).

In the previous subsection, to provide sufficient conditions for N-O-combin-
ability we looked for restrictions that would guarantee the existence of fusible
models. There, it was enough to have restrictions that guaranteed the exis-
tence of two models with the same cardinality. Now that the theories’ signa-
tures may have a non-empty intersection Σ, the two models must be Σ-fusible
(cf. Definition 14). The question then is: what structures are Σ-fusible?

A sufficient condition for two structures to be Σ-fusible is that their Σ-reducts
are free in the same variety over the same set of generators. We will prove this
fact in the following and use it to define a general class of N-O-combinable
theories. Before that, we present the definition and the properties of free struc-
tures that we will need.

6.2.1 Free Structures

The concept of free structure is a natural extension to first-order logic of the
concept of free algebra from Universal Algebra. We adopt the following among
the many (equivalent) definitions in the literature.

Definition 37 (Free Structure) Given a class K of Σ-structures and a set
X, a Σ-structure A is free for K over X iff

(1) A is generated by X;
(2) every map from X into the universe of a structure B ∈ K extends to a

(necessarily unique) homomorphism of A into B.

We say that A is free in K over X (or free over X in K) if A is free for K
over X and A ∈ K. In either case, we call X a basis of A.

For convenience, given a Σ-theory T , we will sometimes say that A is free over
X in T , if A is free over X in Mod(T ). In that case, we will also say that A
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is a free model of T . 29

It is immediate from the above definition that a Σ-structure A is free in some
class of Σ-structures if and only if it is free in the singleton class {A}. As a
consequence, we will simply say that a structure A is free (over X) if it is free
in {A} (over X). A structure free over an empty basis is called initial . 30 A
Σ-structure free in the class of all Σ-structures is called absolutely free.

We will also use the following characterization of freeness.

Proposition 38 ((Hodges, 1993)) Let K be a class of Σ-structures, A a
Σ-structure, and X a subset of A. Then, A is free for K over X iff

(1) X generates A and
(2) K |= ∀̃ ϕ for all Σ-atoms ϕ(ṽ) such that A |= ϕ[x̃] for some sequence x̃

of pairwise distinct elements of X.

Free models with infinite bases are canonical for atomic formulae, in the sense
specified by the following corollary of Proposition 38.

Corollary 39 Let T be a theory of signature Σ and A a Σ-structure free in
T over an infinite basis. Then, for all atomic Σ-formulae ϕ,

A |= ∀̃ ϕ iff T |= ∀̃ ϕ.

Equivalently, the atomic theory of A coincides with the atomic theory of T .

It is possible to show that every basis of a free structure is non-redundant as
a set of generators, and that a structure can be free over more than one basis
(Hodges, 1993). Free structures in a collapse-free class, however, have unique
bases.

Proposition 40 The basis of a structure free in a collapse-free class is unique
and coincides with the set of the structure’s isolated individuals.

PROOF. Let A be a Σ-structure free over some set X in a collapse-free class
of Σ-structures. For being a set of generators for A, X must contain all of
A’s isolated individuals, as we observed earlier. Ad absurdum, assume X also
contains a non-isolated individual y. Since y is not isolated and X generates A,

29 To avoid misunderstandings, notice that for A to be a free model of T it is not
enough that A is a model of T free for some class. It must be free for the class
Mod(T ).
30 This definition is equivalent to the more common definition of initial structure
according to which a structure A is initial (in a class K) if, for all structures B ∈ K,
there is a unique homomorphism from A into B.
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there is a non-variable Σ-term t(ṽ) and a sequence x̃ in X with no repetitions
such that y = tA[x̃]. 31

That means that A satisfies the atomic formula (u ≡ t) with an assignment of
elements of X to the formula’s variables. By Proposition 38 then, the sentence
∀̃ (u ≡ t) is entailed by the class, against the assumption that the class is
collapse-free. 2

Free structures have a close connection with varieties. In fact, every non-trivial
Σ-variety contains structures free in it. Furthermore, every free Σ-structure
is free in some Σ-variety (Hodges, 1993), and in particular, absolutely free
Σ-structures are free in the Σ-variety of the empty theory. When a structure
is free in an axiomatizable class of Σ-structures, a corresponding Σ-variety is
readily identified.

Proposition 41 Let K := Mod(T ) for some Σ-theory T . For all A ∈ K and
X ⊆ A, if A is free in Mod(T ) over X then A is free in Mod(At(T )) over X.

PROOF. Let ϕ(ṽ) be a Σ-atom and assume thatA |= ϕ[x̃] for some discrete x̃
inX. By Proposition 38, it is enough to show that At(T ) |= ∀̃ϕ. By assumption
and thanks to the same proposition, we know that T |= ∀̃ ϕ. Recalling the
definition of At(T ), we can then conclude that ∀̃ ϕ ∈ At(T ), from which the
claim follows immediately. 2

The above result also entails that a free Σ-structure with an infinite basis is
free (over that basis) in its own Σ-variety Mod(H), where H is the set of all
the Σ-atoms modeled by A.

The free structures of a variety can be identified modulo isomorphism accord-
ing to the following immediate consequence of Definition 37.

Lemma 42 If two Σ-structures A and B are free in the same Σ-variety over
respective bases X and Y having the same cardinality, then any bijection of X
onto Y extends to an isomorphism of A onto B.

We are now ready to prove our earlier claim on the fusibility of structures with
a free Σ-reduct.

Proposition 43 Let A and B be two structures and Σ := ΣA ∩ ΣB. Assume
that AΣ is free over X and BΣ is free over Y in the same class of Σ-structures.
If Card(X) = Card(Y ), then A and B are Σ-fusible.

31 Incidentally, notice that y ∈ x̃ otherwise X would be redundant.
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PROOF. We start by showing that A and B are fusible over 〈X, Y 〉. Given
a finite set X0 ⊆ X, consider any injective map h : X0 → Y . Since X0 is finite
and Card(X) = Card(Y ), h can always be extended to a bijection from X
onto Y . By Lemma 42 then, h can be extended to an isomorphism of AΣ onto
BΣ. To see that A and B are Σ-fusible, recall that the isolated individuals of
a structure are included in every set that generates that structure. Since X
generates AΣ and Y generates BΣ by assumption, we have that Is(AΣ) ⊆ X
and Is(BΣ) ⊆ Y , from which the claim follows. 2

Notice that in the result above the Σ-reducts of the structures are required to
be free, not the whole structures. Also notice that this is indeed a generaliza-
tion of the signature-disjoint case. In fact, when Σ is empty the Σ-reduct of
any structure is (trivially) free over the whole carrier of the structure.

A pair of structures that satisfy the proposition above are the structures seen
in Example 18 and Example 19 of Section 3. The structure A in the first
example combined natural numbers and LISP lists, whereas the structure B
in the second example combined strings and LISP lists. Recall that, as data
structures, two LISP lists are equal if and only if they are both nil or are
both non-nil and have equal head and tail. Mathematically, this means that
an equation between two terms in the signature Σ := {nil, cons} is valid in
AΣ (or BΣ) if and only if the two terms are identical. From the fact that, as
we have seen in the examples, AΣ is generated by the set N ∪ I and BΣ is
generated by the set W ∪ J , it easily follows that they are both free in the
empty Σ-theory, respectively over N ∪ I and W ∪ J . Since both N ∪ I and
W ∪ J are countably infinite, we can conclude by Proposition 43 that A and
B are Σ-fusible.

6.2.2 Stably Σ-free Theories

We can use Proposition 43 to extend the notion of stable-infiniteness so that
it provides, along with some additional requirements, a sufficient condition for
the N-O-combinability of theories with non-disjoint signatures.

Definition 44 (Stably Σ-free Theory) Let T be a consistent theory of sig-
nature Ω, Σ a finite subset of Ω, L a class of formulae and κ the first infinite
cardinal such that κ ≥ Card(Ω). The theory T is stably Σ-free over LΩ iff
every formula of LΩ satisfiable in T is satisfiable in a model A of T such that
AΣ is free in Mod(At(TΣ)), the Σ-variety of T , over a basis of cardinality κ.

As said, the notion of stable Σ-freeness is meant to generalize that of stable-
infiniteness for pairs of theories whose shared signature is Σ. Indeed, when Σ
is empty the two notions coincide.
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Proposition 45 Let L be a class of formulae, T a consistent theory of sig-
nature Ω, and Σ an empty signature. Then, T is stably-infinite over LΩ iff T
is stably Σ-free over LΩ.

PROOF. Let κ be the first infinite cardinal such that κ ≥ Card(Ω).

(⇒) Assume that T is stably-infinite over LΩ and let ψ ∈ LΩ be satisfiable
in T . By definition of stable-infiniteness, T ∪ {∃̃ ψ} has an infinite model and
so, as observed earlier, one of cardinality κ. Call it A and notice that AΣ

is absolutely free over A. Moreover, the atomic Σ-theory of T is empty. In
fact, since Σ has no symbols, the only non-empty atomic Σ-theory is the one
axiomatized by {∀x∀y. x ≡ y}. However, this cannot be the Σ-theory of T
because otherwise all of T ’s models would be trivial, against the fact that T
has an infinite model. It conclusion, we have shown that ψ is satisfiable in a
model of T whose reduct to Σ is free in the Σ-variety of T over a basis of
cardinality κ.

(⇐) Assume that T is stably Σ-free over LΩ and let ψ ∈ LΩ be satisfiable
in T . By Definition 44, ψ is satisfiable in a model of T containing at least κ
individuals and so it is satisfiable in an infinite model of T . 2

We will see in Section 8 that the class of stably Σ-free theories is non-empty for
all signatures Σ. For now, it might be interesting to see how a stably-infinite
theory can fail to be stably Σ-free when Σ is non-empty.

Example 46 Consider the Ω-theory T := {a 6≡ b, c 6≡ d ∨ a ≡ d} where
a, b, c and d are constant symbols. It is easy to see that T is a consistent
Horn theory entailing ∃x∃y.x 6≡ y. Therefore, it is stably infinite over Qff Ω by
Proposition 34. Now let Σ := {a, d} and observe that the atomic Σ-theory of T
is empty. Then consider any model of T satisfying the quantifier-free formula
c ≡ d. Such a model exists because T ∪ {c ≡ d} is consistent, as one can
easily see. Moreover, in it a and d are equal. Now, the model’s reduct to Σ is
certainly not free in the Σ-variety of T , otherwise the atomic Σ-theory of T
would contain the equation a ≡ b. It follows that T is not stably Σ-free over
Qff Ω.

We show below that under certain conditions stably Σ-free theories are N-O-
combinable. To do that we will fix

• a class L of formulae closed under identification and instantiation and
• two countable signatures Σ1 and Σ2

32 such that Σ := Σ1 ∩ Σ2 is finite.

32 All we need really is that Σ1 and Σ2 have the same cardinality whenever one of
them is not countable. We assume that they are both countable for simplicity.
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Lemma 47 Let T1, T2 be two consistent theories of respective signature Σ1,Σ2,
and H0 an atomic theory of signature Σ. If H0 is the atomic Σ-theory of both
T1 and T2 and each Ti is stably Σ-free over some class of formulae, then H0

is also the atomic Σ-theory of T1 ∪ T2.

PROOF. Let T := T1 ∪ T2. It is immediate that H0 ⊆ At(TΣ). We show
that At(TΣ) ⊆ H0. First recall that we assume that every class of formulae
contains a universally true sentence. Together with Definition 44, this entails
that for i = 1, 2, Ti has a model Ai whose Σ-reduct is free in H0 over a
countably-infinite set. It follows by Proposition 43 and Proposition 20 that
A1 and A2 are fusible in a model F of T . Since, by definition of fusion, FΣ is
isomorphic to A1

Σ, say, we can conclude that FΣ as well is free in H0 (over
some countably infinite set).

Now, let ∀̃ ϕ ∈ At(TΣ), which means that ϕ is a Σ-atom such that T |= ∀̃ ϕ.
Then, FΣ |= ∀̃ ϕ as well because F is a model of T and ∀̃ ϕ is a Σ-formula.
Since FΣ is a free model of H0 with an infinite basis, we have by Corollary 39
thatH0 |= ∀̃ϕ. Recalling thatH0 is the atomic Σ-theory of T1, we can conclude
that ∀̃ ϕ ∈ H0. 2

Theorem 48 For all consistent theories T1, T2 of respective signature Σ1,Σ2,
we have the following.

(1) If T1 and T2 have the same atomic Σ-theory H0 and each Ti is stably Σ-
free over Res(LΣi ,Σ), then T1 and T2 are partially N-O-combinable over
L.

(2) If, in addition, H0 is collapse-free and T1∪T2 is stably Σ-free over LΣ1⊗
LΣ2, then T1 and T2 are totally N-O-combinable over L.

PROOF. Let 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2 and ṽ := Var(ϕ1) ∩ Var(ϕ2).

(1) It suffices to show that 〈ϕ1, ϕ2〉 satisfies Condition 4.1. Let ρ ∈ INΣ(ṽ)
and ξ ∈ ID(Var(ṽρ)) such that ψi := (ϕiρ∧ isoρ)ξ∧dif ξ is satisfiable in Ti for
i = 1, 2. We already know that ψi belongs to Res(LΣi ,Σ); therefore, by the
stable Σ-freness of Ti, it is satisfiable in some Ai ∈ Mod(Ti) such that Ai

Σ is
free in Mod(H0) over a countably-infinite set Xi. The models A1 and A2 are
Σ-fusible by Proposition 43.

(2) It suffices to show that 〈ϕ1, ϕ2〉 satisfies Condition 4.2. Let T := T1∪T2 and
assume that 〈ϕ1, ϕ2〉 is satisfiable in T . As T is stably Σ-free over LΣ1 ⊗LΣ2

by assumption, 〈ϕ1, ϕ2〉 is satisfiable in a model A of T whose reduct to Σ is
free in the Σ-variety of T . Since the Σ-variety of T is Mod(H0) by Lemma 47,
and H0 is collapse-free by assumption, we have by Proposition 40 that AΣ is
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generated by its isolated individuals. In conclusion, ϕ1 ∧ ϕ2 is satisfiable in a
model of T that is Σ-generated by its Σ-isolated individuals. 2

Total (as opposed to partial) N-O-combinability of the component theories is
important for our combination method because it guarantees its completeness,
as we have seen in Section 5. An irksome feature of the theorem above is that
it explicitly assumes that T1 ∪ T2 is stably Σ-free over LΣ1 ⊗ LΣ2 in order to
yield the total N-O-combinability of T1 and T2.

It would be better if the stable Σ-freeness of a union theory could be proved
from the stable Σ-freeness of its component theories. Unfortunately, we have
not been able to do that. In fact, we believe that it is unlikely to be the case
in general. More constraints on either the language or the component theories
are needed. For instance, it is possible to show that if Σ is empty, then T1∪T2

is indeed stably Σ-free over LΣ1 ⊗ LΣ2 whenever both T1 and T2 are stably
Σ-free over Res(LΣi ,Σ).

Although we are not able to show in general that stable Σ-freeness over Σ-
restricted formulae is modular with respect to the union of theories, we can
show a weaker result in terms of totally Σ-restricted formulae.

Proposition 49 Let T1, T2 be two consistent theories of respective signature
Σ1,Σ2, such that Ti is stably Σ-free over TRes(LΣi ,Σ) for i = 1, 2. If T1

and T2 have the same atomic Σ-theory H0, then T1 ∪ T2 is stably Σ-free over
TRes(LΣ1 ⊗ LΣ2 ,Σ) 33 .

PROOF. Let ϕ1 ∧ϕ2 ∧ resΣ(ũ) be an element of TRes(LΣ1 ⊗ LΣ2 ,Σ) satisfi-
able in T1 ∪ T2, where 〈ϕ1, ϕ2〉 ∈ LΣ1 ⊗ LΣ2 and Var(ϕ1 ∧ ϕ2) ⊆ ũ. We show
that the formula is satisfiable in a model of T1 ∪ T2 whose Σ-reduct is free in
the atomic Σ-theory of T1 ∪ T2 over a countably infinite base.

Clearly, the sentence ψi := ϕi ∧ resΣ(ũ) is satisfiable in Ti for i = 1, 2. In
particular, since ψi ∈ TRes(LΣi ,Σ) and Ti is stably Σ-free over TRes(LΣi ,Σ)
by assumption, ψi is satisfiable in a model Ai of Ti such that Ai

Σ is free in H0

over a countably-infinite basis. By Proposition 43, A1 and A2 are Σ-fusible.

Since the shared variables of ϕ1 and ϕ2 are included in the restriction resΣ(ũ) =
isoΣ(ũ)∧ dif (ũ), we can already conclude by Lemma 13 that ϕ1 ∧ ϕ2 is satis-
fiable in a fusion F of A1 and A2. By an argument similar to the observation
after Lemma 13, we can actually show that the whole ϕ1 ∧ ϕ2 ∧ resΣ(ũ) is
satisfiable in F .

33 By a small abuse of notation, we treat here each pair in LΣ1 ⊗ LΣ2 as the con-
junction of its components.
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We have already seen that F ∈ Mod(T1 ∪ T2) and FΣ is free in H0 over a
countably-infinite basis. To complete the proof then, it is enough to recall
that, by Lemma 47, the atomic Σ-theory of T1 ∪ T2 coincides with H0. 2

The above result is not sufficient for our needs given that, in general, the
class TRes(LΣ1 ⊗ LΣ2 ,Σ) is strictly included in Res(LΣ1 ⊗ LΣ2 ,Σ). One might
argue, however, that if we limit ourselves to totally Σ-restricted formulae, we
do get the kind of modularity and completeness results we desire. As a matter
of fact, we can show that our combination procedure is sound and complete
for all partially Σ-restricted formulae of the form ϕ1 ∧ ϕ2 ∧ resΣ(ũ) in which
ũ includes the variables shared by ϕ1 and ϕ2. Unfortunately, even this is not
enough.

In fact, our ultimate goal is to work with formulae in LΣ1∪Σ2 , whether they
have an attached Σ-restriction or not. As we saw, these formulae can be
dealt with by our combination method provided that L is effectively pu-
rifiable w.r.t. 〈Σ1, Σ2〉. What we do then is first convert an input formula
ϕ(ṽ) ∈ LΣ1∪Σ2 into disjunctive pure form and then test the satisfiability of its
disjuncts, which are members of LΣ1 ⊗LΣ2 . Now, these disjuncts may have a
different (typically larger) set of free variables. Therefore, even if we start with
the totally Σ-restricted formula ϕ(ṽ)∧ resΣ(ṽ), after purification we may end
up with partially Σ-restricted formulae of the form ϕ1 ∧ ϕ2 ∧ resΣ(ṽ) where
not all the shared variables of ϕ1 and ϕ2 are included in ṽ.

When L coincides with Qff , it is possible to generate the disjuncts ϕ1 ∧ϕ2 so
that

• U := Var(ϕ1 ∧ ϕ2) \ ṽ consists only of shared variables and
• ϕ1 ∧ ϕ2 |= ui ≡ ti for all ui ∈ U , where ti is a pure term.

This entails that we can extend the Σ-restriction of ϕ to Var(ϕ1 ∧ ϕ2) without
loss of solutions only if we are guaranteed that the terms ti above denote only
Σ-isolated individuals.

We show in Section 8 that a situation like this can in fact be achieved for
certain pairs of component theories. A crucial feature of some of these theories
will be that their shared symbols are constructors in the sense formally defined
in the next section.
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7 Theories with Constructors

There are several definitions of constructors in Computer Science, but they
are all based on the same fundamental idea. In essence, a set of constructors
is a set of constants and functions that can be used to construct a computable
data type. For instance, zero and the successor function are the constructors
of the positive integer data type, the empty stack and the push function are
the constructors of the stack data type, and so on.

In symbolic computation, constructors are the symbols that denote construc-
tor functions. As such, they can be given syntactical definitions such as the
one used in term rewriting (see later). The algebraic approaches to abstract
data types, however, provide insights for formally understanding constructor
symbols at a semantic level. In the algebraic ADT literature (see, e.g., (Ehrig
and Mahr, 1985, 1990)), abstract data types are typically defined by initial
algebras. 34 In that context, the constructors of an initial algebra A of sig-
nature Ω are those function symbols of Ω that can be used to incrementally
generate the universe of A out of an initially empty set. Non-constructors
then are function symbols that, while also denoting maps from A to A, are
not necessary to build A. More formally, we could say that a signature Σ ⊆ Ω
is a set of constructors for A if the empty set, which is a set of (Ω-)generators
for A, is also a set of (Σ-)generators for AΣ.

We could think of extending this notion to non-initial free algebras by saying
that a signature Σ ⊆ Ω is a set of constructors for a free algebra A with
signature Ω and basis X, if X, which is a set of generators for A, is also a
set of generators for AΣ. As it turns out, this straightforward generalization is
more restrictive than it needs be. To see that, consider the equational theory
E of signature Ω := {0, s,+} axiomatized by the sentences:

∀x, y, z. x+ (y + z) ≡ (x+ y) + z

∀x, y. x+ y ≡ y + x

∀x, y. x+ s(y) ≡ s(x+ y)

∀x. x+ 0 ≡ x

The algebra of the natural numbers with addition is an initial model of this
theory (where s denotes the successor function). Now, the reduct of this algebra
to the signature Σ := {0, s} is also initial, which means that Σ is a set of
constructors for the algebra. We would like to say then that Σ is also a set of
constructors for all the free models of E, but this is not the case. In fact, if A
is an Ω-algebra free in E over a nonempty set X, the individual x+A x of A,

34 Recall that an initial algebra is a free algebra with an empty basis.
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for any x ∈ X, cannot be generated from X by 0A and sA alone. Therefore,
X is not a set of generators for AΣ. The interesting point of this example is
that AΣ is in fact a free algebra. And while not free over X, it is free over
an easily definable superset of X which includes all the individuals that, like
x +A x, are not generated from X by 0A and sA alone. Moreover, AΣ is free
precisely in the Σ-variety Mod(EΣ).

We have developed our notion of constructors around the observation above
and have found it very useful in the combination results described later in the
paper. The key facts about constructors used for those results are that free
structures with a set Σ of constructors are Σ-generated by their Σ-isolated
individuals and are Σ-fusible.

This idea of constructors was introduced in (Tinelli and Ringeissen, 1998) af-
ter a similar one in (Domenjoud et al., 1994), and further refined with Franz
Baader in (Baader and Tinelli, 1998) in the context of equational theories.
In the following, we provide a unified treatment of the results in (Tinelli and
Ringeissen, 1998) and (Baader and Tinelli, 1998) for the case of arbitrary first-
order theories. Our definition of constructors is rather general. As initially
shown in (Baader and Tinelli, 1999), it includes the constructors in (Domen-
joud et al., 1994). We will show in the appendix that, under quite reasonable
assumptions, it also includes the constructors used in term rewriting. 35

7.1 Constructors

For the rest of the section let us fix a signature Ω and a subsignature Σ of
Ω. Given a subset G of T (Ω, V ), we denote by T (Σ, G) the set of terms over
the “variables” G. More precisely, every member of T (Σ, G) is obtained from
a term s ∈ T (Σ, V ) by replacing the variables of s with terms from G. To
express this construction we will denote any such term by s(r̃) s(r̃) where r̃ is
a tuple with no repetitions collecting the terms of G that replace the variables
of s. Note that this notation is consistent with the fact that G ⊆ T (Σ, G).
In fact, every r ∈ G can be represented as s(r) where s is a variable of V .
Also notice that T (Σ, V ) ⊆ T (Σ, G) whenever V ⊆ G. In this case, every
s ∈ T (Σ, V ) can be trivially represented as s(ṽ) where ṽ are the variables of
s.

For every theory T with signature Ω and every subset Σ of Ω, we define the
following subset of T (Ω, V ):

35 After the submission of this paper, the definition has been generalized even fur-
ther. See (Baader and Tinelli, 2001) for more details.
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GT (Σ, V ) := {r ∈ T (Ω, V ) | r 6=T t for all t ∈ T (Ω, V ) with t(ε) ∈ Σ}.

In essence, GT (Σ, V ) is made, modulo equivalence in T , of Ω-terms whose top
symbol is not in Σ.

We start with a syntactical definition of our notion of constructors for a theory.
We then show that for theories admitting free models with an infinite basis,
this definition has a simple model-theoretic characterization. We will use both
the syntactical definition and the semantical characterization of constructors
in the next sections, as convenient.

Definition 50 (Constructors) Let T be a non-trivial theory of signature Ω,
Σ ⊆ Ω, and G := GT (Σ, V ). The signature Σ is a set of constructors for T iff
the following holds:

(1) V ⊆ G.
(2) For all t ∈ T (Ω, V ), there is an s(r̃) ∈ T (Σ, G) such that

t =T s(r̃).

(3) For all n-ary P ∈ ΣP ∪ {≡} and s1(r̃1), . . . , sn(r̃n) ∈ T (Σ, G),

T |= ∀̃ P (s1(r̃1), . . . , sn(r̃n)) iff T |= ∀̃ P (s1(ṽ1), . . . , sn(ṽn))

where ṽ1, . . . , ṽn are fresh variables abstracting r̃1, . . . , r̃n so that two terms
are abstracted by the same variable iff they are equivalent in T .

Notice that when Σ has no predicate symbols, condition (3) reduces to:

(3) For all s1(r̃1), s2(r̃2) ∈ T (Σ, G),

s1(r̃1) =T s2(r̃2) iff s1(ṽ1) =T s2(ṽ2)

where ṽ1, ṽ2 are fresh variables abstracting r̃1, r̃2 so that two terms are
abstracted by the same variable iff they are equivalent in T .

It is easy to see that any set of constant symbols of Ω is a set of constructors for
any Ω-theory T . It is also easy to show that the whole Ω is a set of constructors
for T if and only if T is collapse-free.

The following is an another immediate consequence of the definition of con-
structors.

Proposition 51 For every theory T and signature Σ, Σ is a set of construc-
tors for T iff Σ is a set of constructors for At(T ).

We show below that when Σ is a set of constructors for an Ω-theory T admit-
ting a free model A with an infinite basis 36 , the Σ-reduct of A is free in TΣ,

36 A large class of theories admitting free models with infinite bases is the class of
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the Σ-theory of T , with over a set determined by GT (Σ, V ). For this purpose,
we will use the following properties of GT (Σ, V ).

Lemma 52 For all non-trivial theories T of signature Ω,

(1) GT (Σ, V ) is closed under equivalence in T ;
(2) GT (Σ, V ) is nonempty iff V ⊆ GT (Σ, V );
(3) If V ⊆ GT (Σ, V ), then TΣ is collapse-free.

PROOF. Let G := GT (Σ, V ). We prove only points 2 and 3, as 1 is trivial.

(2) Since V is assumed to be countably infinite, V ⊆ G obviously implies that
G is nonempty. We prove the other direction by proving its contrapositive.
Assume that there exists a variable v ∈ V \G. By definition of G then, there
exists an f ∈ Σ and a tuple t̃ of Ω-terms such that v =T f(t̃). Now consider any
r ∈ T (Ω, V ). By applying the substitution {v ← r} to the equation v ≡ f(t̃),
we obtain a tuple of Ω-terms t̃′ such that r =T f(t̃′), which means that r 6∈ G.
From the generality of r it follows that G is empty.

(3) Again, we prove the contrapositive. Assume that TΣ is not collapse-free.
Since T is non-trivial by assumption, there must exist a non-variable Σ-term
s and a variable v ∈ V such that v =TΣ s. By definition of G this implies that
v 6∈ G, and thus V 6⊆ G. 2

Proposition 53 Let T a Ω-theory admitting a free model A with a countably
infinite basis X and let α be a bijective valuation of V onto X. 37 If Σ is a set
of constructors for T then AΣ is free in TΣ over the superset Y of X defined
as follows:

Y := {[[r]]Aα | r ∈ GT (Σ, V )}.

PROOF. Let G := GT (Σ, V ) and assume that Σ is a set of constructors for
T . First notice that X ⊆ Y because V ⊆ G. Then observe that since A is a
model of T , its reduct AΣ is a model of TΣ. We show that AΣ is Σ-generated
by Y . In fact, let a be an element of A—which is also the carrier of AΣ. We
know that as an Ω-structure A is generated by X; thus there exists a term
t ∈ T (Ω, V ) such that a = [[t]]Aα . By Definition 50(2), the term t ∈ T (Ω, V )
is equivalent in T to a term s(r̃) ∈ T (Σ, G). Since A is a model of T , this
implies that a = [[t]]Aα = [[s(r̃)]]Aα , from which it easily follows by definition of
Y that a is Σ-generated by Y .

non-trivial universal Horn theories.
37 Such a valuation α exists since V is assumed to be countably infinite.
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The above entails that AΣ satisfies the first condition of Proposition 38. To
show that it is free in TΣ then it is enough to show that it also satisfies the
second condition of the same proposition.

Thus, consider any terms s1(ṽ1), . . . , sn(ṽn) ∈ T (Σ, V ), relation symbol P ∈
ΣP ∪ {≡}, and injection β of V0 := Var(P (s1(ṽ1), . . . , sn(ṽn))) into Y such
that

(AΣ, β) |= P (s1(ṽ1), . . . , sn(ṽn)).

By definition of Y we know that for all v ∈ V0, there is a term rv ∈ G
such that β(v) = [[rv]]

A
α . Using these terms we can construct two tuples r̃1

and r̃2 of terms in G such that, for i = 1, 2, the term si(r̃i) is obtained
from si(ṽi) by replacing each variable v in ṽi by the term rv, and (A, α) |=
P (s1(r̃1), . . . , s2(r̃n)). Since A is free in T over X and α is injective as well we
can conclude by Proposition 38(2) that T |= ∀̃ P (s1(r̃1), . . . , s2(r̃n)).

Now, by the injectivity of β we know that ru 6=T rv for distinct variables u, v ∈
V0. Therefore, considered the other way round, the atom P (s1(ṽ1), . . . , sn(ṽn))
can be obtained from P (s1(r̃1), . . . , s2(r̃n)) by abstracting the terms r̃1, . . . , r̃n

so that two terms are abstracted by the same variable iff they are equiv-
alent in T . But then, by Point 3 of Definition 50 we can conclude that
T |= ∀̃ P (s1(ṽ1), . . . , sn(ṽn)). Since ∀̃ P (s1(ṽ1), . . . , sn(ṽn)) is a Σ-sentence,
this is the same as saying that TΣ |= ∀̃ P (s1(ṽ1), . . . , sn(ṽn)). 2

The freeness of the structure AΣ above is therefore necessary for Σ to be a
set of constructors for T . It becomes also sufficient when TΣ is collapse-free,
as the following theorem shows.

Theorem 54 Let T a Ω-theory admitting a free model A over a countably
infinite set. Then, Σ is a set of constructors for T iff

• the Σ-reduct of A is free in TΣ and
• TΣ is collapse-free.

PROOF. As before, let X be a countably infinite basis of A, α a bijective
valuation of V onto X, G := GT (Σ, V ), and Y := {[[r]]Aα | r ∈ G}.

(⇒) By Proposition 53, AΣ is free in TΣ. By Lemma 52(3), the fact that
V ⊆ G (cf. Condition (1) of Definition 50) implies that TΣ is collapse-free.

(⇐) Assume that TΣ is collapse-free and AΣ is free in TΣ over some set Z.
First, notice that Z cannot be the empty set. Otherwise, A would also be
generated by the empty set, making X a redundant set of generators, which
is impossible because A is free over X by assumption.
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We prove Y = Z by first proving that Y ⊆ Z and then that Z ⊆ Y . Ad
absurdum, assume that Y 6⊆ Z and let y ∈ Y \Z. Since A is Ω-generated
by X and Σ-generated by Z, we know that there exist a non-variable Σ-term
s and a tuple t̃ of Ω-terms such that [[ti]]

A
α ∈ Z for all elements ti of t̃, and

y = [[s(t̃)]]Aα . By definition of Y we know that there is a term r ∈ G such
that y = [[r]]Aα . As A is free in T and α is injective, we can then conclude by
Proposition 38(2) that r =T s(t̃), but then r cannot be in G. It follows that
Y ⊆ Z.

To show that Z ⊆ Y , let z ∈ Z. Since A is Ω-generated by X, there exists an
Ω-term r such that z = [[r]]Aα . We prove by contradiction that r is an element of
G, which will then entail by construction of Y that z ∈ Y . Therefore, assume
that r 6∈ G. Then, there must be a function symbol f ∈ Σ and a tuple of
Ω-terms t̃ such that r =T f(t̃). Since the elements of t̃ are all Σ-generated by
Z, there is a variable v, a non-variable Σ-term s, and an injective mapping
β of Var(s) ∪ {v} into Z such that β(v) = z = [[s]]A

Σ

β . 38 As AΣ is free in
TΣ over Z, we obtain that v =TΣ s. But this contradicts the fact that TΣ is
collapse-free. It follows that r ∈ G and so z ∈ Y .

In conclusion, we have shown that Z is nonempty and coincides with Y =
{[[r]]Aα | r ∈ G}. In particular, this means that G is nonempty either. The first
condition in Definition 50 follows then directly from Lemma 52(2). The second
condition follows by Proposition 38(2) and Corollary 39, given that A is free
in T and Σ-generated by Y = Z. Similarly, the third condition follows from
Proposition 38(2). 2

We can now give an alternative formulation of Theorem 54 by means of the
following corollary.

Corollary 55 Let T a Ω-theory admitting a free model A over a countably
infinite set. Then, the following are equivalent.

(1) Σ is a set of constructors for T .
(2) AΣ is free in TΣ over Is(AΣ). 39

PROOF. (1⇒ 2) By Theorem 54, AΣ is free in the collapse-free theory TΣ.
By Proposition 40, the unique basis of AΣ coincides with Is(AΣ).

(2⇒ 1) LetAΣ be free in TΣ over Is(AΣ). By Theorem 54, it is enough to show
that TΣ is collapse-free. Assume the contrary. Then, since TΣ is non-trivial for
admitting the infinite model AΣ, there must be a variable v and a non-variable

38 Note that v may be an element of Var(s).
39 Recall the Is(AΣ) is the set of all the isolated individuals of AΣ (cf. Definition 3).
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Σ-term s such that v =TΣ s. From the fact then that variables are equivalent
in TΣ, and so in AΣ, to a term starting with a Σ-symbol, it easily follows that
no individual of AΣ is Σ-isolated. Therefore, Is(AΣ) is empty. But then, we
can argue as in the proof of Theorem 54 that A is generated by the empty
set, which is impossible as A is free over an infinite set by assumption. 2

Later in the paper we will consider theories T for which GT (Σ, V ) is closed
under instantiation into itself, by which we mean that replacing the variables
of a term in GT (Σ, V ) by terms in GT (Σ, V ) yields a term also in GT (Σ, V ).

Definition 56 Let T be a of signature Ω and Σ ⊆ Ω. We say that GT (Σ, V )
is closed under instantiation into itself iff rσ ∈ GT (Σ, V ) for all terms r ∈
GT (Σ, V ) and substitutions σ ∈ SUB(V ) such that Ran(σ) ⊆ GT (Σ, V ).

WhenGT (Σ, V ) is closed under instantiation into itself, the set Is(AΣ) exhibits
in turn the following closure property.

Lemma 57 Let T a Ω-theory admitting a free model A over a countably in-
finite set X and assume that Σ is a set of constructors for T . If GT (Σ, V ) is
closed under instantiations into itself, then

[[r]]Aβ ∈ Is(AΣ)

for all terms r ∈ GT (Σ, V ) and valuations β of Var(r) into Is(AΣ).

PROOF. Let r(ṽ) ∈ G := GT (Σ, V ) and β a valuation of ṽ into Is(AΣ). We
have seen that X ⊆ Is(AΣ) = {[[r]]Aα | r ∈ G} for any bijective valuation α
of V onto X. This means that for each v ∈ ṽ there is a term rv ∈ G such
that β(v) = [[rv]]

A
α . It follows that there is a substitution σ into G such that

[[r]]Aβ = [[rσ]]Aα . The claim then follows immediately from the assumption that
G is closed under instantiation into itself. 2

7.2 Normal Forms

Condition 2 of Definition 50 says that when Σ is a set of constructors for an Ω-
theory T , every term t ∈ T (Ω, V ) is equivalent in T to a term s(r̃) ∈ T (Σ, G),
where G := GT (Σ, V ). We call s(r̃) a normal form of t in T . 40 We say that a
term t is in normal form if it is a member of T (Σ, G). Because V ⊆ G, it is
immediate that Σ-terms are in normal form, as are terms in G.

40 Notice that in general, a term may have more than one normal form.
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We point out that, according to our definition, it is not necessarily the case
that all the variables occurring in the normal form of a term also occur in the
term itself. However, it is possible to make this assumption with no loss of
generality whenever Σ contains a constant symbol. A proof of this fact can be
found in (Tinelli and Ringeissen, 2001), an extended version of this paper. A
similar result is also shown in (Fiorentini and Ghilardi, 2001).

We will be interested in normal forms that are computable in the following
sense.

Definition 58 (Computable Normal Forms) Let Σ be a set of construc-
tors for a theory T of signature Ω and consider a map

NFΣ
T : T (Ω, V )→ T (Σ, GT (Σ, V )).

We say that normal forms are computable for Σ and T by NFΣ
T iff NFΣ

T is
computable and NFΣ

T (t) is a normal form of t, i.e., NFΣ
T (t) =T t.

We will simply say that normal forms are computable for Σ and T if there is
a function NFΣ

T such that normal forms are computable for Σ and T by NFΣ
T .

Although we will not needed it here, we point out an important consequence
of Definition 58: if normal forms are computable for Σ and T , it is always
possible to tell whether a term is in normal form or not. Again, a proof of this
can be found in (Tinelli and Ringeissen, 2001).

7.3 Examples

We provide below some examples of theories admitting constructors for situa-
tions other than the trivial ones already mentioned. But first, let us consider
some counter-examples.

• The signature Σ := {f} is not a set of constructors for the theory T :=
{∀x. x ≡ f(g(x))} because it does not satisfy Definition 50(1), as one can
easily show.
• The signature Σ := {f} is not a set of constructors for the theory T :=
{∀x. g(x) ≡ f(g(x))} because it does not satisfy Definition 50(2). In fact,
the term g(x) does not have a normal form.
• The subsignature Σ := {f} of Ω := {f, g} is not a set of constructors for the

theory T := {∀x. f(g(x)) ≡ f(f(g(x)))}. It is easy to show that GT (Σ, V ) =
V ∪ {g(t) | t ∈ T (Ω, V )} and that conditions (1) and (2) of Definition 50
hold. However, condition (3) does not hold since f(g(x)) =T f(f(g(x)))
even if f(y) 6=T f(f(y)).
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• By a similar argument, one can show that the subsignature Σ := {P} of
Ω := {P, g} is not a set of constructors for the theory T := {∀x. P (g(x))}.

The theory of the natural numbers with addition considered earlier is indeed
an example of a theory with constructors.

Example 59 Consider the signature Σ59 := {0, s,+} and the theory E59 ax-
iomatized by the sentences:

∀x, y, z. x+ (y + z) ≡ (x+ y) + z

∀x, y. x+ y ≡ y + x

∀x, y. x+ s(y) ≡ s(x+ y)

∀x. x+ 0 ≡ x

The signature Σ := {0, s} is a set of constructors for E59 in the sense of Defi-
nition 50 (see (Baader and Tinelli, 1998) for a proof). In particular, GT (Σ, V )
is the set of all terms that either a variable or a (possibly nested) addition of
variables. Furthermore, every normal form looks like sn(r) where n ≥ 0 and r
is either 0 or a term in GT (Σ, V ). It is interesting to notice that GT (Σ, V ) is
closed under instantiation into itself.

The following is another simple, but this time non-equational, example of a
theory with constructors.

Example 60 Consider the signature Σ60 := {0, s,+,Even} and the theory T60

axiomatized by E59 above plus the sentences:

Even(0)

∀x. Even(x) ⇒ Even(s(s(x)))

It is not difficult to show that the signature Σ := {0, s,Even} is a set of con-
structors for T60. Interestingly, Σ is not a set of constructors if we also add the
axiom ∀x. Even(x + x). The reason is that then, since x + x is in GT (Σ, V ),
the sentence ∀y. Even(y) should also be entailed by the theory according to
Definition 50(3), but it is not.

The next examples differ from the previous ones in that their equational Σ-
theory is no longer empty.

Example 61 Consider the signature Σ61 := {0, 1, rev, ·} and the theory E61
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axiomatized by the sentences:

∀x, y, z. x · (y · z) ≡ (x · y) · z

∀x, y. rev(x · y) ≡ rev(y) · rev(x)

∀x. rev(rev(x)) ≡ x

rev(0) ≡ 0

rev(1) ≡ 1

We show in the appendix that the signature Σ := {0, 1, ·} is a set of construc-
tors for E61. The set GT (Σ, V ) is the equivalence closure in E61 of the set
V ∪ {rev(v) | v ∈ V }. Moreover, every normal form is a concatenation (with
·) of terms in {0, 1} ∪ GT (Σ, V ). In this case too GT (Σ, V ) is closed under
instantiation into itself.

Example 62 Consider the signature Σ62 := {0, 1, rev, ·,Prefix} and the theory
T62 axiomatized by E61 plus the sentences:

∀x. Prefix(x, x)

∀x, y. Prefix(x, x · y)

Again, it is not difficult to see that the signature Σ := {0, 1, ·,Prefix} is a set
of constructors for T62.

8 A Class of N-O-combinable Theories

Our main goal in the last section was to identify sufficient conditions for N-O-
combinability, which lead us to the idea of stable Σ-freeness. In (Tinelli and
Ringeissen, 2001) we describe some simple cases of stably Σ-free theories with
N-O-combinable members. For instance, we show that theories sharing at most
finitely-many constant symbols and entailing that these symbols are distinct
are N-O-combinable over the quantifier-free formulae. We also show that uni-
versal theories sharing all of their function symbols are N-O-combinable over
the universal formulae, provided that each theory’s restriction to the function
symbols coincides with the theory of finite trees (see (Tinelli and Ringeissen,
2001) for more details and further examples).

For space constraints we discuss here only one, major, case of stably Σ-free
theories with N-O-combinable members: the class of complete theories with
constructors. As usual, let us fix two countable signatures Σ1,Σ2 with finite
intersection Σ and two theories T1, T2 of respective signature Σ1,Σ2.
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We will assume that for i = 1, 2,

• Ti is the (complete) theory of some free Σi-structure Ai with a countably
infinite basis;
• Σ is a finite set of constructors for Ti.

We also assume that the two theories agree on their constructors in the sense
that At(AΣ

1 ) = At(AΣ
2 ).

Our goal is to show that T1 and T2 are N-O-combinable over some effectively
purifiable language L by using the fact that each Ti is stably Σ-free over any
LΣi . Recall that if we can show this, then we know we can use our combination
procedure in a sound and complete way to (semi)-decide the satisfiability in
T1 ∪ T2 of formulae in Res(LΣ1∪Σ2 ,Σ), once we have for i = 1, 2 a decision
procedure for the satisfiability in Ti of formulae in Res(LΣi ,Σ).

We can easily show that T1 and T2 are partially N-O-combinable over an
arbitrary L, which makes our procedure sound. Our current results are not
strong enough to show that T1 and T2 are totally N-O-combinable over L—
which would make the combination procedure also complete. But they suffice
to show that the procedure is complete for input formulae which are already
totally Σ-restricted.

Although this is a strong restriction in general, it has a remarkable side-
effect. As we prove in the following, with some additional assumptions on the
computability of normal forms in T1 and in T2, we can turn our combination
procedure into a decision procedure for the satisfiability in T1 ∪ T2 of totally
restricted quantifier-free formulae, even when T1 and T2 share infinitely-many
terms.

We start by showing that the component theories are stably Σ-free over any
class of formulae and (totally) N-O-combinable over totally Σ-restricted pairs
of pure formulae.

Lemma 63 For every class L of formulae, Ti is stably Σ-free over LΣi for
i = 1, 2.

PROOF. Let i ∈ {1, 2}. Since T is the theory ofAi, a Σi-formula is satisfiable
in Ti iff it is satisfiable in Ai. All we need to show then is that Ai

Σ is free in
At(TΣ

i ) over a countably-infinite set. Now, since Σ is a set of constructors for
Ti and Ai is obviously a free model of Ti, we know from Theorem 54 that AΣ

is free in TΣ
i over some countably infinite set Y . From this and Proposition 41,

it is easy to see that AΣ is also free in At(TΣ
i ) over Y . 2
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Proposition 64 For any class L of first-order formulae, T1 and T2 are totally
N-O-combinable over TRes(LΣ1 ⊗ LΣ2 ,Σ).

PROOF. Let H0 be the atomic Σ-theory of T1. By the construction of T1 and
T2 and the assumption that At(AΣ

1 ) = At(AΣ
2 ), it is immediate that H0 is also

the atomic Σ-theory of T2. By Lemma 63, for i = 1, 2, Ti is stably Σ-free over
any class of formulae, in particular over Res(LΣi ,Σ). We can then conclude
by Theorem 48(1), that T1 and T2 are partially N-O-combinable over L.

From Lemma 63 again and Proposition 49, we also have that T1 ∪ T2 is Σ-
stable over TRes(LΣ1 ⊗ LΣ2 ,Σ). Since H0 is collapse-free by Theorem 54, we
can show exactly as in the proof of Theorem 48(2) that T1 and T2 are totally
N-O-combinable over TRes(LΣ1 ⊗ LΣ2 ,Σ). 2

By virtue of the above result we can use our combination method to yield,
trivially, a decision procedure for the satisfiability in T := T1 ∪ T2 of for-
mulae in TRes(LΣ1 ⊗ LΣ2 ,Σ) whenever the satisfiability in Ti of formulae in
TRes(LΣi ,Σ) is decidable for i = 1, 2. In fact, we can modify the combination
procedure so that, given a formula

ϕ1 ∧ ϕ2 ∧ isoΣ(ṽ) ∧ dif (ṽ) ∈ TRes(LΣ1 ⊗ LΣ2 ,Σ),

it considers it as the input pair 〈ϕ1, ϕ2〉. However, since all the shared vari-
ables of ϕ1 and ϕ2 are Σ-restricted, the procedure this time chooses, deter-
ministically, only the empty substitution in both the instantiation and the
identification step. At this point, our decidability claim follows immediately.

Now, the decidability of the satisfiability of formulae in TRes(LΣ1 ⊗ LΣ2 ,Σ) is
not terribly exciting because, as already observed, if one is interested in totally
Σ-restricted formulae, he is more likely to be interested in the satisfiability of
formulae in TRes(LΣ1∪Σ2 ,Σ), not of those in TRes(LΣ1 ⊗ LΣ2 ,Σ).

We show below, however, that under some more assumption of T1 and T2,
the result provided by Proposition 64 is enough for deciding the satisfia-
bility in T := T1 ∪ T2 of a specific instance of TRes(LΣ1∪Σ2 ,Σ), namely
TRes(Qff Σ1∪Σ2 ,Σ), the class of totally restricted quantifier-free formulae of
signature Σ1 ∪ Σ2. The reason is that the satisfiability in T of such for-
mulae becomes effectively reducible to the satisfiability in T of formulae in
TRes(Qff Σ1 ⊗Qff Σ2 ,Σ).

Here are the additional assumptions, which we will make from now on: for
i = 1, 2,

• GTi
(Σ, V ) is closed under instantiation into itself (cf. Definition 56);
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• the word problem for Ti is decidable,
• normal forms are computable for Σ and Ti.

We start with some useful lemmas about T := T1 ∪ T2.

Lemma 65 Every model of T has Σ-isolated individuals.

PROOF. Assume by contradiction that there is a model B of T with no Σ-
isolated individuals. Then the Σ-sentence ϕ := ¬∃v. isoΣ(v) is true in B and
hence in BΣ1 , say. Since BΣ1 is a model of T1 and T1 is the complete theory
of A1, we can conclude that ϕ is true in A1 as well. But this is impossible
because A1 has infinitely many Σ-isolated individuals by Proposition 53 and
Corollary 55. 2

The following lemma states that in every model of T the terms of GTi
(Σ, V )

(i = 1, 2) map Σ-isolated individuals to Σ-isolated individuals.

Lemma 66 For all i = 1, 2, v ∈ V , and r(ṽ) ∈ GTi
(Σ, V ),

T |= v ≡ r(ṽ) ∧ isoΣ(ṽ)⇒ isoΣ(v) (1)

PROOF. Let i ∈ {1, 2}. As T includes Ti, the complete theory of Ai, it is
enough to show that the Σi-sentence in (1) above holds in Ai.

Let β be any valuation of V such that (Ai, β) |= v ≡ r(ṽ)∧ isoΣ(ṽ). To satisfy
isoΣ(ṽ) in Ai, β must map every variable in ṽ to an element of Is(Ai

Σ). Since
GTi

(Σ, V ) is closed under instantiation into itself, we obtain by Lemma 57
that β(v) = [[r]]Ai

β ∈ Is(Ai
Σ), which means that (Ai, β) |= isoΣ(v). The claim

then follows from the generality of β. 2

As we have seen in Section 7, for i = 1, 2, Σi-terms have a normal form in Ti

that is a Σ-term over the “variables” GTi
(Σ, V ). Something analogous holds

for (Σ1∪Σ2)-terms in T , where a set of “variables” can be built incrementally
out of GT1(Σ, V ) and GT2(Σ, V ).

Definition 67 The set G∗
T (Σ, V ) is inductively defined as follows:

(1) Every variable is an element of G∗
T (Σ, V ), that is, V ⊆ G∗

T (Σ, V ).
(2) Assume that r(ṽ) ∈ GTi

(Σ, V ) for i = 1 or i = 2 and r̃ is a tuple of
elements of G∗

T (Σ, V ) such that the following holds:
(a) r(ṽ) 6=T v for all variables v ∈ V ;
(b) rj(ε) 6∈ Σi for all components rj of r̃;
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(c) the tuples ṽ and r̃ have the same length;
(d) rj 6=T rk if rj, rk occur at different positions in the tuple r̃.
Then r(r̃) ∈ G∗

T (Σ, V ).

Notice that for i = 1, 2 every non-collapsing element of Gi is in G∗
T (Σ, V ) for

i = 1, 2 because the components of r̃ above can also be variables. Also notice
that an element r of G∗

T (Σ, V ) cannot have a shared symbol (i.e., a symbol in
Σ) as top symbol since r is a variable or it “starts” with an element of Gi.

In (Tinelli, 1999), it is shown that under the given assumptions on T1 and T2,
Σ is also a set of constructors for T , normal forms are computable for Σ and
T , and every normal form can be assumed to be in T (Σ, G∗

T (Σ, V )). 41 We
will appeal to these facts in Proposition 69.

Lemma 68 Let ϕ be a conjunction of (Σ1∪Σ2)-literals all of whose arguments
are terms in T (Σ1 ∪ Σ2, G

∗
T (Σ, V )). Then, ϕ can be effectively converted into

a finite set S which is equisatisfiable with ϕ in T and is partitioned into the
sets

L1, L2, F1 := {v1
j ≡ r1

j}j∈J1 , F2 := {v2
j ≡ r2

j}j∈J2 ,

where

(1) L1 is made of literals of signature Σ1 and L2 is made of literals of signa-
ture Σ2 \Σ1;

(2) Var(S) \ Var(ϕ) = {vi
j}i,j;

(3) for all i = 1, 2 and j ∈ Ji,
(a) vi

j does not occur in Li and occurs only once in Fi;
(b) ri

j ∈ GTi
(Σ, V ) \V ;

(4) for all j ∈ J1, v
1
j ∈ Var(L2) or v1

j ∈ Var(r2
k) for some k ∈ J2;

for all j ∈ J2, v
2
j ∈ Var(L1) or v2

j ∈ Var(r1
k) for some k ∈ J1;

Furthermore, let ṽ := Var(ϕ), ũ := Var(S), A a model of T and α a valuation
of V into A. If (A, α) |= S ∪ isoΣ(ṽ) then (A, α) |= S ∪ isoΣ(ũ).

PROOF. We simply apply to ϕ the purification procedure seen in Section 5
and collect in Fi (i = 1, 2) the Σi-equations added by the purification process,
in L1 the purified literals of signature Σ1, and in L2 the remaining literals.

Then, Point 1 and point 2 are trivial. Point 3a is a consequence of the fact
that each alien subterm is abstracted by a fresh variable. Point 3b follows from
the definition of G∗

T (Σ, V ). Point 4 follows from the fact that each vi
j is an

abstraction variable.

41 A proof of this for the equational case can also be found in (Baader and Tinelli,
2001).
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Now let A ∈ Mod(T ) and α a valuation such that (A, α) |= S ∪ isoΣ(ṽ). Then
define the binary relation � on F := F1 ∪ F2 as follows: for all (v ≡ r), (v′ ≡
r′) ∈ F ,

(v ≡ r) � (v′ ≡ r′) iff v′ ∈ Var(r).
From the properties in the previous points and the fact that F consists only
of equations added by purification it is not hard to show that � is an acyclic
relation. Then, by a simple well-founded induction argument based on � one
can show using Lemma 66 that (A, α) |= isoΣ(vi

j) for all i = 1, 2 and j ∈ Ji.

It follows by point 2 above and the definition of isoΣ that (A, α) |= S ∪
isoΣ(ũ). 2

We are now ready to prove our reducibility claim.

Proposition 69 The satisfiability in T of formulae in TRes(Qff Σ1∪Σ2 ,Σ)
is effectively reducible to the satisfiability in T of formulae in the subclass
TRes(Qff Σ1 ⊗Qff Σ2 ,Σ).

PROOF. Let ψ(ṽ) := ϕ ∧ resΣ(ṽ) be a formula of TRes(Qff Σ1∪Σ2 ,Σ) and
assume for simplicity that ṽ is non-empty. This assumption is with no loss
of generality because ṽ can be empty only when ϕ is a ground formula. But
then, where v is an arbitrary variable, ϕ is trivially equisatisfiable in T by
Lemma 65 with the totally Σ-restricted formula ϕ∧resΣ(v), which is effectively
computable from ϕ.

Clearly, ψ(ṽ) can be effectively converted into the logically equivalent formula

ψ1 ∧ resΣ(ṽ) ∨ · · · ∨ ψn ∧ resΣ(ṽ)

where ψ1∨· · ·∨ψn is ϕ’s disjunctive normal form. Each ψi above is a conjunc-
tion of literals and ψ(ṽ) = ϕ(ṽ) ∧ resΣ(ṽ) is satisfiable in a model A of T if
and only if for some i ∈ {1, . . . , n} the totally restricted formula ψi ∧ resΣ(ṽ)
is satisfiable in A. With no loss of generality then assume that ϕ is just a con-
junction of literals and consider the following procedure with input ϕ∧resΣ(ṽ).

(1) Replace each argument t in each atom of ϕ by its computable normal
form, which we know is an element of T (Σ, G∗

T (Σ, V )).
(2) Convert ϕ into the set S := L1 ∪ L2 ∪ F1 ∪ F2 as in Lemma 68.
(3) For i = 1, 2, let ϕi be the conjunction of all the literals in Li ∪ Fi and

output the formula ϕ1 ∧ ϕ2 ∧ resΣ(ṽ).

From our assumptions and the procedure’s construction it is clear that ϕ1∧ϕ2∧
resΣ(ṽ) is computable from the initial formula ϕ∧ resΣ(ṽ) and equisatisfiable
with it in T . Now, in general, ϕ1 ∧ ϕ2 ∧ resΣ(ṽ) will be only partially Σ-
restricted. In fact, step 1 above may introduce some new variables ṽ1 because
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the computed normal forms may have variables not occurring in the original
terms, and step 2 will introduce further new variables ṽ2 whenever ϕ has
non-pure literals.

The variables in ṽ1 are just a technical nuisance and can be identified with any
variable of ṽ without loss of generality. The following brief argument should
suffice in proving that. Suppose the computed normal form t′ of a term t in the
original ϕ has “extra variables”, that is, variables not occurring in t. Recalling
that t =T t

′, it is not hard to see that the denotation of t′ in any model of T
will not depend on the value assigned to the extra variables. Therefore, these
variables can all be identified with an arbitrary variable; for instance one in
ṽ—which is non-empty by assumption. In the following then, we will assume
that ṽ1 is enclosed in ṽ, and concentrate on ṽ2 instead.

We show below that the partially Σ-restricted formula ϕ1 ∧ ϕ2 ∧ resΣ(ṽ) is
satisfiable in T if and only if there is an identification ξ of ũ := ṽ ∪ ṽ2 that
identifies no variables in ṽ and makes the totally Σ-restricted formula (ϕ1 ∧
ϕ2)ξ ∧ resΣ(ũξ) satisfiable in T . From this, the proposition’s claim will then
easily follow.

Assume there is a ξ ∈ ID(ũ) such that ξ identifies no two variables in ṽ and
(ϕ1 ∧ ϕ2)ξ ∧ resΣ(ũξ) is satisfiable in T . Observing that ṽ is contained in ũξ,
we can conclude by the definition of resΣ that (ϕ1∧ϕ2)ξ∧resΣ(ṽ) is satisfiable
in T . But then, ϕ1 ∧ ϕ2 ∧ resΣ(ṽ) is also satisfiable in T .

Now assume that ϕ1∧ϕ2∧resΣ(ṽ) is satisfiable in T . By construction of ϕi and
definition of resΣ, we can conclude that S∪ isoΣ(ṽ)∪dif (ṽ) is satisfiable in T ,
where S is the set generated at step 2 of the procedure above. By Lemma 68
then S ′ := S ∪ isoΣ(ũ)∪ dif (ṽ) is satisfiable in T . Notice that every valuation
satisfying S ′ in a model of T will assign distinct individuals to the variables
in ṽ. Let α be any such valuation and let ξ be the identification of ũ induced
by α. 42 It is immediate that ξ identifies no two variables in ṽ and that the set

(S ∪ isoΣ(ũ) ∪ dif (ṽ))ξ

is satisfiable in T . But this is equivalent to saying that Sξ∪ isoΣ(ũξ)∪dif (ũξ)
is satisfiable in T . It follows from the construction of ϕi and the definition of
resΣ that (ϕ1 ∧ ϕ2)ξ ∧ resΣ(ũξ) is satisfiable in T . 2

Finally, we obtain the following decidability result.

Theorem 70 Let T1, T2 be such that for i = 1, 2,

42 That is, the substitution that identifies two variables in ũ iff α maps them to the
same individual.
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• Ti is the (complete) theory of some free Σi-structure Ai with a countably
infinite basis;
• At(AΣ

1 ) = At(AΣ
2 );

• GTi
(Σ, V ) is closed under instantiation into itself;

• Σ is a finite set of constructors for Ti;
• normal forms are computable for Σ and Ti;
• the word problem for Ti is decidable.

If the satisfiability in Ti of formulae in TRes(Qff Σi ,Σ) is decidable for i = 1, 2,
then the satisfiability in T := T1∪T2 of formulae in TRes(Qff Σ1∪Σ2 ,Σ) is also
decidable.

PROOF. By Proposition 64, Proposition 69, and our earlier observation on
how to use our combination procedure deterministically with totally restricted
formulae. 2

An interesting and immediate corollary of the theorem above is that, under
the same assumptions on T1 and T2, if the satisfiability of totally Σ-restricted
quantifier-free formulae is decidable in each theory, then the satisfiability of
ground (Σ1 ∪ Σ2)-formulae is decidable in their union.

In their full generality, the conditions on T1 and T2 for the combination result
above might appear somewhat arcane. The reader might be wondering what
kinds of theories are there that satisfy them all. A more specific class of theories
that does so is presented in (Tinelli and Ringeissen, 2001) for the case complete
theories of free algebras. There, we reformulate the above conditions in terms
of more familiar properties of equational theories, and provide some specific
examples as well.

9 Conclusions and Further Research

In this paper we have described some general conditions for the combination
of satisfiability procedures for constraint theories and languages that may
have symbols in common. Building on the main ideas behind the combination
method by Nelson and Oppen, we have developed a general non-deterministic
procedure for reducing constraint satisfiability in a combined theory to con-
straint satisfiability in its component theories. To achieve this, we have started
by investigating the main model-theoretic issues involved in theory combina-
tion.

We have defined the concept of fusion of two structures and shown in what
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sense it is a viable notion of model combination. We have also defined the con-
cept of fusibility and shown how the local satisfiability of arbitrary first-order
constraints with respect to two fusible structures relates to the satisfiability of
conjunctive constraints in a fusion of the structures. We have then shown that,
thanks to the close relation between fusion of structures and union of theo-
ries, it is also possible to obtain combination results for constraint satisfiability
with respect to theories and their unions.

The model-theoretic conditions on the component theories that make the com-
bination results possible are collected in the concept of N-O-combinability. We
have shown that our generalization of the Nelson-Oppen procedure can be ap-
plied in a sound and complete way to N-O-combinable theories and produce
a constraint satisfiability procedure for the union of the theories.

Then, we have provided some sufficient conditions for N-O-combinability by
using the concept of stable Σ-freeness, a natural extension of Nelson and Op-
pen’s stable-infiniteness requirement for theories with non-disjoint signatures.
Finally, we have illustrated an applications of our combination results to the
case of theories sharing constructors.

We believe that the work described here provides a better understanding of
the principles of combining constraint reasoners in the case of non-disjoint
signatures. Undoubtedly, more work needs to be done to improve the scope of
our theoretical results as well as identify concrete cases from the constraint-
based reasoning practice to which such results can be applied.

In particular, we think that an improved definition of N-O-combinability is
needed. The current one basically states that two theories are N-O-combinable
if whenever a constraint ϕ1 is satisfiable in one of them and a constraint ϕ2

is satisfiable in the other, the only way for ϕ1 and ϕ2 to be inconsistent in
the union theory is to entail “incompatible” Σ-restrictions for their shared
variables. On the one hand, it appears that this condition is strong enough
to rule out many examples of constraint theories used in constraint-based
reasoning. On the other hand, it seems that a less restrictive definition of
N-O-combinability would correspondingly require a more general definition
of Σ-restriction; and at the moment—other than making every Σ-formula a
possible Σ-restriction—it is not clear just what this definition could be.

If the definition of N-O-combinability cannot be reasonably improved, the
problem remains of finding good sufficient conditions for it. The stable Σ-
freeness property, which we have identified for this purpose, is not completely
satisfactory for the reasons we have explained in Subsection 6.2. More work in
this direction is also needed. For practical purposes, an alternative to finding
general sufficient conditions for N-O-combinability may be to look at concrete
cases of theories one would be interested in combining and try to show directly
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that they are N-O-combinable. For some of these theories it might even be
possible to show that there is a finite bound on the number of Σ-restrictions
that need to be considered for completeness sake. In that case, the combination
procedure might be turned into one that converges on all inputs.

Finally, we think it might be beneficial to recast our results in terms of many-
sorted (or better order-sorted (Goguen and Meseguer, 1992)) logic. In a sense,
the language of classical first-order logic is too permissive for constraint-based
reasoning because it allows constraints one would consider ill-typed in the
intended domain of application. The case for a sorted logic is possibly even
more pressing in a combination context: even if two theories T1 and T2 are
adequately described with no sorts, their combination may not be. 43 Refor-
mulating our model-theoretic results and definitions into many-sorted logic
might make it easier for two given theories to be N-O-combinable. The in-
tuition is that N-O-combinability is easier to achieve if one reduces both the
constraint language (by disallowing ill-sorted constraints) and the number of
possible models of the combined theory (by disallowing models not conforming
to the sort structure of the theory).

Adopting a sorted framework would also have the practical advantage of re-
ducing the non-determinism of the procedure’s instantiation and identification
steps because shared variables would only be replaceable by terms or variables
of a compatible sort. Furthermore, it would make Σ-restrictions more natu-
ral. In fact, similarly to what we have seen in Example 18, under reasonable
assumptions on Σ and the sort structure, including the assumption that Σ
consists of the constructors of a certain sort S, declaring a free variable to be
of a sort other than S would make it automatically Σ-restricted.

A Our Constructors vs. Constructors in Term Rewriting

In (Baader and Tinelli, 2001) it is shown that our notion of constructors
subsumes the one given in (Domenjoud et al., 1994). In this appendix we
show that it is also a natural generalization of the notion of constructors used
in Term Rewriting.

Specifically, we prove that the set of constructors of any confluent and (weakly)
normalizing term rewriting system (TRS) R is also a set of constructors in
the sense of Definition 50 for the equational theory induced by R. We will not

43 For instance, one could think of obtaining the theory of lists of real numbers as
the union of the theory of lists and the theory of real numbers. Now, while each
theory has an adequate unsorted axiomatization, their combination gives rise to
pointless formulae such as [1, 2] + [1] ≡ 0.
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provide a direct proof of such a claim. Instead, we will show that the claim is
a corollary of a more general result about TRSs modulo an equational theory,
as defined in (Jouannaud and Kirchner, 1986).

We will assume that the reader is familiar with Term Rewriting and so we will
introduce only the terminology and the notation needed to prove our claims.
Comprehensive introductions to the field can be found in (Baader and Nipkow,
1998; Dershowitz and Jouannaud, 1990; Wechler, 1992), among others. Since
all the signatures in question will be functional and all the theories of interest
equational, we will speak of algebras rather than structures. Similarly, since
the only atomic formulae will be equations, we will speak of the equational
theory of a theory/algebra instead of the atomic theory.

We will first consider the equational Ω-theory E generated by a term rewriting
system R modulo a set of collapse-free Σ-equations, for some Σ ⊆ Ω. We will
see that, under reasonable conditions, Σ is a set of constructors for E.

Constructors in term rewriting, which we call trs-constructors here, are de-
fined as follows.

Definition 71 (trs-constructors) Let Ω be a functional signature and R a
TRS over T (Ω, V ). We say that a signature Σ ⊆ Ω is a set of trs-constructors
for R if no symbol of Σ occurs at the top of the left-hand side of a rule in R.

For the rest of the subsection, let

• Ω be a functional signature, and Σ a subset of Ω,
• E an equational theory of signature Ω,
• E0 a collapse-free equational theory of signature Σ and
• R a set of rewrite rules built over T (Ω, V ).

We will often need to consider the equivalence in E0 of terms from T (Ω, V ), not
just T (Σ, V ). Formally, this is done by considering the Ω-theory EΩ

0 defined
as the union of E0 and the empty (Ω \Σ)-theory. To simplify the notation, we
will often write s =E0 t instead of s =EΩ

0
t, for Ω-terms s, t that are equivalent

in EΩ
0 .

Definition 72 We denote by S = (R,E0) the TRS R modulo E0, that is, the
TRS whose rewrite relation →S over T (Ω, V ) is defined as follows. For all
s, t ∈ T (Ω, V ), s→S t if there exists a position p, a substitution σ, and a rule
l→ r ∈ R such that s|p =E0 lσ and t = s[p←↩ rσ].

We say that a term t′ is a normal form (w.r.t. →S) of an Ω-term t iff t′ is
irreducible by →S and t

∗→S t′. We say that two Ω-terms t1, t2 are joinable
modulo E0 iff there are two Ω-terms t′1, t

′
2 such that t1

∗→S t
′
1, t2

∗→S t
′
2, and

t′1 =E0 t
′
2.
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As customary, the notation s|p above denotes the subterm of s at position p,

s[p ←↩ rσ] denotes the term obtained by replacing s|p in s by rσ, and
∗→S

denotes the reflexive transitive closure of →S. Note that, when the theory E0

is empty, →S is a term rewriting relation in the usual sense. Correspondingly,
the definitions of normal form and of joinable modulo E0 reduce to the usual
ones.

An example of a TRS R modulo E0 is the following.

Example 73 E0 is the theory presented by the axiom:

∀x, y, z. x · (y · z) ≡ (x · y) · z

and R is the TRS consisting of the rules:

rev(x · y) → rev(y) · rev(x), rev(0) → 0,

rev(rev(x)) → x, rev(1) → 1.

Observe that Σ := {·, 0, 1} is a set of TRS-constructors for R.

Definition 74 (Completeness) The TRS S = (R,E0) is semi-complete for
the theory E iff all of the following hold:

(1) the relation =E coincides with (=E0 ∪ ↔S)∗ on T (Ω, V )—or, equiva-
lently, E is axiomatized by E0 ∪ {∀̃ l ≡ r | l→ r ∈ R};

(2) the relation →S is normalizing, i.e., every Ω-term t has a normal form
w.r.t →S;

(3) the relation →S is confluent modulo E0, i.e., for all Ω-terms t, t1, t2 such
that t1

∗←S t
∗→S t2, t1 and t2 are joinable modulo E0.

We say that S is complete for E iff it is semi-complete for E and →S is
terminating, i.e., there is no infinite sequence (t0, t1, t2, . . .) such that t0 →S

t1 →S t2 →S · · · .

It is not difficult to show that when the TRS S = (R,E0) is semi-complete
for E, E is non-trivial, every Ω-term is equivalent in E to its normal forms
w.r.t. →S, and for all s, t ∈ T (Ω, V ) and respective normal forms s′, t′,

s =E t iff s′ =E0 t
′.

From this it follows that any two normal forms of the same term t are equiv-
alent in E0. For this reason, we will identify them all and denote them by
t↓S.

(Semi-)Complete TRSs form a natural class of rewrite systems. The reason is
that if a TRS S = (R,E0) is complete for some theory E, and the matching
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problem 44 and word problems in E0 are decidable, then the normal form t↓S
of every term t is computable; as a consequence, the word problem in E is
also decidable. 45

To prove that trs-constructors are constructors for E in the sense of Defini-
tion 50, we will appeal to well-known results from the research on the combi-
nation of decision procedures for the word-problem in a union of collapse-free,
signature-disjoint equational theories (Schmidt-Schauß, 1989; Nipkow, 1991;
Ringeissen, 1996a; Baader and Tinelli, 1997). Here, the union of interest will be
EΩ

0 , the union of the (collapse-free) equational Σ-theory E0 with the (collapse-
free) empty (Ω \Σ)-theory.

Lemma 75 Let E1 and E2 be two collapse-free equational theories of respec-
tive signature Σ1 and Σ2, with Σ1 ∩ Σ2 = ∅. Then, the following holds.

(1) The theory E1 ∪ E2 is collapse-free.
(2) For all t1, t2 ∈ T (Σ1 ∪ Σ2, V ) such that ti(ε) ∈ Σi for i = 1, 2,

t1 6=E1∪E2 t2.

(3) Let σ ∈ SUB(V ), i ∈ {1, 2}, and let s, t be two i-pure non-variable terms
such that
• (vσ)(ε) /∈ Σi for all v ∈ Var(s ≡ t) and
• uσ 6=E1∪E2 vσ for all distinct u, v ∈ Var(s ≡ t).
Then, sσ =E1∪E2 tσ iff s =Ei

t.

A property of S that follows from the lemma above is the following.

Proposition 76 If S = (R,E0) is semi-complete for E and Σ is a set of
trs-constructors for R, then

f(t1, . . . , tn)↓S =E0 f(t1↓S, . . . , tn↓S)

for all n-ary f ∈ Σ and t1, . . . , tn ∈ T (Ω, V ).

Another property of S is that every Σ-term is in normal form w.r.t. →S.

Lemma 77 If S = (R,E0) is semi-complete for E and Σ is a set of trs-
constructors for R, then t↓S = t for all t ∈ T (Σ, V ).

A proof of the two results above is given in (Tinelli and Ringeissen, 2001).

44 Recall that the problem of matching a term t1 against a term t2 in E0 is the
problem of determining whether there is a substitution σ such that t1σ =E0 t2.
45 Actually, by standard results in term rewriting, it can be shown that the word
problem in E is decidable already when S is semi-complete for E.
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An easily provable consequence of Lemma 77 is that, under its assumptions,
two Σ-terms are equivalent in E exactly when they are equivalent in E0. In
other words, E0 axiomatizes the equational Σ-theory of E.

We now show that when Σ is a set of trs-constructors for R, the set GE(Σ, V )
defined at the beginning of Subsection 7.1 coincides with the set of terms whose
normal forms w.r.t. →S do not start with a Σ-symbol. 46

Lemma 78 Assume that S = (R,E0) is semi-complete for E and Σ is a set
of trs-constructors for R. Then,

GE(Σ, V ) = {r ∈ T (Ω, V ) | r↓S(ε) 6∈ Σ}.

PROOF. Let r ∈ T (Ω, V ).

(⊆) Recalling the definition of GE(Σ, V ), it is obvious that r 6∈ GE(Σ, V )
whenever r↓S(ε) ∈ Σ, given that r =E r↓S.

(⊇) Assume ad absurdum that r↓S(ε) 6∈ Σ but r 6∈ GE(Σ, V ). Then, there
is an f ∈ Σ and a t̃ in T (Ω, V ) such that r =E f(t̃). By Definition 74 and
Proposition 76, we can then conclude that r↓S =EΩ

0
f(t̃↓S). Now, if r↓S(ε) is

in Ω \Σ, the above equivalence contradicts point 2 of Lemma 75. If r↓S(ε)
is a variable, the equivalence contradicts the fact that EΩ

0 is collapse free by
Lemma 75(1). 2

Together with Proposition 76, Lemma 78 has the following consequence.

Lemma 79 Let G := GE(Σ, V ). Assume that S = (R,E0) is semi-complete
for E and Σ is a set of trs-constructors for R. Then,

t↓S ∈ T (Σ, G)

for all t ∈ T (Ω, V ).

PROOF. Let t ∈ T (Ω, V ) and assume that t↓S /∈ T (Σ, G). Then, it is not
difficult to show by the results above that there must be a subterm r of t↓S
with r(ε) /∈ Σ, a function symbol f ∈ Σ, and a tuple t̃ in T (Ω, V ), such
that r =E f(t̃). By Definition 74(3) then we have that r↓S =E0 f(t̃)↓S. Now,
r↓S = r as r is the subterm of the irreducible term t↓S, and f(t̃)↓S =E0 f(t̃↓S)

46 Notice that when S = (R,E0) is semi-complete for E, a term has a normal form
with top symbol in Σ iff all its normal forms have their top symbol in Σ, as one can
easily show.
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by Proposition 76. But this entails that r =EΩ
0
f(t̃↓S), which is impossible by

Lemma 75(2). 2

We are now ready to prove the main result of this subsection.

Proposition 80 If S = (R,E0) is semi-complete for E and Σ is a set of
trs-constructors for R, then Σ is a set of constructors for E.

PROOF. We prove the claim by showing that the three conditions of Defi-
nition 50 are satisfied. Let G := GE(Σ, V ).

(1) Let v ∈ V . Since v = v↓S by Lemma 77, we can immediately conclude by
Lemma 78 that v ∈ G. It follows that V ⊆ G.

(2) Let t ∈ T (Ω, V ). We have already observed that t =E t↓S. From Lemma 79
we also know that t↓S ∈ T (Σ, G).

(3) Let s1(r̃1), s2(r̃2) ∈ T (Σ, G) and s1(ṽ1), s2(ṽ2) be the corresponding terms
obtained by abstracting r̃1, r̃2 with fresh variables so that terms equivalent
in E are abstracted by the same variable. We show that s1(r̃1) =E s2(r̃2) iff
s1(ṽ1) =E s2(ṽ2).

The right-to-left implication is immediate, hence assume that s1(r̃1) =E s2(r̃2).
From the hypothesis that (R,E0) is semi-complete for E we can conclude that

s1(r̃1)↓S =EΩ
0
s2(r̃2)↓S.

Recalling that s1 and s2 are Σ-terms, we can show by a simple inductive
argument based on Proposition 76 that

s1(r̃1↓S) =EΩ
0
s2(r̃2↓S).

Assuming that E-equivalent terms in r̃1, r̃2 have the same normal w.r.t.→S, 47

it is easy to see that each si(r̃i↓S) is the result of applying to si(ṽi) a substi-
tution σ satisfying Point 3 of Lemma 75. By that lemma, it then follows that
s1(ṽ1) =E0 s2(ṽ2) and so s1(ṽ1) =E s2(ṽ2). 2

We would like to stress that, although the preconditions in Proposition 80
entail that Σ is a set of constructors for E, they do not entail that normal

47 Such an assumption is with no loss of generality because normal forms of E-
equivalent terms are E0-equivalent and so can be identified in r̃1↓S , r̃2↓S .
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forms in the sense of Definition 58 are computable. A sufficient condition for
the computability of normal forms, under the assumptions of Proposition 80,
is that E0-matching with free constants is decidable. A proof of this can be
found in (Tinelli and Ringeissen, 2001).

Finally, we can produce a result like the above for conventional TRSs again by
observing that such systems are TRSs modulo the empty equational theory.

Corollary 81 Let R be a TRS over T (Ω, V ). If →R is semi-complete and
Σ is a set of trs-constructors for R, then Σ is a set of constructors for the
equational theory induced by R.

To summarize, for semi-complete term rewriting systems, our notion of con-
structors is a generalization of the notion of trs-constructors. In addition, it is
a strict generalization, given that the equational theory over trs-constructors
is always empty (as one can easily see), which need not be the case for our
constructors.

We conclude this section by sketching how the above results can be used to
prove that the signature Σ in Example 61 of Section 7.3 is indeed a set of
constructors. Consider the TRS S := (R,E0) where E0 and R are defined
as in Example 73. Clearly, E0 is collapse-free, →R is terminating (therefore,
normalizing) and Σ := {0, 1, ·} is a set of trs-constructors for R. It is not
difficult to show that→R is confluent modulo E0. It follows by Proposition 80
that Σ := {0, 1, ·} is a set of constructors for E61.
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