
Probabilistic Analysis for Mixed Criticality Systems using Fixed
Priority Preemptive Scheduling

Dorin Maxim
LORIA - University of Lorraine, Nancy, France

dorin.maxim@loria.fr

Robert I. Davis
University of York, UK & Inria, Paris, France

rob.davis@york.ac.uk

Liliana Cucu-Grosjean
Inria, Paris, France

liliana.cucu@inria.fr

Arvind Easwaran
Nanyang Technological University, Singapore

arvinde@ntu.edu.sg

ABSTRACT
�is paper introduces probabilistic analysis for �xed priority
preemptive scheduling of mixed criticality systems on a
uniprocessor using the Adaptive Mixed Criticality (AMC) and
Static Mixed Criticality (SMC) schemes. We compare this analysis
to existing deterministic methods, highlighting the performance
gains that can be obtained by utilising more detailed information
about worst-case execution time estimates described in terms of
probability distributions. Besides improvements in schedulability,
we also demonstrate signi�cant gains in terms of the budgets that
can be allocated to LO-criticality tasks.

CCS CONCEPTS
•Computer systems organization → Real-time systems;
•So�ware and its engineering → Real-time schedulability;
•Mathematics of computing→ Probabilistic representations;

KEYWORDS
Real-Time Systems; Mixed Criticality; Schedulability Analysis;
Probabilities; Fixed Priority;
ACM Reference format:
Dorin Maxim, Robert I. Davis, Liliana Cucu-Grosjean, and Arvind
Easwaran. 2017. Probabilistic Analysis for Mixed Criticality Systems using
Fixed Priority Preemptive Scheduling. In Proceedings of RTNS ’17, Grenoble,
France, October 4–6, 2017, 10 pages.
DOI: 10.1145/3139258.3139276

PRELIMINARY PUBLICATION
A preliminary version [26] of the research described in this paper
was published in the Workshop on Mixed Criticality Systems
(WMC) in 2016. In this paper, we correct the analysis given in [26],
ensuring that the schedulability of HI-criticality tasks does not
depend on the behavior of LO-criticality tasks. Further, we provide
an alternative analysis (in Section 4.4) and show how support for
LO-criticality tasks can be improved via increased execution time
budgets (in Section 4.6).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS ’17, Grenoble, France
© 2017 ACM. 978-1-4503-5286-4/17/10. . .$15.00
DOI: 10.1145/3139258.3139276

1 INTRODUCTION
In 2007, Vestal [32] introduced a mixed criticality task model,
where each task is represented by multiple Worst-Case Execution
Time (WCET) estimates that are determined at di�erent levels of
assurance. For example, the WCET estimates C(LO) and C(HI) are
the estimates for low-assurance and high-assurance respectively in
a dual-criticality system. By contrast, in this paper we use a richer
model based on probabilistic Worst-Case Execution Time (pWCET)
distributions. Figure 1 illustrates this richer model. �e thick line
on the graph denotes the 1-CDF (Complementary Cumulative
Distribution Function or exceedance function) for the pWCET
distribution of a task. From the exceedance function, it is possible
to read o� for a speci�ed probability, an execution time that has no
higher probability of being exceeded on any single run or job of
the task. �e high assurance estimate C(HI) may be obtained
using an exceedance probability (on the y-axis) of for example
p(HI) = 10−12, where 10−12 denotes an acceptable threshold on
the failure probability for each job of the task at a high assurance
level. Here, the scheduler can ignore any execution demand
beyond C(HI) because its probability of occurrence is below the
threshold required. Similarly, at a lower level of assurance (say
with an acceptable threshold of p(LO) = 10−8), the scheduler can
ignore any execution demand beyond C(LO).

Figure 1: Exceedance function or 1-CDF for the pWCET
distribution of a task and the pET distributions of its jobs.

In this paper, we focus on the development of a probabilistic
schedulability analysis framework for mixed criticality systems
under Fixed-Priority Preemptive Scheduling (FPPS). �ere are two
well-known FPPS schemes and corresponding deterministic
schedulability analyses in the literature on mixed criticality
scheduling; Static Mixed Criticality (SMC) [6] and Adaptive Mixed

RTNS ’17, October 4–6, 2017, Grenoble, France D. Maxim, R.I. Davis, L. Cucu-Grosjean, A. Easwaran

Criticality (AMC) [5]. We develop probabilistic analyses for each
of these schemes. A brief description of them is given in Section 2.

1.1 Fundamental concepts
We assume that the tasks we are interested in execute on a time-
randomized hardware platform; for example with an instruction
cache that implements a random replacement policy [11]. Each
speci�c job of a task is de�ned by a �xed combination of inputs,
so�ware state, and hardware state, excluding the random variables
(emanating from a random number generator in the hardware)
which give rise to execution time variability.

De�nition 1.1. �e probabilistic Execution Time (pET)
distribution for a speci�c job is the distribution obtained by
running the task with the corresponding �xed combination of
inputs, so�ware state, and hardware state (excluding random
variables) an in�nite number of times.

De�nition 1.2. �e probabilistic Worst-Case Execution Time
(pWCET) distribution for a task is an upper bound, in the sense of
the greater than or equal to operator de�ned by Diaz et al. [14], on
the pET distribution of every possible speci�c job of the task.

Viewed in terms of its 1-CDF, the pWCET distribution of a task
is never lower than any of the pET distributions for its speci�c jobs,
as illustrated in Figure 1.

De�nition 1.3. Two random variables X and Y are independent
if they describe two events such that the outcome of one event does
not have any impact on the outcome of the other.

We assume that the pET distributions for each speci�c job of a
task are independent of the pET distribution for any other speci�c
job of the same or di�erent task. �is is the case when the only
contribution to variation in the execution time of a speci�c job
comes from independent random variables (i.e. is due to the
behaviour of the hardware random number generator). In that
case, the pWCET distribution for the task, which upper bounds the
pET distribution of all of the speci�c jobs, can be used to model the
execution time of the task as an independent random variable. We
note that the actual execution times for a sequence of jobs may
show strong correlations and dependencies; it is the representation
of execution times via an appropriate pWCET distribution which
provides independence.

We assume that Static Probabilistic Timing Analysis (SPTA) [13,
21, 22] is used to analyse each task, and that this analysis provides a
valid pWCET distribution as de�ned above, enabling the modeling
of task execution times as independent random variables.

1.2 Related work
A number of di�erent probabilistic timing analysis techniques have
been proposed to provide pWCET distributions. Here, we focus on
Static Probabilistic Timing Analysis (SPTA). For time-randomized
hardware using a random replacement cache, initial work by Cucu-
Grosjean et al. [12] in 2012 introduced a simple SPTA based on re-
use distances that is valid for single path programs, and assumes an
evict-on-access random replacement policy. In 2013, Davis et al. [13]
derived a similar SPTA based on re-use distances for the more
e�ective evict-on-miss policy, extended the approach to multipath
programs, and showed how the e�ects of preemptions could be
accounted for. More precise SPTA based on the concept of cache

contention and focussed blocks was introduced by Altmeyer et al. in
2014 [2, 3], and subsequently also extended to multipath programs
by Lesage et al. in 2015 [22], [21]. In 2014, Gri�n et al. [17] derived
an alternative approach using lossy compression techniques.

Probabilistic schedulability analysis, i.e. determining the
probability of deadline failure when at least one task parameter
(e.g. execution time) is described by an independent random
variable, was investigated by Woodbury and Shin in 1988 [33]. In
1995, Tia et al. [31] proposed a Probabilistic Time-Demand
Analysis addressing the problem of providing probabilistic
guarantees for periodic tasks. Some of the limitations of this work
were li�ed by Gardner et al. in 1999 [16]. �ey proposed a
Stochastic Time-Demand Analysis for FPPS, with assumptions
made regarding the critical instant. Analysis by Diaz et al. in 2002
[14, 15], later re�ned by Lopez et al. in 2008 [23]; addressed the
issue of backlog at the end of each hyperperiod. �is analysis is
di�cult to use in practice, due to its computational complexity.
(Improvements based on re-sampling were proposed by Maxim et
al. [27]). In 2009, Ivers and Ernst [19] addressed the problem of
dependencies between the execution times of jobs. In 2013, Maxim
and Cucu-Grosjean [24] presented a probabilistic response time
analysis, proving properties regarding the critical instant, and
extending the analysis to tasks with inter-arrival times and
deadlines also described by random variables. In 2015, Tanasa et
al. [30] provided a probabilistic response time analysis using
continuous functions to approximate the execution time
distributions.

Previous work on probabilistic analysis for mixed criticality
systems initially considered EDF scheduling. In 2015, Santinelli
and George [29] presented preliminary work that investigated the
probabilistic C-space, showing how schedulability varies with task
execution times. Subsequently, Guo et al. [18] extended the mixed
criticality task model with a single exceedance probability value
for the low assurance budget of each HI-criticality task, and used
probabilistic analysis to improve schedulability. In 2016, Draskovic
et al. [28] examined FPPS of mixed criticality periodic task systems
with execution times described by random variables. �ey
employed the method of Diaz et al. [15] to compute the probability
of a deadline miss for every job in the hyperperiod. Draskovic et
al. also computed the expected time before a change to
HI-criticality mode. �ey showed that this expected time depends
on the LO-criticality execution time budget allocated to
HI-criticality tasks. A smaller budget results in a lower probability
of deadline failure, but a shorter expected time before a transition
to HI-criticality mode. In 2017, Abdeddaim and Maxim [1] derived
probabilistic response time analysis for mixed criticality tasks
under FPPS, computing the probability of deadline misses for each
task in each criticality mode. �eir work does not assume any
monitoring, hence they assume that lower criticality tasks
continue to execute in higher criticality modes.

An overview of the research into mixed criticality real-time
scheduling emanating from the seminal paper of Vestal [32], can
be found in the survey on mixed criticality systems [10].

2 SYSTEM MODEL
In this paper, we are interested in the �xed priority preemptive
scheduling of a mixed criticality system comprising a static set of
n sporadic tasks which execute on a single processor. We assume

Probabilistic Analysis for Mixed Criticality Systems using FPPS RTNS ’17, October 4–6, 2017, Grenoble, France

without loss of generality that each task τi has a unique priority.
We further assume a discrete time model where all task parameters
are described using integers.

Each task τi is de�ned by its period (or minimum inter-arrival
time), relative deadline, worst-case execution time, and level of
criticality (de�ned by the system engineer responsible for the entire
system): (Ti , Di , Ci , Li). We restrict our a�ention to constrained-
deadline systems in which Di ≤ Ti for all tasks. Further, we assume
that the processor is the only resource that is shared by the tasks,
and that the overheads due to the operation of the scheduler and
context switch costs can be bounded by a constant, and hence
included within the worst-case execution times a�ributed to each
task.

In a mixed criticality system, further information is needed in
order to perform schedulability analysis. In this paper we are
concerned with dual criticality systems, with criticality levels LO
and HI. Using a deterministic representation each LO-criticality
task τi has a single worst-case execution time estimate Ci (LO),
while each HI-criticality task τi has two worst-case execution time
estimates Ci (LO) and Ci (HI) with Ci (HI) ≥ Ci (LO). We use p(LO)
(and p(HI)) to denote the worst-case probability that Ci (LO) (resp.
Ci (HI)) is exceeded during the execution of any single job of the
task. Note, in this paper, we assume that these probabilities are the
same for all tasks and so drop the index. We use exemplar values
for p(LO) and p(HI) of 10−8 and 10−12 respectively. Note for ease
of presentation, we also drop the index for C(LO) and C(HI) when
using these terms in a generic way; nevertheless, these values are
speci�c to each task.

By contrast, using a probabilistic representation, each task τk (of
LO- or HI-criticality) has a probabilistic worst-case execution time
(pWCET) distribution Ck . Further, there is a correspondence
between the probabilistic and deterministic representations.
Considering the 1-CDF (exceedance function), f (Ck) for task τk ,
Ck (LO) (resp. Ck (HI)) in the deterministic representation
corresponds to the value of f (Ck) at a probability of exceedance of
p(LO) (resp. p(HI)), as illustrated in Figure 1. Note beyond this
correspondence, we make no assumptions in our analysis about
the form of the distribution. We assume that the WCET values of
two tasks Ci and Cj are independent and so too are the upper
bounds on their execution time behaviours, which are modelled as
independent random variables characterised by pWCET
distributions Ci and Cj .

�e SMC and AMC scheduling schemes investigated in this paper
both use budget enforcement by the Real-Time Operating System
(RTOS) to ensure that LO-criticality tasks cannot execute for more
than their LO-criticality execution time budget C(LO). With the
AMC scheme, the RTOS also uses the C(LO) budget for each HI-
criticality task to determine if a mode change should take place.
�e system moves from LO- to HI-criticality mode if this budget is
reached without the job completing. Once HI-criticality mode is
entered, then with AMC, any jobs of LO-criticality tasks that have
already started can continue to execute; however, no further jobs
of LO-criticality tasks can be released. (�is simple extension to
the original AMC scheme, which called for jobs of LO-criticality
tasks to be aborted on entering HI-criticality mode, is permi�ed
by the analysis [5] and was proposed in [8]). With SMC, jobs of
LO-criticality tasks continue to be released in HI-criticality mode.

We assume that any job of a HI-criticality task that executes for
its C(HI) budget without completing is executing erroneously and
is therefore aborted by the RTOS. Similar to [24], we also assume
that any job that does not complete by its deadline is aborted.

In any processor busy period, where all jobs of HI-criticality
tasks complete without exceeding their LO-criticality budgets, the
system is said to be in LO-criticality mode; otherwise it is said to be
in HI-criticality mode. (We assume that at an idle instant when there
are no jobs with outstanding execution, the system may revert back
to LO-criticality mode. Other more sophisticated recovery policies
could however be used [8]). �ere are di�erent requirements on
schedulability that apply in the di�erent modes of the system.

We use Ri to refer to the deterministic worst-case response time
(WCRT) of task τi , and Ri to refer to the probabilistic worst-case
response time (pWCRT) distribution which may be computed using
pWCET values.

In LO-criticality mode, jobs of LO-criticality tasks must have a
Worst-Case Deadline Miss Probability (WCDMP) that is no greater
than a speci�ed threshold H (LO) (for example 10−8). We assume
these thresholds are the same value for all LO-criticality tasks and
so drop the index. Using deterministic analysis, this requirement
may be satis�ed by showing that the tasks are schedulable i.e. have
a worst-case response timeRi (LO) ≤ Di , computed using execution
times of C(LO). Using the probabilistic analysis developed in this
paper, the requirement may be satis�ed directly by determining the
worst-case deadline miss probability. �is is achieved by computing
the probabilistic worst-case response time distribution (pWCRT)
and determining the value of the 1-CDF (Cumulative Distribution
Function) at a response time corresponding to the task’s deadline
Di , thus computing an upper bound on the probability of missing
the deadline.

Jobs of HI-criticality tasks must have a worst-case deadline miss
probability that is no greater than a speci�ed threshold H (HI) (for
example 10−12). �is requirement applies to all modes, and may be
met via deterministic methods or via calculating the appropriate
probabilistic worst-case response time distribution and comparing
it with the task’s deadline. In both cases, due account needs to be
taken of interference from LO-criticality tasks.

Jobs of both LO- and HI-criticality tasks may also fail to meet
their timing requirements by not completing within their execution
time budgets of C(LO) and C(HI) respectively, which are enforced
by the RTOS. �e probability of such budget overruns are upper
bounded by p(LO) and p(HI) respectively, and are assumed to be
acceptable for both LO- and HI-criticality tasks. (�is is the case
for both deterministic and probabilistic analyses).

Finally we note an important point about using pWCET
distributions and probabilistic analysis, which does not occur with
deterministic analysis. When we analyse LO-criticality tasks, we
can use low assurance information e.g. C(LO) values and pWCET
distributions for LO-criticality tasks. However, when we analyse
HI-criticality tasks, we must be sure to use only high assurance
information e.g. pWCET distributions for HI-criticality tasks, and
rely on the high assurance RTOS to enforce C(LO) budgets for
LO-criticality tasks. We return to this point in Section 4.1.

RTNS ’17, October 4–6, 2017, Grenoble, France D. Maxim, R.I. Davis, L. Cucu-Grosjean, A. Easwaran

3 RECAP OF EXISTING ANALYSES
In this section, we recapitulate the deterministic schedulability
analysis for SMC [6] and AMC [5], and also existing probabilistic
analysis for FPPS [24].

3.1 Deterministic Schedulability Analysis
Static Mixed Criticality (SMC) scheduling [6] is based on Vestal’s
original approach using �xed priorities, extended using run-time
monitoring. �us, if a job of a LO-criticality task does not complete
execution by its budget C(LO), then it is aborted.

�e response time Ri of task τi under SMC may be computed
using the following �xed point iteration, which is a simple
adaptation of standard Response Time Analysis [4, 20]. Recall that
Li is the criticality level of task τi .

Ri = Ci (Li) +
∑

∀j ∈hp(i)

⌈
Ri
Tj

⌉
min(Cj (Li),Cj (Lj)) (1)

where hp(i) is the set of all tasks with priority higher than that of
task τi .

With Adaptive Mixed Criticality (AMC) scheduling [5], if a job of
a HI-criticality task executes for itsC(LO) budget without signaling
completion, then the system enters HI-criticality mode. In this
mode, previously released jobs of LO-criticality tasks are completed;
however, any subsequent releases of LO-criticality tasks are not
started.

�e analysis for AMC �rst computes the worst-case response
times for tasks in the LO-criticality mode via the following �xed
point iteration:

Ri (LO) = Ci (LO) +
∑

∀j ∈hp(i)

⌈
Ri (LO)
Tj

⌉
Cj (LO) (2)

On a criticality change, the only concern is HI-criticality tasks; for
these tasks:

Ri (HI) = Ci (HI) +
∑

∀j ∈hpH (i)

⌈
Ri (HI)
Tj

⌉
Cj (HI)

+
∑

∀k ∈hpL(i)

⌈
Ri (LO)
Tk

⌉
Ck (LO) (3)

where hpH (i) is the set of HI-criticality tasks with priority higher
than that of task τi and hpL(i) is the set of LO-criticality tasks with
priority higher than that of task τi .

Equation (3) limits the interference from LO-criticality tasks by
noting that no further jobs of these tasks can be released a�er the
change to the HI-criticality mode which must occur at or before
Ri (LO). We note however that the interference from every LO-
criticality job that executes is assumed to be its entire budgetC(LO).
Similarly C(HI) is assumed for every job of a HI-criticality task,
even though execution for this much time may be a rare event.

3.2 Probabilistic Schedulability Analysis
In this section, we recap on the probabilistic response time analysis
for FPPS derived in [24] for tasks with both execution times and
inter-arrival times described by random variables. Since in this
paper the inter-arrival time for each task is a constant, we present
only a simpli�ed version of this analysis. First we recap the basic
terminology and operators used.

We distinguish between full distributions and partial
distributions. A full distributionZ has probabilities which sum to
1. Such a distribution may be split into two (or more) partial
distributions X and Y such that ∀v
P(Z = v) = P(X = v) + P(Y = v). We say thatZ = X ⊕ Y where
⊕ is the coalescence of the two distributions via the addition of the
probabilities for each value. In contrast, the sum Z of two
independent random variables X and Y is given by their
convolution X ⊗ Y where
P{Z = z} = ∑k=+∞

k=−∞ P{X = k}P{Y = z − k}.
We now outline how the pWCRT distribution Ri of task τi can

be computed.
In [24], Maxim and Cucu-Grosjean proved that considering all

valid pa�erns of job releases, the worst-case response time
distribution of a job of task τi occurs for the �rst job of τi released
simultaneously with jobs of all higher priority tasks, which are
then re-released as soon as possible. (Note, this is the case for the
task model considered in [24] and in this paper, where jobs are
aborted if they have not completed by their deadline). We can
therefore compute an upper bound on the pWCRT distribution Ri
of task τi as follows.

�e worst-case response time distribution for task τi is �rst
initialized to:

R0
i = Bi ⊗ Ci (4)

where the backlog Bi at the release of τi is given by:

Bi =
⊗

j ∈hp(i)
Cj (5)

�e worst-case response time is then updated iteratively for each
preemption as follows:

Rmi = (R
m−1,head
i ⊕ (Rm−1,tail

i ⊗ Cprk)) (6)

Here,m is the index of the iteration. Rm−1,head
i is the part of the

distribution Rm−1
i that is not a�ected by the preemption under

consideration (i.e. it only contains values ≤ tm where tm is the
time of the preemption). Rm−1,tail

i is the remaining part of the
distribution Rm−1

i that may be a�ected by the preemption. Finally,
Cprk is the pWCET distribution of the preempting task τk .

Iteration ends when there are no releases le� from jobs of higher
priority tasks at time instants smaller than the largest value in the
response time distribution currently obtained. Iteration may also
be terminated once any new preemptions are beyond the deadline
of the task.

Once iteration is complete, the worst-case deadline miss
probability valid for any job of task τi is given by:

WCDMPi = P(Ri > Di). (7)

Worked examples of the analysis described in the following
section, which are based on the above method, can be found in
Appendix A of the technical report [25] on which this paper is
based.

4 PROBABILISTIC ANALYSIS
In this section, we introduce probabilistic response time analysis
for the SMC and AMC scheduling schemes, referred to as pSMC
and pAMC analysis respectively.

Probabilistic Analysis for Mixed Criticality Systems using FPPS RTNS ’17, October 4–6, 2017, Grenoble, France

(a) partHI (green) and fullHI (purple)
distribution for a HI-criticality task.

(b) partLO (blue) and fullBE (red) probability
distributions for a LO-criticality task.

(c) degen distribution for a LO-criticality task.

Figure 2: Illustrations of the full, partial, and degenerate distributions used in probabilistic analysis.

4.1 pWCET Distributions Used
In our analysis, we make use of di�erent types of pWCET
distribution which we now describe. We use the term partLO to
denote a partial distribution X formed from the full pWCET
distributionZ of a task by taking only those values that represent
completion of the task in no more than its LO-criticality execution
time budget C(LO). �us X is such that ∀v ≤ C(LO),
P(X = v) = P(Z = v) and ∀v > C(LO), P(X = v) = 0. Similarly,
we use the term partHI to denote a partial distribution formed by
taking only those values that represent completion of the task in
no more than its HI-criticality execution time budget C(HI). Since
the RTOS enforces the C(HI) budget, we form a full distribution
accounting for this, referred to as fullHI, which is truncated at
C(HI) and accumulates the probabilities for all higher execution
times at that point i.e. P(Y = C(HI)) = P(Z ≥ C(HI)). �e partHI
and fullHI distributions for a HI-criticality task are illustrated in
Figure 2a. (Note, the shape of these distributions is for illustration
purposes only; no speci�c distribution is assumed by the analysis).

Figure 2b illustrates the partLO and fullBE distributions for a
LO-criticality task. �e partLO distribution describes the
behaviour expected of the task by the system designer. In addition,
with both the SMC and AMC schemes, if a job of a LO-criticality
task executes for its execution time budget C(LO) without
signaling completion, then the job will be aborted as a result of
budget enforcement by the RTOS. We need to also take this
behaviour into account when computing the interference on other
tasks of lower priority. �us we form a full distribution accounting
for budget exceedance, referred to as fullBE, which is truncated at
C(LO) and accumulates the probabilities for all higher execution
times at that point i.e. P(Y = C(LO)) = P(Z ≥ C(LO)). �is is also
illustrated in Figure 2b.

When we analyse HI-criticality tasks, we cannot trust the
pWCET distributions obtained for LO-criticality tasks. �e reason
for this is that LO-criticality tasks are not developed to the same
rigourous standards as HI-criticality tasks. �us, in the analysis we
provide for the HI-criticality tasks, we must not make any
assumptions about their correct behaviour. Instead, we make a
conservative worst-case assumption. We assume that such tasks
may execute erroneously and so always a�empt to overrun their
C(LO) budget and therefore need to be aborted by the RTOS,
which is itself a trusted component that has been developed to the
standards required for HI-criticality operation. When we are
analysing HI-criticality tasks, we therefore assume that
LO-criticality tasks have a degen (meaning full degenerate)
distribution which has a single value equivalent to the maximum

time that the task can execute i.e C(LO) with probability 1 (as
illustrated in Figure 2c).

pWCRT distributions are composed from pWCET distributions
using the analysis described in Section 3.2. When partial pWCET
distributions are used (for example representing LO-criticality
mode only), then the resultant pWCRT distribution is also a partial
distribution, giving probabilities that are conditional on being in
that mode.

When analysing the worst-case deadline miss probability for
LO-criticality tasks, we use the partLO distributions, since we are
only interested in the probability that tasks exceed their deadlines
and the system remains in LO-criticality mode, i.e. C(LO) budgets
are not exceeded. �e component of a full pWCRT distribution
that is lost represents those scenarios where the system enters
HI-criticality mode, and hence where there is no requirement for
LO-criticality tasks to meet their deadlines.

As a building block for the analysis in the following sections, we
use the function pRTA(τi ,δ ,δLO,δHI , t) de�ned as follows.

De�nition 4.1. pRTA(τi ,δ ,δLO,δHI , t) is a function which
returns a (full or partial) pWCRT distribution for task τi computed
using the analysis described in Section 3.2, i.e. via (4), (5), and (6).
�is analysis starts from an initial distribution of type δ for task τi ,
and uses pWCET distributions of types δLO and δHI for
preempting (i.e. higher priority) LO-criticality and HI-criticality
tasks respectively. Further, jobs of higher priority LO-criticality
tasks are only included in the computation of the pWCRT
distribution if their release times are no later than the cuto� time t .
�e parameters δ , δLO , and δHI may take values partLO, partHI,
fullBE, degen, and fullHI when the function is used.

4.2 pSMC Analysis
Recall that with the SMC scheme, LO-criticality tasks may execute
in HI-criticality mode, the only constraint on their execution being
budget enforcement.

For both LO- and HI-criticality tasks, there are two ways in
which the tasks can fail to meet their timing requirements: (i) they
can fail to complete within their budgets, (ii) they can fail to meet
their deadlines. We assume that the budgets (C(LO) and C(HI))
have been set such that the probability (p(LO) or p(HI)) of each
job of a task failing to complete within its budget is acceptable. We
therefore focus only on the worst-case probability of deadline
misses, assuming that the task of interest does not exceed its
execution time budget. (Note this is similar to the view taken by
deterministic schedulability analysis which assumes that the

RTNS ’17, October 4–6, 2017, Grenoble, France D. Maxim, R.I. Davis, L. Cucu-Grosjean, A. Easwaran

probability of budget exceedance is acceptable and computes
schedulability assuming absolute values for C(LO) and C(HI)).

For HI-criticality tasks, we need to determine schedulability (i.e.
upper bound the worst-case probability of deadline failure) in both
LO- and HI-criticality modes. By contrast for LO-criticality tasks,
we need only determine their schedulability in LO-criticality mode.

For a LO-criticality task τl , we can determine schedulability in
LO-criticality mode using the partLO distribution for τl , and the
f ullBE distribution for higher priority, LO-criticality tasks, since
they may overrun their budgets, but there is no behaviour of these
tasks that can cause HI-criticality mode to be entered. Finally,
we need only consider the partLO distribution for HI-criticality
tasks, as the remaining part of the full distribution for these tasks
implies that the system enters HI-criticality mode, hence by using
the function pRTA() from De�nition 4.1 we have:

Rl (LO) = pRTA(τl ,partLO, f ullBE,partLO,∞) (8)
When analysing a HI-criticality task τh executing in

LO-criticality mode, we cannot trust the behaviour of
LO-criticality tasks1. �us we must use degenerate distributions
equating to the execution time budget C(LO) for higher priority,
LO-criticality tasks, thus we have:

Rh (LO) = pRTA(τh ,partLO,deдen,partLO,∞) (9)
Equations (8) and (9) provide the partial pWCRT distribution

for each task conditional on the system operating in LO-criticality
mode and the task not exceeding its own LO-criticality budget.

When analysing a HI-criticality task τh we need to determine
the probability that it will miss its deadline irrespective of the
criticality mode. Again we cannot trust the behaviour of
LO-criticality tasks. �us we must use degenerate distributions
equating to the execution time budget C(LO) for higher priority,
LO-criticality tasks. To compute the pWCRT distribution
irrespective of mode, we begin with the partHI distribution for the
HI-criticality task τk (since we are interested in the case where it
completes within its budget, but nevertheless misses its deadline)
and include the f ullHI distribution for preempting higher priority,
HI-criticality tasks.

Rh (HI) = pRTA(τh ,partHI ,deдen, f ullHI ,∞) (10)

4.3 pAMC Analysis
�e AMC and SMC schemes have identical behaviour in
LO-criticality mode, hence the analysis given in Section 4.2 also
provides pAMC analysis for both LO- and HI-criticality tasks in
LO-criticality mode. �at leaves pAMC analysis of HI-criticality
tasks irrespective of mode.

To compute the pWCRT distribution for a HI-criticality task τh
in both HI- and LO-criticality modes, we begin with the partHI
distribution for the task and include the f ullHI distribution for
preempting higher priority, HI-criticality tasks. As before, we
assume that the behaviour of LO-criticality tasks cannot be trusted
and therefore again make use of the degen distributions for those
tasks.

Rh (HI) = pRTA(τh ,partHI ,deдen, f ullHI ,Rh (LO)) (11)
Note, we limit the jobs of higher priority LO-criticality tasks to
those released by the LO-criticality response time Rh (LO) of task
1�e analysis given in [26] did not take this into account and is corrected here.

τh given by deterministic analysis of AMC i.e. by (2). (�e rationale
for this is that if task τh is still executing beyond Rh (LO) then it
must be the case that the system has entered HI-criticality mode,
and so no further releases of LO-criticality tasks are permi�ed). If
Rh (LO) cannot be obtained by deterministic analysis i.e. the task
is unschedulable according to that analysis and Rh (LO) > Th then
Rh (LO) may be assumed to be in�nite and the pAMC analysis (11)
reduces to the pSMC analysis (10).

Comparing (11) with (10), it is easy to see that the pAMC analysis
dominates pSMC. �e only di�erence is the discounting of LO-
criticality preemptions a�er time Rh (LO) in the case of pAMC. �us
all task sets that are deemed schedulable2 by pSMC analysis are
also schedulable according to the pAMC analysis. Further, we note
that the pAMC analysis dominates deterministic analysis for AMC,
and similarly, pSMC analysis dominates deterministic analysis for
SMC. �is can be seen by considering the distributions used in the
probabilistic analyses. �ese distributions and the resulting pWCRT
distributions satisfy the limit condition [24]. �e maximum values
in each input distribution are the same as the values used in the
corresponding deterministic analysis, thus the maximum value in
the output pWCRT distributions are the same as the deterministic
worst-case response times.

4.4 pAMC2 Alternative Analysis
A weakness of the pAMC analysis described in the previous section
relates to its use of the value of Rh (LO) computed via deterministic
analysis. �e analysis for pAMC is only able to outperform that for
pSMC when a valid value of Rh (LO) can be obtained. To address
this problem, we provide an alternative probabilistic analysis for
AMC, referred to as pAMC2. �e analysis for LO- and HI-criticality
tasks in LO-criticality mode remains unchanged and is given in
Section 4.2, while that for a HI-criticality task irrespective of both
mode is described below.

For the HI-criticality task of interest τh , let R∗h (LO) be a value
chosen from the partial pWCRT distribution for LO-criticality mode,
given by (9), such that the probability that the response time of
the task in LO-criticality mode exceeds R∗h (LO) is E = H (HI)/10,
i.e. one tenth of the acceptable threshold on the deadline miss
probability for HI-criticality tasks3. From our choice of R∗h (LO), we
know that if task τh has not completed execution by R∗h (LO) a�er it
is released, then the probability that the task, and hence the system,
is still executing in LO-criticality mode is no greater than E.

We now split the analysis for task τh into two cases:
Case 1: Represents scenarios where there are LO-criticality tasks

released, i.e. the system is still in LO-criticality mode, more than
R∗h (LO) time units a�er the release of task τh . We pessimistically
assume that all of these scenarios lead to deadline misses for task
τh ; however, since by de�nition of R∗h (LO) the probability of these
scenarios occurring is no greater than E they contribute at most E
to the overall worst-case deadline miss probability for task τh .

Case 2: Scenarios where there are no LO-criticality tasks released
more than R∗h (LO) time units a�er the release of task τh . To simplify

2Recall that by schedulable we mean that LO-criticality tasks must not exceed their
WCDMP threshold in LO-criticality mode, and HI-criticality tasks must not exceed
their WCDMP threshold in either mode.
3We choose the value of E = H (HI)/10 as a pragmatic means of both keeping
R∗h (LO) small and E well below the threshold H (HI).

Probabilistic Analysis for Mixed Criticality Systems using FPPS RTNS ’17, October 4–6, 2017, Grenoble, France

the analysis, ignoring case 1, we pessimistically assume that the
probability of these scenarios occurring is 1.

We now derive the pWCRT distribution for Case 2. Similar to
the pSMC analysis, we compute the pWCRT distribution
irrespective of mode. Here, we begin with the partHI distribution
for task τh and similarly include the f ullHI distribution for
preempting higher priority, HI-criticality tasks. As this analysis is
for a HI-criticality task τh , we assume that the behaviour of
LO-criticality tasks cannot be trusted and therefore again make
use of the degenerate distributions for those tasks. Since the
analysis is for Case 2, we limit the jobs of higher priority
LO-criticality tasks to those released by time R∗h (LO).

Rh (HI) = pRTA(τk ,partHI ,deдen, f ullHI ,R∗h (LO)) (12)
To account for Case 1, we later simply add E to the worst-case

deadline miss probability of the task (see Section 4.5). Together
with (8), this completes the analysis for pAMC2.

With the exception of the additional term E, the pAMC2
analysis would dominate both the pSMC analysis and also the
pAMC analysis. Comparing (10) with (12), the former would hold
since R∗h (LO) ≤ ∞. Comparing (11) with (12), the la�er would hold
since R∗h (LO) ≤ Rh (LO) due to the limit condition. However, with
the additional term E, dominance is no longer assured. We note
that a dominant approach could be achieved by the simple
expedient of declaring a task set schedulable if it is deemed
schedulable under either the pAMC or pAMC2 analysis.

�e pAMC2 analysis does however dominate deterministic
analysis for AMC. �is can be seen by considering any task that is
schedulable according to deterministic analysis of AMC. R∗h (LO),
as de�ned in the pAMC2 analysis cannot be greater than Rh (LO)
obtained by deterministic analysis in (2), since the distribution that
R∗h (LO) is taken from satis�es the limit condition. As
R∗h (LO) ≤ Rh (LO) it follows that the pWCRT distribution
characterising the behaviour of a HI-criticality task τh satis�es the
limit condition with respect to the value Rh (HI) derived by
deterministic analysis in (3), i.e. it has no values > Rh (HI). Since
Rh (HI) ≤ Dk , the only non-zero contribution to the overall
worst-case deadline miss probability is E which is less than H (HI)
and so the task is also schedulable according to pAMC2 analysis.

4.5 Probabilistic schedulability
For a LO-criticality task τl to meet its timing requirements, then its
execution time must not exceed its LO-criticality budget with
more than a speci�ed probability. �is is guaranteed, as with
deterministic analysis, by se�ing its execution time budget no
lower than C(LO). Secondly, its pWCRT distribution conditional
on not exceeding its budget and that the system remains in
LO-criticality mode must give a worst-case deadline miss
probability that does not exceed the speci�ed threshold, i.e.
P(Rl (LO) > Dl) ≤ H (LO). �is can be determined for pSMC,
pAMC, and pAMC2 using (8).

For a HI-criticality task τh to meet its timing requirements, then
its execution time must not exceed its HI-criticality budget with
more than a speci�ed probability. �is is again guaranteed, as with
deterministic analysis, by se�ing its execution time budget no lower
than C(HI). Further, its pWCRT distribution (valid irrespective of
mode), and conditional on not exceeding its budget, must result
in a worst-case deadline miss probability that does not exceed the

speci�ed threshold i.e. P(Rh (HI) > Dh) ≤ H (HI), where Rh (HI)
can be determined for pSMC using (10), and for pAMC using (11).
For the pAMC2 analysis, P(Rh (HI) > Dh) + E ≤ H (HI) where
E = H (HI)/10 and Rh (HI) is determined via (12).

4.6 Improved Support
C(LO) represents the low assurance estimate of the WCET of a
task; however, the use of this value at runtime is as an execution
time budget which for clarity we now denote separately as C(BU).
�is budget is used with respect to LO-criticality jobs to indicate
when such a job should be aborted if it has not yet completed
execution. In the case of HI-criticality jobs the budget is used to
indicate when HI-criticality mode should be entered and thus with
the AMC scheme when further LO-criticality jobs may no longer
be released.

Using the pWCET distributions for both LO- and HI-criticality
tasks, we can improve support for LO-criticality execution by
increasing the C(BU) budgets used for both LO- and HI-criticality
tasks above the original C(LO) values. �is has a number of
e�ects:

(i) It decreases the probability that a LO-criticality job will
overrun its budget and be aborted before completing;

(ii) It reduces the probability that HI-criticality mode will be
entered;

(iii) It increases the computed pWCRT distributions for both LO-
and HI-criticality tasks leading to higher worst-case deadline
miss probabilities.

Improved support for LO-criticality tasks can be obtained by
tightening their timing requirements, i.e. by decreasing the
permi�ed probability of exceeding the execution time budget, and
the threshold on the worst-case deadline miss probability. �us we
may decrease these values from p(LO) and H (LO) to some new
values p(BU) and H (BU), which we assume are equal. �e
LO-criticality execution time budget for each task (i.e. C(BU)) can
then be read o� from the 1-CDF of its pWCET distribution,
corresponding to the value p(BU). We modify the C(BU) values
for HI-criticality tasks in the same way. �e pSMC, pAMC, and
pAMC2 analyses can then be applied, using these new C(BU)
values in place of C(LO) and the new distributions that they imply,
to determine schedulability for LO-criticality tasks with respect to
the new threshold H (BU), and for HI-criticality tasks with respect
to the original threshold H (HI).

Since schedulability is monotonically decreasing for both LO-
and HI-criticality tasks with respect to increases in execution time
budgets C(BU) and decreases in the threshold H (BU), we may use
a binary search to determine the smallest value of p(BU)(= H (BU))
commensurate with schedulability. �e initial values for the search
are p(BU) = 1 which corresponds to a LO-criticality execution time
of zero, and p(BU) = p(HI), which corresponds to a LO-criticality
execution time equal to C(HI).

With deterministic analysis, we may also use a binary search to
determine the smallest value of p(BU)(= H (BU)) commensurate
with schedulability. In this case we can use the C(BU) value
obtained from the pWCET distribution for each task in place of
C(LO). We note that increasing C(BU) for HI-criticality tasks
reduces schedulability in LO-criticality mode, and in the case of
AMC also in HI-criticality mode via an increase in the value of
R(LO).

RTNS ’17, October 4–6, 2017, Grenoble, France D. Maxim, R.I. Davis, L. Cucu-Grosjean, A. Easwaran

Figure 3: Example of possible pWCET distributions.

In Section 5.4 we quantify the relative improvements in support
for LO-criticality execution which can be obtained using
probabilistic and deterministic analysis techniques.

5 EVALUATION
In this section we evaluate the e�ectiveness of the probabilistic
analysis techniques introduced in this paper. In particular, we
examine the performance improvements that can be obtained with
respect to the corresponding deterministic analyses.

5.1 Task set parameter generation
�e task set parameters used in our experiments were randomly
generated as follows:

• Task utilisations (Ui = Ci/Ti) (for LO-criticality mode)
were generated using the UUnifast algorithm [9].
• Task periods were generated according to a log-uniform

distribution. By default, the range of task periods was two
orders of magnitude r = 2, e.g. from 10ms to 1000ms.

• �e LO-criticality execution time of each task was set based
on the utilisation and period: Ci (LO) = UiTi .

• �e HI-criticality execution time of each task was given by
Ci (HI) = CF · Ci (LO), where CF is the Criticality Factor
(default CF = 1.5).
• �e probability that a generated task was a HI-criticality

task was given by the parameter CP (default CP = 0.5).
• Task deadlines were constrained, chosen from a uniform

distribution in the range [CF .C(LO),T].
• Task priorities were set in deadline monotonic order.

We generated the pWCET distribution for each task via
extrapolation from the C(LO) and C(HI) parameter values. We
assumed that the probability of exceeding C(LO) is p(LO) = 10−8,
and that the probability of executing for, but not exceeding C(HI)
is p(HI) = 10−12. To determine intermediate points, we assumed
that the pWCET distributions have an exponential tail. �us we
assumed that the 1-CDF of the pWCET was a straight line on an
exceedance graph with probabilities given on a log scale, as
depicted in Figure 3. Note the longer lines are for a Criticality
Factor of 1.5 and thus show more execution time variation than
the shorter lines which are for CF = 1.2. Further, the lower lines
are for the default se�ings of p(HI) = 10−12 and p(LO) = 10−8,
whereas the upper lines are for p(HI) = 10−9 and p(LO) = 10−5, as
an example of one of the pairs of values used in a later experiment.
(Note the le� most point on each line collects the remaining part of
the distribution so that the probability mass sums to 1).

�e �resholds H (LO) and H (HI) on the maximum acceptable
worst-case deadline miss probabilities for LO- and HI-criticality
tasks were set to 10−8 and 10−12 respectively.

5.2 Schedulability tests
We investigated the performance of the following techniques and
associated schedulability tests.

• pSMC: Probabilistic SMC analysis (Section 4.2).
• pAMC and pAMC2: Probabilistic AMC analysis (Sections

4.3 and 4.4).
• dSMC: Deterministic SMC analysis [5] (Section 3.1).
• dAMC: Deterministic AMC analysis [5] (Section 3.1).

In addition we include two further tests:
• dUB: Task sets pass this ‘test’ if they are schedulable

according to deterministic analysis of FPPS in each of the
individual LO-criticality and HI-criticality modes with
priorities in deadline monotonic order. �is is a
deterministic necessary test for any �xed priority
preemptive mixed criticality scheduling algorithm [5].

• pUB: Task sets pass this ‘test’ if they are schedulable
according to probabilistic analysis of FPPS in each of the
individual LO-criticality and HI-criticality modes with
priorities in deadline monotonic order.

�e dominance relationships between the algorithms and tests
implies that in all �gures there is an ordering to the lines: pUB
dominates pAMC which dominates pSMC. Similarly dUB dominates
dAMC which dominates dSMC. Further pUB dominates dUB, pAMC
dominates dAMC, and pSMC dominates dSMC. As explained earlier,
pAMC2 does not strictly dominate pAMC or pSMC; however, it does
dominate dAMC and hence also dSMC. pUB dominates pAMC2. �e
purpose of the experiments is to examine the relative performance
of the di�erent schemes.

5.3 Baseline experiment
In our baseline experiment, the LO-criticality utilisation was varied
from 0.05 to 1 in steps of 0.05. For each utilisation value, 1000
task sets were generated and the schedulability of those task sets
determined for the di�erent schemes.

Figure 4 plots the percentage of task sets generated that were
deemed schedulable for a system of 10 tasks, with on average 50%
of those tasks having HI-criticality (CP = 0.5) and each task having
a HI-criticality execution time that is 1.5 times its LO-criticality
execution time (CF = 1.5). �e utilisation values (x-axis) are
computed using the C(LO) values and periods for each task. (Note,
the graphs are best viewed in an electronic version of this paper in
colour).

Figure 4 shows that the probabilistic analyses (pAMC2, pAMC
and pSMC) provide substantially improved performance compared
to the deterministic analyses (dAMC and dSMC), with many more
task sets deemed schedulable. �is is because the probabilistic
analysis is able to account for the full extent of the pWCET
distributions, and thus the very small probability that multiple jobs
take long execution times leading to a very long response time. We
note that pAMC2, pAMC and pSMC are able to deem some tasks
sets with LO-criticality utilisation equal to 1 schedulable. �is is
correct, and is a re�ection of the shape of the pWCET distributions
(see Figure 3). Recall that C(LO) has a probability of exceedance of
10−8 thus once the distributions for a number of tasks are

Probabilistic Analysis for Mixed Criticality Systems using FPPS RTNS ’17, October 4–6, 2017, Grenoble, France

convolved, the probability that all of them execute for C(LO) or
more becomes very small.

We observe that there is only a small di�erence between the
results for pSMC and those for pAMC; the di�erence is visible
for utilisation values from 0.7 to 1. �is is because there is only
a di�erence between the pWCRT distributions calculated by the
two methods when the cuto� time for pAMC, given by R(LO), can
be computed deterministically (i.e. when it is less than the task’s
period). In the cases where this is possible, the task set is o�en also
schedulable according to pSMC.

Figure 4: Percentage of task sets deemed schedulable
according to the di�erent schedulability tests.

Overall, in this experiment, we found only 146 task sets (less
than 1%) that were schedulable according to pAMC, but not
schedulable according to pSMC. For utilizations greater than 0.7,
there were 57 task sets that were schedulable according to pAMC2,
but not according to pAMC. In contrast, for utilizations less than
0.7, pAMC outperformed pAMC2; with 49 task sets that were
schedulable according to pAMC, but not according to pAMC2.
Similarly, comparing pAMC2 and pSMC, for utilizations greater
than 0.45, there were 163 task sets that were schedulable according
to pAMC2, but not according to pSMC. However, for utilizations
less than 0.45, pSMC slightly outperformed pAMC2; with 9 task
sets that were schedulable according to pSMC, but not according
to pAMC2. �ese results clearly show the incomparability between
pAMC2 and both pAMC and pSMC. Out of a total of 20000
task-sets that we analyzed, 14855 (74.3%) were schedulable
according to pAMC2, 14847 (74.2%) were schedulable according to
pAMC, and 14701 (73.5%) according to pSMC. By comparison, the
�gures for dSMC and dAMC were 10596 (53%) and 11619 (58.1%)
respectively.

In Appendix B of the technical report [25] on which this paper
is based, we provide additional results for weighted
schedulability [7] experiments showing how the performance of
the analysis techniques varies with: the Criticality Factor (CF), the
proportion of HI-criticality tasks (CP), the number of orders of
magnitude range between the minimum and maximum task
period, the task set cardinality, and the probability threshold used
for p(HI).

5.4 �antifying the improvements
In this subsection, we report on a further experiment quantifying
the improvements in LO-criticality execution (i.e. lower likelihood

of entering HI-criticality mode or aborting LO-criticality tasks due
to budget overruns) that can be obtained by using probabilistic
analysis versus deterministic analysis, as outlined in Section 4.6.

In this experiment, we used a search over each possible value
of C(BU) corresponding to the di�erent probabilities p(BU) in the
pWCET distribution (see Figure 3) and recorded the smallest value
of p(BU) for which each task set was schedulable according to the
scheduling schemes and analysis techniques (i.e. dSMC, dAMC,
pSMC, pAMC, and pAMC2).

We generated task sets with a LO-criticality utilisation of 0.7
using the default parameter se�ings (10 tasks, CF = 1.5, CP = 0.5
etc.). Only task sets that were schedulable according to dSMC with
C(LO) determined for p(BU) = 10−1 were included in the results.

Figure 5 shows the minimum schedulable p(BU) value (from
which LO-criticality budgets C(BU) are derived) for each of the
analysis techniques. Note we have ordered the 100 task sets
studied according to the ease with which they could be scheduled
from easiest to hardest, based on the minimum schedulable p(BU)
values for the di�erent analysis techniques. From the graph, we
can observe that the �rst 65 out of the 100 task sets were
schedulable according to pAMC2 with p(BU) = 10−12 and the
associated execution time budgets C(BU), whereas none of the
task sets were schedulable with those values according to the
deterministic methods. In fact with p(BU) = 10−10 no task sets
were schedulable according to dSMC and only 9 according to
dAMC. Further, the median value for minimum schedulable p(BU)
was 10−4 for dSMC, 10−7 for dAMC, and 10−12 for pSMC, pAMC,
and pAMC2. �e results of this experiment clearly show the much
greater support for LO-criticality execution that is achievable by
applying probabilistic analysis techniques. Given the relationship
between C(BU) and p(BU) de�ned by the criticality factor
CF = 1.5, in this experiment, pSMC, pAMC, and pAMC2 support
LO-criticality execution time budgets that are typically more than
50% higher than with dSMC and dSMC.

Figure 5: Minimum p(BU) value needed for each of 100 task
sets to be schedulable under the di�erent analyses.

�e di�erences in performance between the various techniques
are highlighted by the di�erent coloured areas in Figure 5. �us blue
highlights cases where dAMC outperforms dSMC, while orange
plus black highlights cases where pAMC outperforms dAMC. Note
the di�erence, shown in black, between the performance of pSMC
and pAMC is small. �ere were just 7 out of 100 task sets where
pAMC gave improved performance over pSMC. In contrast, the

RTNS ’17, October 4–6, 2017, Grenoble, France D. Maxim, R.I. Davis, L. Cucu-Grosjean, A. Easwaran

green area shows that there were 35 out of 100 task sets where
pAMC2 outperformed pAMC.

6 CONCLUSIONS
In this paper we introduced probabilistic analysis for �xed priority
preemptive scheduling of mixed criticality systems under the SMC
[6] and AMC schemes [5]. �is analysis makes use of probabilistic
worst-case execution time (pWCET) distributions to compute
probabilistic worst-case response time distributions (pWCRT) and
thus the worst-case deadline miss probability (WCDMP) for each
task under SMC and AMC. Provided that the worst-case deadline
miss probability is below the appropriate threshold for that task,
then it is declared schedulable.

�e main contributions of this paper are as follows:
(i) Introducing probabilistic analysis of mixed criticality systems

based on a richer mixed criticality model using pWCET
distributions.

(ii) Deriving probabilistic worst-case response time analysis for
both LO- and HI-criticality tasks under the SMC and AMC
schemes.

(iii) Showing via an experimental evaluation that the probabilistic
analyses, pSMC, pAMC and pAMC2, substantially
out-perform their deterministic counterparts.

(iv) Showing that the the probabilistic analysis framework is able
to provide improved support for LO-criticality tasks based
on the observation that the LO-criticality WCET estimates
used in the deterministic representation are in reality tunable
execution time budgets at di�erent levels of assurance. �e
more e�ective probabilistic analysis enables these budgets
to be increased for both LO- and HI-criticality tasks, thus
reducing the chance that HI-criticality mode is entered and
lowering the likelihood that LO-criticality jobs have to be
dropped or aborted.

We found that the baseline probabilistic analysis (pSMC) was so
much more e�ective than the deterministic methods that using the
LO-criticality response time R(LO) computed via deterministic
techniques as a cuto� for AMC was largely ine�ective in
improving performance in the probabilistic case. In other words,
pSMC performed very nearly as well as pAMC. �is lead us to
re�ne the analysis in pAMC2, making use of a cuto� R∗(LO)
derived from probabilistic analysis. �is approach resulted in an
improvement in performance over pAMC and pSMC for high
utilisation task sets.

Acknowledgements
�e research in this paper was partially funded by the EUROSTARS
RETINA Project, the FR BGLE funded Departs project, the FR LEOC
Capacites project, the FR FUI Waruna project, the ESPRC grant MCCps
(EP/P003664/1), the Inria International Chair program, and the Singapore
Ministry of Education Tier-2 grant, ARCS9/14. EPSRC Research Data
Management: No new primary data was created during this study.

REFERENCES
[1] Y. Abdeddaim and D. Maxim. Probabilistic schedulability analysis for �xed

priority mixed criticality real-time systems. In Proceedings of DATE, 2017.
[2] S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. Static probabilistic timing analysis

for real-time systems using random replacement caches. Real-Time Systems,
51(1):77–123, 2015.

[3] S. Altmeyer and R.I. Davis. On the correctness, optimality and precision of static
probabilistic timing analysis. In Proceedings of DATE, pages 26:1–26:6, 2014.

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. So�ware Engineering
Journal, 8:284–292, 1993.

[5] S. Baruah, A. Burns, and R.I. Davis. Response-Time Analysis for Mixed Criticality
Systems. In Proceedings of RTSS, pages 34–43, 2011.

[6] S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with Multiple
Criticality Speci�cations. In Proceedings of ECRTS, pages 147–155, 2008.

[7] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption and
migration delays: Empirical approximation and impact on schedulability. In
Proceedings of the Workshop on OSPERT, pages 33–44, 2010.

[8] I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality
embedded so�ware. IEEE Transactions on So�ware Engineering, PP(99):1–1, 2016.

[9] E. Bini and G.C. Bu�azzo. Measuring the performance of schedulability tests.
Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[10] A. Burns and R.I. Davis. A survey of research into mixed criticality systems.
ACM Computing Surveys, (to appear):35, 2017.

[11] F. Cazorla, E. �iñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim.
PROARTIS: probabilistically analyzable real-time systems. ACM Trans. Embedded
Comput. Syst., 12(2s):94, 2013.

[12] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezze�i, E. �iones, and F. J. Cazorla. Measurement-based
probabilistic timing analysis for multi-path programs. In Proceedings of ECRTS,
pages 91–101, 2012.

[13] R.I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. Analysis
of probabilistic cache related pre-emption delays. In Proceedings of ECRTS, pages
168–179, 2013.

[14] J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Campos, Kanghee Kim, and L. L.
Bello. Pessimism in the stochastic analysis of real-time systems: concept and
applications. In Proceedings of RTSS, pages 197–207, 2004.

[15] J.L Dı́az, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, López J.M., and O. Mirabella.
Stochastic analysis of periodic real-time systems. In Proceedings of RTSS, 2002.

[16] M.K. Gardner and J.W. Lui. Analyzing stochastic �xed-priority real-time systems.
In proceedings of TACAS, 1999.

[17] D. Gri�n, B. Lesage, A. Burns, and R. I. Davis. Static probabilistic timing analysis
of random replacement caches using lossy compression. In Proceedings of RTNS,
pages 289–298, 2014.

[18] Z. Guo, L. Santinalli, and K. Yang. Edf schedulability analysis on mixed-criticality
systems with permi�ed failure probability. In Proceedings of RTCSA, 2015.

[19] M. Ivers and R. Ernst. Probabilistic network loads with dependencies and the
e�ect on queue sojourn times. In proceedings QSHINE, pages 280–296, 2009.

[20] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. �e
Computer Journal, 29(5):390–395, May 1986.

[21] B. Lesage, D. Gri�n, S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis. On the
analysis of random replacement caches using static probabilistic timing methods
for multi-path programs. In Real-Time Systems, 2017. to appear.

[22] B. Lesage, D. Gri�n, S. Altmeyer, and R.I. Davis. Static probabilistic timing
analysis for multi-path programs. In Proceedings of RTSS, 2015.

[23] J.M. Lopez, J. L. Diaz, J. E., and D. Garcia. Stochastic analysis of real-time systems
under preemptive priority-driven scheduling. Real-Time Systems, 40(2), 2008.

[24] D. Maxim and L. Cucu-Grosjean. Response time analysis for �xed-priority tasks
with multiple probabilistic parameters. In Proceedings of RTSS, pages 224–235,
2013.

[25] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic
analysis for mixed criticality systems using �xed priority preemptive scheduling.
Technical report, Department of Computer Science, University of York.
”h�ps://www.cs.york.ac.uk/�pdir/reports/2017/YCS/505/YCS-2017-505.pdf”.

[26] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic analysis
for mixed criticality scheduling with smc and amc. In Proceedings of WMC, 2016.

[27] D. Maxim, M. Houston, L. Santinelli, L. Cucu-Grosjean, and R.I. Davis. Re-
Sampling for Statistical Timing Analysis of Real-Time Systems. In Proceedings of
RTNS, 2012.

[28] P. Huang S. Draskovic and L. �iele. On the safety of mixed-criticality scheduling.
In Proceedings of WMC, 2016.

[29] L. Santinelli and L. George. Probabilities and mixed-criticalities: the probabilistic
c-space. In Proceedings of WMC, 2015.

[30] B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng. Probabilistic response time and
joint analysis of periodic tasks. In Proceedings of ECRTS, pages 235–246, July
2015.

[31] T.S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.C. Wu, and J.S Liu. Probabilistic
performance guarantee for real-time tasks with varying computation times. In
Proceedings of RTAS, 1995.

[32] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying
Degrees of Execution Time Assurance. In Proceedings of RTSS, 2007.

[33] M. H. Woodbury and K. G. Shin. Evaluation of the probability of dynamic failure
and processor utilization for real-time systems. In Proceedings of RTSS, pages
222–231, Dec 1988.

	Abstract
	1 Introduction
	1.1 Fundamental concepts
	1.2 Related work

	2 System Model
	3 Recap of Existing Analyses
	3.1 Deterministic Schedulability Analysis
	3.2 Probabilistic Schedulability Analysis

	4 Probabilistic Analysis
	4.1 pWCET Distributions Used
	4.2 pSMC Analysis
	4.3 pAMC Analysis
	4.4 pAMC2 Alternative Analysis
	4.5 Probabilistic schedulability
	4.6 Improved Support

	5 Evaluation
	5.1 Task set parameter generation
	5.2 Schedulability tests
	5.3 Baseline experiment
	5.4 Quantifying the improvements

	6 Conclusions
	References

