
td3

January 26, 2023

1 TD3 Revision - basic data structure
Dans ce tp, vous apprendrez quelques structures de données de base et de méthodes de manipula-
tion. Vous allez voir string, liste, et disctionary.

Si vous n’avez aucune difficulté avec ces concepts de base, vous pouvez aller directement à la partie
du devoir.

1.1 1. What’s in a string?
Strings are inherently an ordered sequence of characters. Which is why you can iterate over a string
using a for-loop, or retrieve specific characters using a slice.

Before executing the next cell, have a guess at what the output will produce!

[]: str_a = "I am a chimp. I love peanuts."
for char in str_a:

print(char)

print(str_a[2:-2:2])

1.2 2. Split and join
Two crucial functions you should know about are str.join() and str.split().

• str.join() links together a series of strings:
• str.split() breaks down a single string into a list of strings

[]: print("A list of bare necessities: %s." % ", ".join(["peanut", "typewriter",␣
↪→"peanut (important!)", "evil plans"]))

str_a = "I am a chimp. I love peanuts."
strings = str_a.split()
for s in strings:

print(s)

1.2.1 Exercise 1: Sifting through many words

Implement a function every_other_word(s) that splits its argument string on spaces, joins every
other item with an underscore and returns this transformed string. For instance:

1

>>> every_other_word("Figaro, that's a man who loves peanuts. But what about Bond? James Bond?")
'Figaro,_a_who_peanuts._what_Bond?_Bond?'

[]: def every_other_word(s):
put your code here
pass

print(every_other_word("Figaro, that's a man who loves peanuts. But what about␣
↪→Bond? James Bond?"))

1.3 3. List
Predict what the following lines of Python will do. Then, run the code block below to see if they
match what you expect:

s = [0] * 3
print(s)
s[0] += 1
print(s)

s = [''] * 3
print(s)
s[0] += 'a'
print(s)

s = [[]] * 3
print(s)
s[0] += [1]
print(s)

[]: # Explore the elements of lists. Is the output what you expect?
s = [0] * 3
print(s)
s[0] += 1
print(s)

s = [''] * 3
print(s)
s[0] += 'a'
print(s)

s = [[]] * 3
print(s)
s[0] += [1]
print(s)

2

1.4 4. Manipulating lists
Broadly speaking, there are three things you might want to do with lists:

1. add elements
2. remove elements
3. inspect elements

All of these can be done in a number of different ways. Here are a few main ones:

1. To add an element, you can use my_list.append(elem). To add all the elements of some
other sequence at once, you can try my_list.extend(other_seq). Related to that, the
addition operator + for lists corresponds to concatenation, and the multiplication operator *
corresponds to duplication (remember how it went for strings?)

2. To remove elements by value, you can use my_list.remove('some_value'), which will
delete the first occurrence of that value in your list. Alternatively, you can remove ele-
ments based on their index: del my_list[idx] will remove the value at index idx; elem
= my_list.pop(idx) will remove the value at index idx and place it in the variable elem
instead.

3. To access the value at a given index idx, we generally use indexing: my_value =
my_list[idx].

Try predicting what the code below will print!

[]: chimps = (["chimp", "peanuts"] * 3)

chimps.remove("chimp")
del chimps[1]
something = chimps.pop(-2)

what will this print?
print(something, chimps)

1.5 5. List slicing
Another common type of operation with lists (or ordered sequences in general) is to iterate over
them. This is very frequently done with slicing:

>>> daily_articles = ['no peanut', 'one peanut', 'two peanuts', 'three peanuts', 'peanuts stolen from Bond', 'evil plan to destroy Paris']
>>> daily_articles[1:3]
['one peanut', 'two peanuts']
>>> daily_articles[1:-2]
['one peanut', 'two peanuts', 'three peanuts']
>>> daily_articles[::2]
['no peanuts', 'two peanuts', 'peanuts stolen from Bond']
>>> daily_articles[-2::-2]
['peanuts stolen from Bond', 'two peanuts', 'no peanuts']
>>> daily_articles[::-1]
['evil plan to destroy Paris', 'peanuts stolen from Bond', 'three peanuts', 'two peanuts', 'one peanut', 'no peanuts']

As you can see, my_list[::-1] traverses the list in reverse: it starts from the end. Another

3

function you can use for that is reversed().

1.5.1 Exercise 2: Sifting through

Using slices, write a function called every_third(l) that takes a list l as argument and returns
every third element in the list.

>>> every_third([0, 1, 2, 3, 4, 5])
[2, 5]

Write a function called first_and_last(l) that returns a list containing only the first and last
element of the argument list l.

>>> first_and_last([])
[]
>>> first_and_last([1])
[1, 1]
>>> first_and_last([1, 1])
[1, 1]
>>> first_and_last([1, 2])
[1, 2]
>>> first_and_last([1, 2, 3, 4, 5])
[1, 5]

[]: # write your code here
def every_third(l):

TODO

def first_and_last(l):
TODO

[]: # Uncomment for testing

print(every_third([0, 1, 2, 3, 4, 5]))
print(first_and_last([]))
print(first_and_last([1]))
print(first_and_last([1, 1]))
print(first_and_last([1, 2]))
print(first_and_last([1, 2, 3, 4, 5]))

1.6 6. Dictionaries
Dictionaries (the dict type in python) are mappings that associate keys to values.

Instead of using integers to index elements, as you would in a list, dictionaries allow you to use
whatever value as a key.

As such, you can use del my_dict[key] to remove a certain key, value pair from a dictionary

The only two requirements for keys are that they need to be unique and hashable, i.e., immutable
and composed only of immutable objects.

4

You can retrieve only the keys as an ordered sequence using the dict.keys() method. The same
thing applies for values with dict.values(). To get pairs of keys associated to values, you can
use dict.items().

>>> d = {'chimp': 'peanut', 'Bond': 'James'}
>>> d.keys()
dict_keys(['chimp', 'Bond'])
>>> d.values()
dict_values(['peanut', 'James'])
>>> d.items()
dict_items([('chimp', 'peanut'), ('Bond', 'James')])

1.6.1 Exercise 3: Flip it!

Write a function that properly reverses the keys and values of a dictionary - each key (originally a
value) should map to a collection of values (originally keys) that mapped to it. For example,

flip_dict({"CA": "US", "NY": "US", "ON": "CA"})
=> {"US": ["CA", "NY"], "CA": ["ON"]}

Note: there is a data structure in the collections module from the standard library called
defaultdict which provides exactly this sort of functionality. You provide it a factory method for
creating default values in the dictionary (in this case, a list.) You can read more about defaultdict
and other collections data structures here.

[]: import collections

def flip_dict(input_dict):
"""Reverse the keys and values of a dictionary."""
pass

flip_dict({"CA": "US", "NY": "US", "ON": "CA"})
should print {"US": ["CA", "NY"], "CA": ["ON"]}

1.6.2 If you have time

Already finished? Bravo! You can try the following exercise for fun.

Write list comprehensions to transform the input data structure into the output data structure:

[0, 1, 2, 3] -> [1, 3, 5, 7] # Double and add one
['apple', 'orange', 'pear'] -> ['A', 'O', 'P'] # Capitalize first letter
['apple', 'orange', 'pear'] -> ['apple', 'pear'] # Contains a 'p'

["TA_sam", "student_poohbear", "TA_guido", "student_htiek"] -> ["sam", "guido"] # TA's names
['apple', 'orange', 'pear'] -> [('apple', 5), ('orange', 6), ('pear', 4)] # words and their lengths in a list of tuples

['apple', 'orange', 'pear'] -> {'apple': 5, 'orange': 6, 'pear': 4} # words and their lengths as dictionary key-value pairs

5

https://docs.python.org/3/library/collections.html

[]: nums = [0, 1, 2, 3]
fruits = ['apple', 'orange', 'pear']
people = ["TA_sam", "student_poohbear", "TA_guido", "student_htiek"]

An example
nums_doubled_and_incremented = [i*2 +1 for i in nums] # nums -> Double and add␣
↪→one

print(nums_doubled_and_incremented)

Add your comprehensions here!
fruits_capitalized_first_letter = [] # fruits -> Capitalize first letter
fruits_cotaining_p = [] # fruits -> Contains a 'p'

people_TA_names = [] # people -> TA's names
fruits_word_and_length_tuples = [] # fruits -> words and their lengths in a␣
↪→list of tuples

fruits_word_to_length_dict = [] # fruits -> words and their lengths as␣
↪→dictionary key-value pairs

1.6.3 /! Submission instructions

You will need to submit this lab on Arche before 9:59am on Friday, 3rd February. Submit ei-
ther a .py or an .ipynb file containing the functions you wrote for the 3 exercises and name it
td3_firstname_lastname.py or td3_firstname_lastname.ipynb accordingly, where firstname
should be your first name and lastname should be your last name (e.g. Jane Doe’s submission
should be called td4_jane_doe.py or td4_jane_doe.ipynb).

6

	TD3 Revision - basic data structure
	1. What's in a string?
	2. Split and join
	Exercise 1: Sifting through many words

	3. List
	4. Manipulating lists
	5. List slicing
	Exercise 2: Sifting through

	6. Dictionaries
	Exercise 3: Flip it!
	If you have time
	/! Submission instructions

