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Introduction
- Current challenges of NRS
- Diversity and NRS
- Evaluation of NRS

Experimental analysis
- Dataset selection
- Holistic analysis
- Temporal analysis

3 Take-home messages
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News Recommender Systems
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Accessed Recommended

Limited range of opinions

Filter bubble
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News Recommender Systems

Accessed Recommended

Filter bubble

Diversity
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Diversity & NRS

- Provide a larger spectrum of opinions (Heitz et al., 2022)
- Ensure ethical and fair recommendations (Lunardi et al., 2020)
- Foster a healthy democratic debate (Giunchiglia et al., 2021)

Role of diversity may be overestimated and must be finely controlled to help reduce 
polarization
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⇒ RQ1: Does diversity of recommendations bring a systematic gain?
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Evaluation of NRS

News characteristics: short lifespan, high turnover…

Democratic role of NRS (Helberger, 2019)

Adaptation of recommendation and evaluation

Introduction          Experimental analysis         Take-home messages

⇒ RQ2: Is it sufficient to measure the influence of an NRS afterward with single-number 
metrics, or does this influence occur with some variations over time?



Experimental analysis
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News representation

Date of publication

User ID

History

Recommended

Accessed

Data selection⇒1,475 users & 20,541 news

From URL

LDA (Latent Dirichlet 
Allocation)

Large-scale dataset for news 
recommendation research

Information about news

Users’ interactions

5 weeks : October to 
November, 2019

Week 1 to 4

Week 5
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MIND dataset

Average diversity (Smyth & McClave, 2001) : 

1. Holistic analysis
News of history

Recommended news
Accessed news

Unaccessed news

2. Temporal analysis
News accessed each week (1 to 5)
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Analysis - holistic

Distribution of diversity among users

High average 
diversity (0.75) & 
small standard 
deviation (0.04)

Average diversity 

significantly lower

Great variability
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Analysis - holistic

Conclusions:

- Recommender system meets a predefined diversity level

- Impact of NRS on the news consumption

- Diversity input is not personalized

⇒ High diversity of recommendations does not systematically lead to a 
diverse news consumption (RQ1)
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Analysis - temporal

Sankey diagram : variation flows over weeks

Transition patterns remain stable over the 
weeks 

⇒ Similar global impact of recommendations on 
users diversity of accessed news through weeks 
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Analysis - temporal

Conclusions:

- Average diversity of accessed news differs over weeks
- Users observe diversity variations
- Impact is not the same for all users

3 types of users: 
- Positively receptive users
- Negatively receptive users
- Resistant users

⇒ Single-number evaluations are insufficient
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Need to take differences between users and 
temporal aspect into account (RQ2)
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Overall conclusion

1. Diverse recommendations ⇏ diverse consumption

Need to adapt the evaluation

2. NRS does not impact all users equally

Different classes of user behavior
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1. Need of well-established methodologies to model users’ diversity 
trajectories 

2. Need of adapted diversity measures and personalized recommendation 
strategies

3. Lack of open datasets

Take-home messages
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Contact me!
celina.treuillier@loria.fr
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