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Abstract

Linguistic discourse refers to the meaning of large chunks of text, from phrases
to whole documents. It could be very useful for guiding attempts at text mining,
which focus on the goals of document selection, document summarization, or other
knowledge extraction goals. Hence the aim of this project is to apply discourse
information in textual data to Knowledge Discovery in Databases. As far as we
know, this is the first attempt at combining these two very different fields, so the
goal is to create a basis for this type of knowledge extraction. We approach the
problem by extracting discourse relations using unsupervised methods, and then
model the data using pattern structures in Formal Concept Analysis, which are ideal
for handling complex data. Our method is applied to a corpus of medical articles
compiled from PubMed. This medical data can be further enhanced with concepts
from the UMLS MetaThesaurus, which are combined with the UMLS Semantic
Network to apply as an ontology in the pattern structures. The results show that
despite having a large amount of noise, the method is promising and could be applied
to domains other than the medical domain. We explore the pitfalls and suggest ways
in which the process could be improved.
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Chapter 1

Introduction

The aim of this project is to use pattern structures, which is an extension of For-
mal Concept Analysis, to mine discourse representation structures in medical text.
We believe that applying these data mining techniques to discourse representations
can aid experts in extracting new knowledge from medical documents, as well as
improving document selection or summarization methods.

Text mining is the process of extracting useful information and knowledge from
natural language text, and it combines several important fields of study including
machine learning, statistics, pattern recognition, and information retrieval [Hotho
et al., 2005]. It can be used to select certain documents from a collection, summarize
them, perform clustering, or perform sentiment analysis, all based on the content of
the text. Common uses of text mining can be found in varying fields, whether you
look at marketing experts using sentiment analysis to determine the public opinion
on a product [Melville et al., 2009], or medical experts attempting to discover new
treatment options by combining links between substances, biological processes, and
diseases found in separate articles [Swanson, 1990].

Most text mining applications view a document simply as a bag-of-words, from
which key words can be extracted and used to guide the process of clustering, sum-
marization, or other analysis. These methods can involve some degree of prepro-
cessing in the form of filtering, lemmatization, stemming, part-of-speech tagging, or
word sense disambiguation [Hotho et al., 2005]. Such preprocessing methods can
provide extra information to guide and enhance the text mining process, but it still
adheres to the bag-of-words point of view. To move beyond this viewpoint, one has
to go beyond lexical, morphological, or semantic treatments of natural language into
the domain of discourse.

Discourse is the study of meaning applied to phrases, sentences, or larger pieces
of text. Instead of placing the focus on the meaning of an utterance, it attempts to
model relationships between larger text units and how they affect each others’ mean-
ing. Looking at discourse of a natural language can generate new information which
would not be directly extractable from the meaning of the individual utterances in
the text. Example 1.0.1a shows a sentence from a medical article about hereditary
hemorrhagic telangiectasia (HHT)1. This particular sentence lists some symptoms

1http://www.ncbi.nlm.nih.gov/pubmed/22991266
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which were frequent in the population of their study, as well as some symptoms
which were infrequent. If it were analyzed from a bag-of-words perspective, one
could match the words of the sentence to a medical thesaurus, which could provide
the additional information that epistaxis, pulmonary AVM, GI bleeding, and symp-
tomatic liver VM are symptoms or medical procedures, and that HHT is a disease.
This would lead to the conclusion that all of these terms are somehow related, but
it is impossible to extract the type of the relation without taking discourse into
account.

Example 1.0.1
a. Recurrent epistaxis and pulmonary AVM were frequent in our study population,
whereas HHT-related GI bleeding and symptomatic liver VM were infrequent, for all
HHT genes.
b. Recurrent epistaxis and pulmonary AVM were frequent in our study population,
c. whereas HHT-related GI bleeding and symptomatic liver VM were infrequent, for
all HHT genes.

When taking into account the discourse of example sentence 1.0.1a, one can arrive
at the conclusion that the sentence can be split as shown in Example 1.0.1b and
1.0.1c, and that there is in fact contrast between the two parts. Part b lists the
symptoms or medical procedures which are frequent, whereas part c lists the ones
which are infrequent. Creating a complete discourse representation would contribute
even more detailed information than just the fact that there is a contrast between
the two lists, such as that both lists relate to the disease HTT, one positively and one
negatively. This is relatively crucial information if one were to attempt summarizing
a bunch of medical articles based on their content, since the summary would need
to list the frequent symptoms and not the infrequent ones.

The relative complexity of discourse-annotated data, especially in combination
with additional annotations from ontologies, means that one needs a data mining
algorithm which can handle complex data and is suitable for text mining. One such
data mining process is Formal Concept Analysis, which shows great promise for
handling various text mining situations, including the use of ontologies and other
annotations [Carpineto and Romano, 2005, Priss, 2005]. It is a mathematical theory
which builds concept lattices based on sets of objects and descriptions. The inherent
specialization/generalization structure of lattices means the method is naturally
suitable for handling other hierarchical components like ontologies. Furthermore it
can combine a variety of features, not necessarily of the same data type (e.g. some of
your attributes can be numerical, others can be sets, and still others can be textual)
through an extension called pattern structures. This feature should ensure that
Formal Concept Analysis is flexible enough to handle textual data at a discourse
level.

As far as we know, there has been no attempt at text mining which takes discourse
into account, so far. Hence the aim of this project is to make a start in applying
text mining to discourse data, using Formal Concept Analysis as a basis; to see
if this approach to text mining shows promise, and to find the possible pitfalls.
Our experiments use medical articles for textual data, since there are large sources
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available online such as PubMed2, and the medical domain could benefit greatly from
text mining approaches. Tools which could automatically summarize a collection of
articles about a disease, or find new links between different articles leading to new
knowledge, could certainly make life easier for both patients and professionals.

We start by describing discourse structures in more detail, as well as providing
an explanation of Formal Concept Analysis and its features in Chapter 2. Chapter
3 gives an overview of the data collection process, and Chapter 4 describes how the
data is annotated with discourse features, including an evaluation of the annotation
results. Finally the application of Formal Concept Analysis and pattern structures
to the discourse-annotated data is shown in Chapter 5.

2http://www.ncbi.nlm.nih.gov/pubmed
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Chapter 2

Background

Whenever one aims to combine two very different fields of research, in this case se-
mantics of natural language and Knowledge Discovery in Databases, it is important
to first understand each field separately. Hence this chapter aims to give a general
description of each field, as well as providing references to other materials containing
more detailed explanations. Section 2.1 describes the aim of formal semantics and
how it can be applied mathematically, through the introduction of several different
discourse theories. Section 2.2 gives a brief overview of KDD, as well as describing
one important method for knowledge discovery: Formal Concept Analysis.

2.1 Discourse representation

There are many different sub-fields within linguistics, including phonology, mor-
phology, syntax, semantics, and pragmatics to name a few. Phonologists study the
sounds of language, including phonemes, syllables, rhythm, and even gestures. Mor-
phology is the analysis of linguistic units such as parts of speech, intonation, and
stress. Syntax is the study of sentence structure, which culminates in attempts to
form rules which govern the structure of a particular language. Semantics on the
other hand is the study of meaning, often with a focus on separate utterances. Fi-
nally, pragmatics studies language meaning in a larger context, taking into account
world knowledge, environment, and other factors which could influence language
use. Our purpose, to represent meaning in medical text, means we will mostly focus
on the last two sub-fields of semantics and pragmatics.

The study of semantics can be applied to relations between symbols, relations
between words in a sentence, or relations between phrases in a sentence. Once one
moves beyond that, to a level where the study focuses on relations between full
sentences or even whole texts, it will be referred to as discourse analysis. Example
2.1.1 shows a case of discourse using two sentences, taken from an article about
Duchenne muscular dystrophy1. One element of discourse representation is the
extraction of discourse relations, which describe the relationship between two text
segments. For example, there is a contrast relation between the two sentences in the

1http://www.ncbi.nlm.nih.gov/pubmed/23620648
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example: one refers to a situation without a specific treatment, whereas the other
describes the situation with that treatment.

Example 2.1.1
Without such treatment the children would die between the ages of 14 - 18 years as a
result of severe respiratory complications such as pneumonia. With their respiratory
problems resolved, however, the patients could enjoy a life extended by a number of
years, with cardiomyopathies then becoming the life-limiting factor.

Discourse relations can also be found within the sentences. There is a causal
relation between two segments of the first sentence from Example 2.1.1, because it
states that the death of children without treatment is caused by severe repiratory
complications. In Example 2.1.2 we use square brackets to show how the sentence
would be split based on this causal relation. So far we have seen the contrast and the
cause relation, but there are several more types which often occur in text, including
relations which illustrate a temporal progression between text units.

Example 2.1.2
[Without such treatment the children would die between the ages of 14 - 18 years ][
as a result of severe respiratory complications such as pneumonia.]

Extracting discourse representations from natural language text is not easy.
There are many problems which need to be resolved before the representation is
complete. Example 2.1.1 shows one example of such a problem: anaphora resolu-
tion, where pronouns (or other references) need to be linked to their antecedent. In
this case one needs to link such treatment with some treatment option mentioned
in previous sentences of the article, and the word their in the second sentence needs
to be linked with the children from the first sentence as its antecedent (similarly for
the patients in the second sentence).

Representing the semantics of discourse brings along many other difficulties, in-
cluding presuppositions, modal subordination, and donkey sentences (part of anaphora
resolution). For a description of these phenomena, see [Amblard and Pogodalla,
2014]. There are many theories concerning the structure and mechanisms of seman-
tics and discourse in natural language. Ideally we would like to extract a complete
discourse structure which is more complete than only extracting the discourse re-
lations. Therefore we will provide a brief overview of several of theories, focusing
on the shift from static semantics to more dynamic representations, as detailed in a
paper by [Amblard and Pogodalla, 2014].

2.1.1 Montague Semantics

When referring to ’static’ semantics, we in fact mean Montague semantics. Richard
Montague developed this approach based on the idea that natural languages can be
treated with the same mechanisms as formal languages.

“There is in my opinion no important theoretical difference between
natural languages and the artificial languages of logicians; indeed, I con-
sider it possible to comprehend the syntax and semantics of both kinds
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of languages within a single natural and mathematically precise theory.”
-Richard Montague [Montague, 1974c]

The main mechanism used by Montague for analyzing semantics is first-order
logic, where a sentence or phrase can be represented as a logical formula. These
formulas are built on the principle of compositionality, that is to say, the meaning of
a complex expression can be built up from the meaning of its parts. Hence, one starts
by assigning logical representations to words, and the rest of the formula is built
based on the syntax of the sentence. Example 2.1.3 shows the logical representations
of a few sentences varying in complexity.

Example 2.1.3
a. John loves Mary: love(john,mary)
b. Every man eats: ∀x man(x)→ eat(x)
c. If John owns a donkey, he is rich: (∃x.donkey(x)∧owns(John, x))⇒ rich(John))

Interpretation of these logical formulas is based on model-theoretic semantics and
truth-conditional semantics. The first is a popular approach to semantics by Alfred
Tarski, using models to represent ’worlds’, and the second is mainly associated
with Donald Davidson, equating semantics with truth conditions. In this approach,
terms in logical formulas can be mapped to individuals (assuming that we have some
universe or vocabulary of individuals), with different mappings resulting in different
models. Propositions can be evaluated as being true or false, relative to the model.
So if you consider the meaning of John loves Mary, with respect to a certain model,
then it is true only if John and Mary are entities in the universe and if John does
in fact love Mary.

Montague semantics can effectively handle quantification, definite articles, am-
biguity, and the various parts of speech such as adjectives and adverbs. For more
detailed reading about the inner workings of this theory, see the three fundamental
papers written by Montague [Montague, 1974a,c,b]. However, the theory also has
a few shortcomings, some of which can be illustrated through the use of donkey
sentences like in Example 2.1.4.

Example 2.1.4
If John owns a donkey, he beats it.
a. (∃x.donkey(x) ∧ owns(John, x))⇒ beats(John, x)
b. (∀x.(donkey(x) ∧ owns(John, x))⇒ beats(John, x))

The logical formula in 2.1.4a is what you would expect from the sentence accord-
ing to the compositionality principle, because its structure is similar to the sentence
in 2.1.3c. However there are two problems with this formula, first that the last
occurrence of x does not fall under the scope of the quantification, and second that
we would normally expect a different quantification in the first place. Hence the
second formula, 2.1.4b, is what we would actually like to see.

Problems with donkey sentences, as well as other issues encountered by Montague
semantics, can be solved by moving on to a dynamic approach to semantics. The
next few theories we describe all belong to this category, and eventually lead to
Segmented Discourse Representation Theory [Asher and Lascarides, 2003].
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2.1.2 Discourse Representation Theory and Dynamic Pred-
icate Logic

Originally developed by Hans Kamp, Discourse Representation Theory (DRT) intro-
duces the key concept of a context. This forms a dynamic element, because sentences
are not only interpreted on the basis of the context, but they can also change the
context. In basic terms, the context keeps track of items (usually noun phrases)
introduced in earlier sentences, so they become available for anaphora resolution in
subsequent sentences. A detailed description of DRT, including discussions on re-
cent developments and issues, is provided by [van Eijck and Kamp, 1996]. Example
2.1.5 is taken from this same paper, and shows how the theory applies to a basic
example.

Example 2.1.5
A man entered. He smiled.
x y
man x
entered x
y
.
= x

smiled y

In terms of logical formulas, the discourse presented in Example 2.1.5 can be
expressed as ∃x(man(x) ∧ entered(x) ∧ smiled(x)). However, in order to properly
represent the addition of context, DRT introduces a new representation called Dis-
course Representation Structure (DRS), which can be viewed as the table shown in
the example. The top-most box shows the elements currently in the context, ac-
cessible to subsequent sentences, and the bottom box shows the knowledge already
built up from previous sentences. In this case the

.
= indicates equality between the

two reference markers. This model can be applied to new sentences, which have
access to the variables x and y, but new sentences can also update the model by
placing new variables in the context and adding restrictions/knowledge about the
variables to the model. Example 2.1.6, from [Amblard and Pogodalla, 2014], shows
how the DRSs of two sentences combine to form one DRS.

Example 2.1.6
A man walked in. Another man followed him.

x
man x
walked in x

·

y z
man y
y¬ .

=?
z
.
=?

followed y, z

=

x y z
man x
walked in x
man y
y¬ .

= x
z
.
= x

followed y, z

DRT works just as well as Montague semantics for quantification, modal sub-
ordination, and other linguistic phenomena. Depending on the structure of the
discourse, a DRS can contain another DRS, making one context available to consec-
utive sentences and another context unavailable. For details about how DRT handles
different linguistic features, see [van Eijck and Kamp, 1996]. There is one downside
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to DRT, as pointed out by [Groenendijk and Stokhof, 1991] and summarized by
[Amblard and Pogodalla, 2014], namely that it does not always adhere to the com-
positionality principle. Although this principle causes issues with donkey sentences
in Montague semantics, it is possible to solve these problems without breaking the
principle itself, as shown by Dynamic Predicate Logic (DPL).

DPL was developed by [Groenendijk and Stokhof, 1991], with the aim of es-
tablishing a discourse theory which is empirically equivalent to previous theories,
without discarding the compositionality principle. They compare it to programming
languages, in that it works like transitions between machine states (assignments of
items to variables). Furthermore, it goes back to a representation in first-order
predicate logic, like in Montague semantics.

Example 2.1.7
A man entered. He smiled.
{〈g, h〉|h[x]g ∧man(h(x)) ∧ entered(h(x)) ∧ smiled(h(x))}

Example 2.1.7 shows how the theory can be applied to simple discourse. The pair
g and h are states (assignments) such that they form the interpretation of a program,
where an input of state g can result in state h. The first condition h[x]g means that
the two states can differ at most in the assignment of variable x. Consider now
the discourse in Example 2.1.7 and a universe where Mary, John, and Bill have all
entered a room. Furthermore, consider a situation where state g is the input state
before the above two sentences are seen, k is the state after the first sentence is seen,
and h is the final output state after both sentences. Then we can see that man(k(x))
and entered(k(x)) must hold, meaning the state k (and by extension state h) can
only assign John or Bill to variable x.

Dynamic Predicate Logic can deal with all the same linguistic phenomena that
the previously described theories can handle, all without breaking the composition-
ality principle. However it does have some downfalls, one of which is the destructive
assignment problem, which means that the last assignment of a variable in a pro-
gram hides any previous assignments to that variable. This is a common problem
in imperative programming languages, the paradigm which provided some of the
inspiration for this theorem.

2.1.3 Segmented Discourse Representation Theory

So far we’ve seen simple examples of discourse which were all linear in structure,
but this is not always the case. Therefore, Segmented Discourse Representation
Theory (SDRT) aims to model the semantics of sentences within the structure of
the discourse. It was developed by [Asher and Lascarides, 2003] as an extension of
DRT, but it can be combined with other discourse representation theories [Asher
and Pogodalla, 2011]. In order to define the structure of the discourse, SDRT relies
on discourse relations which describe the relation between two text segments (or
sentences in this case). Asher and Lascarides define two discourse relations for
dealing with this particular example: Narration and Elaboration. A Narration
relation between two sentences means there is a temporal progression from one
sentence to the other, which can be viewed as a type of coordination, whereas an
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Elaboration relation means the second sentence adds more information to what was
stated in the first sentence, viewed as a subordination. These relations are used
within the framework of Example 2.1.8, taken from [Asher and Lascarides, 2003].

Example 2.1.8
a. π1 Max had a great evening last night.
b. π2 He had a great meal.
c. π3 He ate salmon.
d. π4 He devoured lots of cheese.
e. π5 He then won a dancing competition.
f. *π6 It was a beautiful pink.

When reading through the discourse in this example, the last sentence clearly feels
out of place because It refers to the salmon which was introduced to the context three
sentences earlier. In regular DRT this sentence would be accepted, but in SDRT
this type of situation will be rejected for being ungrammatical. The relationship
between discourse types is further illustrated in Figure 2.1.

Figure 2.1: Discourse structure using discourse relations Narration and Elaboration

The figure shows how the sentences in the example discourse are connected by
the two discourse relations, for example there is an Elaboration relation between
Max had a great evening last night and He had a great meal, also represented as
Elaboration(π1, π2). All of the downward facing arrows represent such an Elab-
oration, whereas all of the horizontal arrows represent a Narration relation, for
example Narration(π3, π4) between the sentences He ate salmon and He devoured
lots of cheese. Now, the Right Frontier Constraint (RFC) is the key principle used
in SDRT to ensure that the addition of sentence π6 is ungrammatical. RFC re-
stricts the points in the structure where a new sentence can be attached, by only
allowing new attachments to the last sentence and every sentence for which it is a
subordinate. In this case it restricts the possible points where π6 can be attached to
sentences π1, π4, and π5. None of these options will allow the anaphora resolution
algorithm to find a sensible antecedent to It in It was a beautiful pink, which results
in the sentence being correctly rejected from this discourse.
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2.1.4 Discourse Relation Algebra

There is one more advancement to SDRT based on discourse relations, which was
introduced by [Roze, 2011], who described a method for building inference rules for
discourse relations. The aim is that these inference rules can be used to deduce the
complete set of relations of a text (i.e. the discourse closure). Essentially, it forms
an algebra, where one can abstract over the known discourse relations to infer more
relations until every possible relation has been found. It could be useful for merging
discourse annotations done by different annotators, possibly referring to different
discourse theories. Roze used a simple example to illustrate the basic idea, repeated
here as Example 2.1.9.

Example 2.1.9
a. π1 It has rained a lot today.
b. π2 So John cooked.
c. π3 He made a pie.

Consider the situation where an annotator marks the relations Result(π1, π2) and
Elaboration(π2, π3). This would be a correct annotation, but it would not be entirely
complete. It is possible to formulate an inference rule of the form Result(π1, π2) ∧
Elaboration(π2, π3) → Result(π1, π3), whose result could then be added to the
annotation to make it complete. Roze builds several such rules and describes the
process for doing so, although the set of rules is currently far from complete. Still,
this method is a promising option for possibly completing future discourse-annotated
corpora.

Automatically extracting discourse structures and sentence semantics based on
SDRT and any of the other theories described so far is still a difficult task. However
it is clear that applying such a structure to texts would be ideal for analyzing data
and extracting even more information. Indeed one application which could benefit
greatly from these theories is automatic summarization of (medical) articles. If these
methods are applied to a large number of articles and texts, it becomes impossible
to analyze manually, and they need to be linked to knowledge discovery methods for
further analysis. Therefore the next section will provide a short summary of such
methods.

2.2 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is the process of extracting knowledge from
a large set of data. Traditionally, data was evaluated manually by experts in a certain
domain, but the amount of data being stored these days has far exceeded our analysis
capabilities. From thousands of satellite images which need to be scrutinized for new
celestial objects, to databases filled with individual customer purchases which need
to be analyzed for new trends in spending, KDD is applicable to many different
fields. It aims to develop tools and theories for automatically extracting knowledge
from a huge database, which can then be evaluated by the human experts.
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[Fayyad et al., 1996] describe KDD as a process which encompasses all the steps
required to apply the actual extraction algorithms (also called data mining), includ-
ing data preparation and evaluation. They use Figure 2.2 to illustrate the five basic
steps, starting with initial, unstructured data usually stored in a database. The first
step, selection, consists of deciding which data sources to us, if there are multiple
sources available, and possibly using a selection criterion to cut down on the number
of data instances which will be analyzed. This results in sets of target data for use
in the second step called preprocessing. It can consist of cleaning the data by
removing noise, filling in missing data, or combining data from different sources,
finally resulting in preprocessed data for the third step. Transformation refers to
formatting the data so it can serve as input to a data mining algorithm. Sometimes
this step requires data reduction or simplification of some kind for the algorithm to
be applicable. The fourth step is the data mining itself, the application of some
algorithm which attempts to extract patterns or other information from the data.
Any machine learning algorithms can be used in this step, depending on the goal
of the extraction. Common examples include classification or clustering algorithms.
Patterns which are outputted by the algorithm need to then be interpreted and
evaluated in the final step, usually by experts in the domain of interest, to extract
the useful knowledge which can be gained from them. The final step often includes
visualization of some kind, to make the evaluation easier for human experts.

Figure 2.2: The five steps of knowledge discovery in databases (KDD)

Notice that the KDD process is a recursive one. It is normal to evaluate the
results at each stage of the process, and to go back to an earlier stage for applying
improvements. One interesting algorithm which can be applied during the fourth
step of the KDD process is Formal Concept Analysis (FCA), which can handle
complex data by mathematically defining concepts. Section 2.2.1 will provide a brief
overview of FCA with examples, and in Section 2.2.2 we will outline an extension
of FCA called pattern structures which allow us to apply the methods to complex
data.
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2.2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical theory for the analysis of data
which is based on the notion of formal concepts, forming a concept lattice. Formal
concepts are defined as units which have an extent and an intent. The extent
is a set of objects, the instances of the concept, whereas the intent is a set of
attributes, forming a description which is common to all the instances. A lattice
structure can organize the concepts based on relations between the extents and
intents, showing how some concepts generalize over others. The lattice also serves
as a useful visualization tool which domain experts can use to extract knowledge.
Here we will provide only the basic definitions of FCA; a detailed description with
proofs can be found in [Ganter et al., 1997].

FCA starts with a formal context K = (G,M, I), where G is a set of ob-
jects, M is a set of attributes, and I is a binary relation between the two sets.
Hence, gIm means the object g has attribute m. A simple example of a for-
mal context in the medical domain, is shown in Table 2.1. Here, the set of ob-
jects is G = {breastCancer, asthma, lungCancer} and the set of attributes is
M = {isCancer, requiresInhaler, causedBySmoking, foundInAdults}. A cross in
the table indicates that gIm, whereas an empty cell shows that there is no relation
between that particular object-attribute pair. This particular example is very sim-
plified, since patients with asthma do not always require an inhaler, and smoking is
only one of the many possible causes for both asthma and lung cancer, but it shows
the basic idea.

isCancer requiresInhaler causedBySmoking foundInAdults
breastCancer X X
asthma X X X
lungCancer X X X

Table 2.1: Simple formal context

To create formal concepts from a formal context, we need derivation operators.
There are two such operators, both represented by prime (′), one for a set of concepts
and one for a set of attributes. Consider a set of objects A ⊆ G, then A′ defines
the set of attributes which are shared by all objects in A, defined as A′ = {m ∈
M | gIm ∀g ∈ A}. Similarly, consider a set of attributes B ⊆ M , such that B′

defines the set of objects that carry all the attributes in the set, formally defined as
B′ = {g ∈ G| gIm∀m ∈ B}. Example 2.2.1 shows how the derivation operators can
be applied to the formal context in Table 2.1. The first case shows that when you
consider the set of objects containing only asthma, the derivation operator returns
the set of all attributes which apply to that object. Of course the operator can be
applied to a larger set, as shown in the second case where the set of objects contains
both breastCancer and lungCancer. In that case the operator returns the set of
attributes which both of the objects share. The third case shows the derivation
operator applied to a set of attributes, returning the set of objects to they apply.
And finally the fourth case illustrates that the derivation operator can return an
empty set, since there isn’t a single object which both is a cancer and requires an
inhaler.
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Example 2.2.1
a. {asthma}′ = {requiresInhaler, causedBySmoking, foundInAdults}
b. {breatCancer, lungCancer}′ = {isCancer, foundInAdults}
c. {requiresInhaler}′ = {asthma}
d. {isCancer, requiresInhaler}′ = {}

Not all of the pairs of sets shown in Example 2.2.1 can form formal concepts.
Similar to the examples above, a formal concept is a pair of sets (A,B) where
A ⊆ G and B ⊆ M . However one important restriction on formal concepts is
that A′ = B and B′ = A; when this restriction holds, you have a formal con-
cept (A,B) where A is called the extent and B is called the intent. Based on the
definition, it should be clear that the two sets shown in Example 2.2.1c do not
form a formal concept, because {requiresInhaler}′ = {asthma} but {asthma}′ =
{requiresInhaler, causedBySmoking, foundInAdults}. Notice that the first two
examples do indeed form formal concepts. The double prime (′′) operator is a clo-
sure operator, and can therefore be used to find closed sets of concept extents and
concept intents. It is illustrated using Example 2.2.1c below:

{requiresInhaler}′ = {asthma}

{asthma}′ = {requiresInhaler, causedBySmoking, foundInAdults}

{requiresInhaler}′′ = {requiresInhaler, causedBySmoking, foundInAdults}

The complete set of formal concepts belonging to a formal context is denoted by
B(G,M, I), in contrast to the concept lattice, which is denoted by B(G,M, I). To
build the concept lattice, one needs to define a partial order on formal concepts:

(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2

which is equivalent to

(A1, B1) ≤ (A2, B2)⇔ B2 ⊆ B1

Hence the formal concept (A1, B1) is the sub-concept of (A2, B2), or reversely, the
latter is the super-concept of the former. This partial order can be illustrated with
an example from our medical formal context:

({asthma}, {requiresInhaler, causedBySmoking, foundInAdults})
≤ ({breastCancer, asthma, lungCancer}, {foundInAdults})

By introducing this partial ordering, concepts can now be organized in a concept
lattice. A complete lattice is a lattice where for any two concepts, the greatest lower
bound (infimum) and the least upper bound (supremum) always exist. In the case
of a join-semi-lattice, only the supremum is defined for any two elements, and in the
case of a meet-semi-lattice, only the infimum is defined for any two elements. In the
case of concepts, the infimum and supremum are based on the double prime closure
operator: ∧

t∈T

(At, Bt) =

(⋂
t∈T

At,

(⋃
t∈T

Bt

)′′)
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∨
t∈T

(At, Bt) =

((⋃
t∈T

At

)′′
,
⋂
t∈T

Bt

)

There are several tools available for performing FCA; in this case we used the
Galicia2 tool to build the concept lattice of our small medical example as shown in
Figure 2.3. Each node of the lattice is a formal concept, and each edge shows a partial
order relation between two concepts. Every node is labeled with its intent (I) and its
extent (E). Notice that the top node has an extent which contains all of the objects
in the context, whereas the bottom node has an intent which contains all of the at-
tributes. The lattice demonstrates a generalization/specialization between concepts:
consider concept 2 as an example, which has an intent of {foundInAdults, isCancer}
and an extent of {breastCancer, lungCancer}. Any concept it is linked to which
takes its place above concept 2 in the lattice is a generalization, which is only con-
cept 0 in this example. In contrast, any concept which concept 2 links to and which
is placed lower in the concept lattice is a specialization, which here includes concepts
4 and 5.

Figure 2.3: Simple lattice of our medical formal context

There are a few extensions to basic FCA, such as Relational Concept Analysis
(RCA) and pattern structures. The former serves to model relationships between
objects of FCA. Consider a situation where there are two formal contexts: one
which features different hospitals and their facilities, and one which features patients
with details about their symptoms. Using RCA it becomes possible to define a
mostSuitable relation between the objects of both formal contexts (hospitals and
patients) regarding which hospital has the most suitable facilities for a patient with
certain symptoms. Pattern structures, on the other hand, allow us to apply FCA to

2http://www.iro.umontreal.ca/~galicia/
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complex data which cannot be modeled in a binary context. Since we aim to work
with discourse in medical text, the pattern structures extension is most relevant in
this case and will be described in more detail in section 2.2.2.

2.2.2 Pattern Structures

For many-valued data it is possible to apply a range of scaling procedures to trans-
form data into a binary context, such as nominal, ordinal, or interordinal scaling.
However these scaling methods often result in massive contexts, and limiting the
size of the context would result in loss of information. Pattern structures avoid this
build-up of attributes by working directly with the original complex data. They can
be applied to multi-valued data [Kaytoue et al., 2011], data in the form of graphs
[Kuznetsov, 1999], and indeed textual data [Coulet et al., 2013]. The key idea of
pattern structures for handling complex data, is that one must be able to compare
the data descriptions. More specifically, it must be possible to define a similarity
operator which enables ordering the descriptions in the form of a semi-lattice. It is
then possible to build a concept lattice directly from the complex data descriptions
without any loss of information.

Let us assume a set of objects G and a set of their descriptions D (which we will
call patterns). The set of patterns D varies from the set of attributes M which is
used in basic FCA, in that the patterns are more complex (they can be sets, intervals,
graphs, or other formats). Next, there has to be a meet-semi-lattice (D,u) which
provides an order for the patterns. In basic FCA, where M is a set of attributes,
this order is defined by the set-intersection operator ∩. This means that when you
have several sets of attributes, each describing one or more objects, these sets can
be ordered in a meet-semi-lattice such that more specific elements of the lattice are
subsets of the more general elements. For complex patterns where the intersection
operator does not suffice, one must define a different similarity relation between the
patterns, such that c v d ⇔ c u d = c, where c, d ⊆ D and u is the similarity
operator which will be used to describe the similarity between patterns according
to a semi-lattice.

Given the definition of the similarity operators, based on the type of patterns
which are being used, the whole pattern structure can be represented as (G, (D,u), δ).
Comparing this to the original definition of a formal context in FCA, which was
(G,M, I), it is clear that G still represents a set of objects like it did before, the set
of attributes M has been replaced with a meet-semi-lattice of patterns (D,u), and
the binary relation I has been changed to a mapping from objects to their patterns:
δ : G→ D. To create formal concepts from pattern structures it is also necessary
to define new derivation operators. Again there are two operators, both represented
by the box symbol, one which applies to a set of objects, and one which applies
to a pattern. The first operator returns the most general pattern which describes
all of the objects in set A, whereas the second operator returns the set of objects
which can be described by pattern d. Like in simple FCA, applying the derivation
operator twice gives the closure operator (.)��.

A� =
l

g∈A

δ(g)
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d� = {g ∈ G|d ∈ δ(g)}

As in basic FCA, the derivation operators can be used to form formal concept
pairs (called pattern concepts in the case of pattern structures). A pattern concept
is of the form (A, d) where A ⊆ G, d ∈ D, A� = d, and A = d�. In this case, A is
called the pattern extent while d is called the pattern intent. These pattern concepts
can be organized into a concept lattice just as before. We will now illustrate the
idea of pattern structures using an example from [Coulet et al., 2013], who also
applies them to textual data in the medical domain. For more detailed theoretical
information about pattern structures, see [Ganter and Kuznetsov, 2001].

In [Coulet et al., 2013], they compare documents describing medical drugs based
on annotations from the NCI Thesaurus 3. The annotations form the descriptions
of each document, which is too complex for a binary context and therefore requires
pattern structures to handle it within a FCA framework. The NCI Thesaurus is in
fact an ontology, where the terms are organized in a tree-like structure of special-
ization/generalization. Furthermore terms from the thesaurus map to a semantic
type from the Semantic Network of the UMLS Metathesaurus4, which is also an
ontology in the form of a tree-like structure. An expert can choose categories from
the Semantic Network according to the information (s)he is interested in. Then each
document is scanned for terms which appear in the NCI Thesaurus and belong to
one of the semantic categories chosen by the expert. In the example described in
[Coulet et al., 2013] there are four semantic categories, but we will simplify their
example to two semantic categories: Disease or Syndrome, and Molecular Function.
Table 2.2 shows the (adapted) formal context. The two attribute columns each cor-
respond to a semantic type chosen by an expert. Rows are documents describing
a certain drug. Each cell shows the set of terms found in the document, which are
described by the NCI Thesaurus and belong to the semantic category of the partic-
ular column. So the document describing Drug1 contains mentions of tuberculosis
and bacterial infection, which are terms belonging to the thesaurus and correspond
to the semantic type Disease or Syndrome.

Disease of Syndrome Molecular Function
Drug1 {Tuberculosis, Bacterial Infection} {Protein Synthesis}
Drug2 {Bacterial Infection} {Protein Synthesis}
Drug3 {Tuberculosis, Bacterial Infection} {}
Drug4 {Tuberculosis} {Protein Synthesis}
Drug5 {Tuberculosis, Bacterial Infection} {}

Table 2.2: Adapted formal context example from [Coulet et al., 2013]

Each row from Table 2.2 forms a pattern describing the document in question.
So the document which describes Drug2 has a description:

{Bacterial Infection}{Protein Synthesis}

Every document in the set of objects can be described with this pattern of two sets
of terms. Therefore the set of objects G and the set of patterns D for this example

3http://ncit.nci.nih.gov/
4http://www.nlm.nih.gov/research/umls/
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are:

G = {Drug1, Drug2, Drug3, Drug4, Drug5}
D = {{Tuberculosis, Bacterial Infection}{Protein Synthesis},

{Bacterial Infection}{Protein Synthesis},
{Tuberculosis, Bacterial Infection}{},
{Tuberculosis}{Protein Synthesis}}

So to apply pattern structures, there needs to be a similarity operator, which is
where the ontology structure comes in. Figure 2.4 shows a small part of the NCI
Thesaurus ontology which is relevant to this example; again adapted from [Coulet
et al., 2013]. The tree shows how the terms found in the text can be ordered, and
it includes terms which were not found in the text but are present in the ontology
(like Mycobacterial Infection in this case). Semantic types of each term are shown
for reference, but are not part of the ontology.

Figure 2.4: Small part of the NCI Thesaurus ontology

The authors define the similarity operator as being the convex hull, which is
the smallest convex set of the set of terms it is applied to. Convex set refers to
the set which includes the initial terms and every term between them and their
least common subsumer (the most specific term which subsumes all initial terms).
Consider the set {Tuberculosis, Bacterial Infection}; in this case the least common
subsumer isBacterial Infection because it is the most specific term which subsumes
both terms. The top node T also subsumes both terms, but it is less specific than
Bacterial Infection. Since the convex hull is the set of initial terms, the least
common subsumer, and everything in between it will be:

Conv({Tuberculosis, Bacterial Infection}) =

{Tuberculosis,Mycobacterial Infection,Bacterial Infection}
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In this case the set of patterns is small enough that it is possible to draw the whole
meet-semi-lattice formed by the similarity operator. It is shown in Figure 2.5, and
is also an adapted version of a similar image from [Coulet et al., 2013]. From this
image it is possible to see every combination of patterns and how they would be
ordered.

Figure 2.5: Meet-semi-lattice of all patterns from working example

Before now, we have not described how to construct the actual formal (or pattern)
concepts which form the lattice. There are several algorithms available for achieving
this, but one of the more popular ones is the CloseByOne algorithm by [Kuznetsov,
1993], which is modified slightly for use in pattern structures and used in both
[Kaytoue et al., 2011] and [Coulet et al., 2013]. The algorithm creates concepts
from the bottom up, starting with concepts which have the smallest extents. Every
time it generates a new concept, it expands upon that concept by adding one more
object to the extent (determined by a linear order of the objects) and it then applies
the closure operator to generate another closed concept. Intents are computed by
intersecting the intent of the original concept with the pattern of the added object.
Repeating this process recursively produces all of the closed concepts. To prevent
generating identical concepts there is usually an auxiliary data structure storing
existing concepts. However look-ups in such a data structure can be expensive, so
there is also a canonicity test to determine if the concept is completely new or if it
could have been generated before and is worth looking up. Consider A to be the
extent of the old concept and C to be the extent of the new concept we want to
generate; C is larger by one object g. If there exists another object h which appears
before g in the linear order of objects, and which generates exactly the same set C
when it is added to the set A, then it fails the canonicity test and the algorithm
backtracks.

A few simple modifications are necessary to apply the CloseByOne algorithm
on pattern structures. First, the original derivation operator needs to be replace
with the one defined for the pattern structure (shown in blue in the pseudo code).
Second, one must also replace the intersection operator with the similarity operator
which applies to the pattern structure (shown in red in the pseudo code). The
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pseudocode for this modified algorithm, as defined by [Coulet et al., 2013], is shown
in Algorithm 1 and 2. Besides those two minor changes, the process is exactly as
described above and has the same time complexity of O(|G|2|D||L|) where G is still
the set of objects, D is the set of patterns, and L is the set of concepts.

Algorithm 1 CloseByOne Algorithm

L = ∅ . L is the concept set.
for each g ∈ G do

process({g}, g, (g��, g�))
end for

Algorithm 2 process(A, g, (C,D))

if {h|h ∈ C \ A and h < g} = ∅ then
L = L ∪ {(C,D)}
for each f ∈ {h|h ∈ G \ C and g < h} do

Z = C ∪ {f}
Y = Du{f�}
X = Y �

process(Z, f, (X, Y ))
end for

end if

CloseByOne results in a list of closed concepts, which can be organized in a lattice
structure like Fig 2.3; for an expert to evaluate and use in knowledge extraction.
The ability of pattern structures to handle complex data, makes it a favorable choice
for our aim of mining textual data by taking into account discourse structure. The
only restriction on the type of data which pattern structures can handle is that
it must be possible to define a similarity operator on the pattern descriptions for
establishing an order.
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Chapter 3

Data collection

A successful combination of Kowledge Discovery in Databases (KDD) and Natural
Language Processing (NLP) could be applied to helping medical experts discover
new knowledge about rare diseases through the analysis of existing articles. For this
reason we aim to use medical text in our experiments, although we do not limit
ourselves to rare diseases only.

3.1 Types of text

PubMed1 is a service which provides free access to a large database of scientific
articles, case reports, and other texts concerning a large number of diseases and
ailments. It is made accessible by the US National Library of Medicine2, and con-
tains mostly content in English, although there are a few articles present in other
languages. Figure 3.1 shows a screenshot of a PubMed article about fibromuscular
dysplasia, which is a typical example of what we use for this research. There is a
tool available to download a large number of article abstracts automatically, but the
full-text articles need to be accessed manually.

For this reason we do a preliminary evaluation to determine how many discourse
relations can be extracted from a collection of abstracts as opposed to a collection
of full-text articles and case reports. The details of discourse relation extraction
are presented in Chapter 4; but it is important to know that the more discourse
relations are extracted, the more complete our representation of the discourse of an
article is. Our first preliminary corpus consists of 162 abstracts from articles about
hereditary hemorrhagic telangiectasia, which results in a total of 1474 sentences.
The full-text corpus consists of 10 articles about the same disease, resulting in a
total of 1692 sentences. As expected, the full-text articles do yield more discourse
relations relative to the number of sentences, in fact the full-text corpus contains at
least 7% more relations than the abstract corpus. So despite the extra manual work
required in the absence of a simple download tool, we choose to build our corpus
using full-text articles and case reports.

1www.ncbi.nlm.nih.gov/pubmed/
2www.nlm.nih.gov/
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Figure 3.1: Screenshot example of a PubMed article

Most of the data on PubMed comes in the form of articles or case reports. Both
types of text contain a lot of discourse information which can be extracted. Case
reports usually report the medical experience of one or two patients, therefore yield-
ing a lot of temporal relations as the text describes changes in their situation over a
period of time. Medical articles usually describe a piece of research regarding spe-
cific treatments, the presence of certain genes, or the prevalence of a disease among
a demographic group. These types of articles contain a lot of information about
causal relationships between drugs, genes, demographic groups, and disease. Condi-
tion relations are also prevalent, concerning the types of situations which caused a
patient’s condition to improve or worsen. Other articles provide a historical account
of how treatments and attitudes towards disease changed over time. Naturally this
is another source of temporal relations, and also provides a lot of contrast relations
between different situations in varying time periods.

Although there is a lot of discourse structure present in medical articles, there
are also disadvantages due to its relative complexity. If one wants to apply any type
of parsing, named entity recognition, stemming, or other preprocessing tool, it is
usually necessary to find one specifically trained for medical data. The terminology
is so different from standard news articles that most of the popular tools work very
badly. Fortunately, although the terminology is complex, the sentence length is at
an average 18.3 words for the entire corpus.
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3.2 Building a corpus

We randomly choose 12, not necessarily rare, diseases from the PubMed database
in order to extract 50 articles or case reports from each. Each search on PubMed is
ordered by relevance to the query, and the list of diseases is shown below.

• polycystic ovary syndrome

• hereditary hemorrhagic telangiec-
tasia

• breast cancer

• primordial dwarfism

• kawasaki disease

• myasthenia gravis

• lupus erythematosus

• renal failure

• synovial sarcoma

• septic arthritis

• fibromuscular dysplasia of arteries

• Duchenne muscular dystrophy

Although it is possible to download the articles in PDF format, we collect the
HTML files for easier processing. There are many tools available for removing HTML
tags, but the HTMLParser tool included in Python allows us to extract only the
paragraphs from an article, leaving out other text such as the footnotes, and captions
to figures, which can cause problems for the sentence tokenizer applied afterwards.
This tokenization is performed with the Punkt sentence tokenizer provided by the
Natural Language Toolkit (NLTK). Unfortunately the tokenizer handles references
very poorly, especially references which appear just after the end of a sentence, like
the two sentences in Example 3.2.1.

Example 3.2.1
Tracheostomy is effective in severe or emergent cases.7 Respiratory stimulants such
as caffeine and doxapram, commonly used for apnea of prematurity and respiratory
depression after anesthesia, could be a future treatment option in babies with achon-
droplasia, due to the stimulation of breathing on the medullary respiratory centers
and carotid bodies; however, they have not been evaluated for use in this patient
population.12

We attempted to remove all references from the articles, but because there are so
many different referencing styles this only lead to different problems with tokeniza-
tion and sentence legibility. Other tokenization tools did not fare much better, so we
use the results as is and propose more specific solutions based on careful evaluation
of the discourse relation extraction results in Section 4.5. Hence the resulting corpus
is saved in XML format and contains a total of 600 articles.

3.3 External resources

As mentioned before, medical text requires specialized preprocessing tools since it
contains so much domain-specific terminology. Fortunately there are a few tools
available, including thesauri and a named entity recognizer, which we will briefly
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introduce here. We utilize these tools when building the pattern structures in Formal
Concept Analysis, which will be described in detail in Section 5.3.

One of the most important sources for medical texts is the Unified Medical Lan-
guage System (UMLS)3 from the U.S. National Library of Medicine. It provides sev-
eral tools, including a large MetaThesaurus which incorporates terms from several
different medical thesauri, and a Semantic Network4 which provides a categorization
of the concepts from the MetaThesaurus. The MetaThesaurus is a large collection
of medical terms, in fact the 2014AA release contains 2,973,458 concepts, and it
provides additional information about each term including the variations in names
for a term, the preferred name for the term, a unique concept ID called the CUI,
relationships between different terms, short definitions of the term, and links to se-
mantic types in the Semantic Network [NLM, 2009]. In order to match medical text
with terms found in the MetaThesaurus, there is the MetaMap tool5, which is essen-
tially a named entity recognizer for medical terms. It provides several candidates in
the form of MetaThesaurus terms for every phrase in a sentence, ranked according
to a confidence level. Example 3.3.1b shows the set of concepts which MetaMap
recognizes based on the sentence in 3.3.1a, when we choose the top candidate for
each phrase.

Example 3.3.1
a. On the other hand, it has been shown that BMP9, a liver-specific BMP, is present
at significant levels in both mouse and human plasma (13, 14), suggesting that it
could act systematically on the endothelium where ALK1 is expressed.
b. {Hand, Show, BMP9 (GDF2 gene), BMP (Bone Morphogenetic Proteins), Present,
Mouse, human plasma, Suggest, ACT, Endothelium}

Although the tool does generate quite a bit of noise, like recognizing the term
Hand from the phrase on the other hand, it also recognizes a lot of terms correctly.
Removing stop words from the sentence does not have any effect on the amount of
noise which the tool produces. Furthermore, the tool can only process ASCII text,
so some information contained in our corpus might be lost during the conversion.
Despite these disadvantages, MetaMap works well for adding additional semantic
information to textual data, especially when the terms it generates can be connected
to semantic types in the Semantic Network.

Every MetaThesaurus term links to at least one semantic type in the Semantic
Network. The network forms a tree-like structure of 133 semantic types, with 54
relationships between them. Some examples of major semantic types are organ-
isms, anatomical structures, biologic function, chemicals, events, physical objects,
and concepts or ideas. There are several types of relationships between semantic
types, such as spatially related to and functionally related to, but the most general
relationship is the is a relation. Figure 3.2 shows a small portion of the network
using the is a, taken from [NLM, 2009]. The tree structure of the Semantic Network
allows us to use it in the creation of pattern structures, which is further described
in Section 5.3.

3http://www.nlm.nih.gov/research/umls/
4http://semanticnetwork.nlm.nih.gov/
5http://metamap.nlm.nih.gov/
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Figure 3.2: Small portion of the UMLS Semantic Network
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Chapter 4

Extracting discourse relations

There exist many well-developed theoretical representations of discourse in language
(see Section 2.1), but extracting discourse structures from text in practice is still
a challenge. Some research focuses on extracting discourse relations between or
within elementary units of texts like sentences [Marcu and Echihabi, 2002, Sporleder
and Lascarides, 2008, Sporleder, 2008], whereas others focus on generating a more
complete discourse structure either at a sentence-level [Baldridge and Lascarides,
2005, Soricut and Marcu, 2003, Wellner et al., 2009] or at a document-level [Muller
et al., 2012].

The latter task of extracting a complete discourse structure is more ambitious
in that it aims to capture the discourse at several levels, resulting in tree or graph
representations. However the methods employed so far rely heavily on the avail-
ability of annotated training data, and the range of corpora with discourse-related
annotations currently available is very limited. Furthermore the different corpora
which do feature discourse-related annotations are based on different discourse the-
ories, so they cannot be used in combination without first finding methods to merge
them. [Soricut and Marcu, 2003] relied on the RST Discourse Treebank [Carlson
et al., 2002] which is based on Rhetorical Structure Theory (RST) and results in
tree structures of discourse. [Baldridge and Lascarides, 2005] performed their own
annotation on dialogues found in the Redwoods Treebank [Oepen et al., 2002], us-
ing Segmented Discourse Representation Theory (SDRT). Whereas [Muller et al.,
2012] used ANNODIS [Afantenos et al., 2012], a French-language corpus also based
on SDRT. Finally, [Wellner et al., 2009] performed experiments on the Discourse
GraphBank [Wolf et al., 2004]. As the name suggests, this corpus contains discourse
structures in the form of graphs instead of trees, which allows for more complicated
features such as discourse elements with multiple parents, or cross-dependencies.
Although the results achieved through supervised methods involving corpora is gen-
erally promising, none of the resources mentioned above are based on medical texts.
Applying these resources to the medical articles extracted from PubMed would lead
to high sparsity, and consequently give worse results.

There also exist unsupervised methods for extracting discourse from text, which
focus on the sub-task of finding discourse representations in the form of discourse
relations between texts segments, but allow us to circumvent the problems associated
with the corpora. [Marcu and Echihabi, 2002] and [Sporleder and Lascarides, 2008]
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both focused on this approach, where they looked for discourse markers to indicate a
relation between segments, and subsequently trained classifiers to recognize discourse
relations even when the markers are not present. We use their methods to create
our own corpus of discourse-annotated medical articles. Section 4.1 describes the
discourse relations we considered, after which Section 4.2 lists the discourse markers
and their patterns. An overview of the method along with our initial results can be
seen in Section 4.3, which is evaluated in Section 4.4. Finally, Section 4.5 lists the
improvements which were adopted and shows the final results.

4.1 Choosing discourse relations

Discourse relations (also called rhetorical relations) describe the connection between
two text segments. Here, we consider two types of relations: intra-sentential rela-
tions occur between two parts of the same sentence, whereas inter-sentential rela-
tions occur between two whole sentences. [Marcu and Echihabi, 2002] illustrated
the concept of relations with the following two examples:

Example 4.1.1
a. Such standards would preclude arms sales to states like Libya, which is also
currently subject to a U.N. embargo.
b. But states like Rwanda before its present crisis would still be able to legally buy
arms.

Example 4.1.2
a. South Africa can afford to forgo sales of guns and grenades
b. because it actually makes most of its profits from the sale of expensive, high-
technology systems like laser-designated missiles, air-craft electronic warfare sys-
tems, tactical radios, anti-radiation bombs and battlefield mobility systems.

As readers, we can in most cases automatically infer a contrast relation between
the two sentences in Example 4.1.1, and an explanation relation between the pair
of sentence segments in Example 4.1.2. These particular examples feature very
obvious markers: the word but in the first example, and the word because in the
second example. However even when these markers are not present, we can deter-
mine discourse of text through semantic interpretation and our knowledge of the
world. As Marcu and Echihabi pointed out, the sentence 4.1.1.a can be seman-
tically represented as cannot buy arms legally(libya) , the next sentence can be
represented as can buy arms legally(rwanda), our background knowledge tells us
that is similar(libya, rwanda), and all of this leads to the conclusion that there is
a contrast relation between the two sentences.

Unfortunately such a robust semantic interpreter does not yet exist, so both
[Marcu and Echihabi, 2002] and [Sporleder and Lascarides, 2008] relied on the ob-
vious markers in a text segment to determine the discourse relation. One major
difference between their methods is the set of discourse relations they considered.
Linguists do not agree on when it comes to the number of discourse relations or their
definitions; each of the theories introduced in Section 2.1 has its own set of relations,
some more detailed than others. Therefore, [Marcu and Echihabi, 2002] generalized
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the different theories based on the features they had in common, to create a small
set of just four discourse relations: contrast, cause-explanation-evidence, condition,
and elaboration.

In contrast, [Sporleder and Lascarides, 2008] chose a subset of relations defined
by Segmented Discourse Representation Theory (SDRT): contrast, result, summary,
continuation, and explanation. They chose the relations for which unambiguous
markers are known, but which also appear in text without any markers, since the
goal of the experiment was to use the former to classify the latter. Both sets of
relations roughly overlap, and since [Marcu and Echihabi, 2002] took into account
SDRT’s relations in their generalization, we can convert the relations and compare
or combine the two methods.

4.2 Choosing discourse markers

Choosing the discourse markers which indicate discourse relations is another difficult
task. Words can be used in so many different contexts that there is sure to be some
noise in the data extracted using markers. [Marcu and Echihabi, 2002] chose some
very common words, like but and because, based on evidence from previous research
that these words result in contrast and cause-explanation relations respectively, the
majority of the time. Patterns were built around these markers to determine where
the text should be split into the two segments connected by the relation. Two
examples of such patterns are shown in Example 4.2.1, where BOS and EOS stand for
beginning-of-sentence and end-of-sentence respectively, and the two text segments
are contained in square brackets.

Example 4.2.1
[BOS . . . EOS] [But . . . EOS]
[BOS . . . ] [because . . . EOS]

Applying the second pattern to a simple example sentence shown in Example
4.2.2.a, results in the sentence being split into two text segments (indicated by square
brackets) such that a cause-explanation relation holds between the two parts, shown
in Example 4.2.2.b. In total Marcu and Echihabi listed 12 patterns, containing 8
distinct discourse markers.

Example 4.2.2
a. The apple is bruised because it fell from the tree.
b. [The apple is bruised] [because it fell from the tree.]

In comparison, [Sporleder and Lascarides, 2008] worked with a list of 55 discourse
markers. They performed a corpus study to select only discourse markers which are
unambiguous, meaning that the study showed the marker to indicate the same rela-
tion in each case. Sporleder and Lascarides also wrote detailed extraction patterns,
but main goal of the patterns was to further disambiguate discourse markers and
decrease the number of false positives in their data. Segmentation of the text was
done afterwards by taking into account punctuation, the position of the marker, and
linguistic background knowledge.
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Although the Sporleder and Lascarides mentioned the importance of the patterns
in ensuring the quality of the data, they unfortunately did not include their patterns
in the paper. For this reason we start the analysis of our medical data using the
discourse markers and patterns provided by Marcu and Echihabi, and consequently
use their generalization of the set of discourse relations: contrast, cause-explanation-
evidence, condition, and elaboration.

4.3 Extracting relations from medical text

All of the markers and patterns used by [Marcu and Echihabi, 2002] are listed
in Table 4.1. Any words which are explicitly written are discourse markers, and
the commas are important features of the patterns. In the case of complicated
sentences with multiple segments separated by commas, we always consider the first
comma which is encountered and stays true to the pattern. Square brackets indicate
where the sentence(s) will be split into the two segments connected by the discourse
relation.

CONTRAST
[BOS ... EOS] [BOS But ... EOS]
[BOS ...] [but ... EOS]
[BOS ...] [although ... EOS]
[BOS Although... ,] [... EOS]
CAUSE-EXPLANATION-EVIDENCE
[BOS ...] [because ... EOS]
[BOS Because ... ,] [... EOS]
[BOS ... EOS] [BOS Thus, ... EOS]
CONDITION
[BOS If... ,] [... EOS]
[BOS If...] [then ... EOS]
[BOS ...] [if ... EOS]
ELABORATION
[BOS ... EOS] [BOS... for example... EOS]
[BOS...] [which... ,]

Table 4.1: Patterns from [Marcu and Echihabi, 2002]

Extraction is performed by going through every article in the XML corpus, sen-
tence by sentence. Each individual sentence is checked against every intra-sentential
pattern in Table 4.1. A sentence may only contain one discourse relation, since split-
ting a sentence on several relations requires finding an order or structure between
them (often in the form of a tree). Afterwards, the current sentence and the next
sentence adjacent to it are compared against every inter-sentential relation in the
table. Once again, only one relation may hold between two adjacent sentences. This
means that in total, a sentence can have maximum three relations: one with the
previous sentence, one within the sentence itself, and one with the next sentence.

This method results in a total of 10,962 relations found in 81,505 sentences,
with more detail shown in Table 4.2. In this table, the third column shows a ratio
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calculated by dividing the number of relations found by the number of sentences,
and this multiplied by 100. The last column shows this very same ratio calculated
with the results reported by [Marcu and Echihabi, 2002], to examine the differences
between our results. In their experiments, Marcu and Echihabi used what they
called a Raw corpus, composed of several different corpora provided by the Linguistic
Data Consortium. Although they did not mention the specific corpora which were
included, nor the type of text these corpora contained, it is probably safe to assume
that not all of it was based on medical texts.

The ratios are quite similar in most cases, the only exception being the contrast
relation, which appears less frequently in our medical corpus than in the mixed
corpus used by Marcu and Echihabi. One important feature of our corpus is that
it consists only of medical articles and case reports, which in most cases aim to
dispense information about a disease or a patient in a very straightforward way,
leaving out any information deemed inessential. Although contrast relations can
obviously be used to dispense such information, the very nature of contrast also
makes it ideal for adding more excitement to a story or other text. Hence a possible
explanation for the disparity between the number of contrast relations found in
our respective corpora, is that Marcu and Echihabi’s corpus possibly contained
more text of the type which would use contrast relations for the excitement factor
(like journalism). Similarly, a possible explanation for why our corpus contains
more elaboration relations than Marcu and Echihabi’s corpus, is that elaboration is
essential for conveying information straightforwardly without repetition, and could
therefore be more important in our collection of medical articles.

Relation type # found Ratio Original ratio

Contrast 4072 5.00 9.43
Cause 1670 2.05 2.16
Condition 951 1.17 2.93
Elaboration 4269 5.24 4.46

Table 4.2: Initial results of extracting relations from medical text

4.4 Manual error evaluation

We perform manual evaluation to determine the quality of the extracted relations
and the most common source of errors. The evaluator is a native speaker of English,
although she does not have experience in annotating medical texts. A total of 200
relations are chosen randomly for evaluation, 50 for every relation type. Each of
these is checked against five categories of errors, described below. Table 4.3 shows
the results of the evaluation for each type of relation.

• Error 1 – Wrong relation: This error means the wrong relation type is
assigned to two text segments, when in reality they are connected by a different
relation type or not connected at all. It also includes cases where two relations
are possible, but where the one which is extracted is not the main one.

• Error 2 – Wrong span: Relations belong to this error category when the
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type of relation is correct, but the splitting of the two text segments is incor-
rect.

• Error 3 – Mistake in preprocessing: This category contains erroneous
relations where the error is caused by a mistake in the preprocessing of the
text, either during the HTML parsing step or the sentence tokenization step.

• Error 4 – Sentence is too complicated: Since we make a very important
simplification of discourse structure, in restricting each sentence to a maximum
of 3 relations (one intra-sentential, and two inter-sentential), some sentences
have a structure which is too complicated to be analyzed with this simplifica-
tion. Hence, erroneous relations which are the result of a sentence being too
complicated for our method fall into this category.

• Error 5 – Error is unclear: This category includes any cases where the
relation does not seem quite right, but cannot be placed in any of the previous
categories.

Table 4.3 shows that the condition relation is the most erroneous out of the
relation types, and the most common error types are error 4 (sentences are too
complicated) and error 3 (earlier mistakes in preprocessing). In total, 40.5% of the
extracted relations contain some sort of error.

Relation type Error 1 Error 2 Error 3 Error 4 Error 5 Total

Contrast 1 2 6 7 0 16
Cause 1 2 6 6 2 17
Condition 7 7 5 5 2 26
Elaboration 1 5 7 9 0 22

Table 4.3: Error analysis of initial results

Below are some examples of erroneous relations and how they are categorized, to
show the main sources of error.

Example 4.4.1
Error 1 – Wrong relation
a. [This can be rather worrisome ] [because patients may receive an inappropriate
treatment if pathologists or physicians make an incorrect diagnosis of it, particularly
in cases of MSS occurring in an uncommon site.]
b. [A two-tailed Mann Whitney t-test was used to determine ] [if significant differ-
ences existed.]

Example 4.4.1 shows two relations which are marked as being erroneous due
to the wrong relation having been assigned. The first two text segments, shown
in Example 4.4.1.a, were marked during the extraction process as having a cause
relation. Although this relation is not incorrect, the first text segment gives very
little useful information. There is another relation present within this sentence,
namely a condition relation marked by the word if, which presents much more useful
information than the relation type cause in this case. Hence the condition relation
would be preferable over the cause relation in this case.
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The second pair of text segments, shown in Example 4.4.1.b, were marked as
having a condition relation during extraction. Although one could possibly argue
against marking this as an erroneous relation, we do not consider these cases to
truly represent condition because it is unclear in the two segments which one is the
condition and which one is the result. This is one of the reasons why Table 4.3 shows
so many errors of the first type for the condition relation; most of those errors are
caused by sentences which contain to determine if, to assess if, or to see if.

Example 4.4.2
Error 2 – Wrong span
a. [Acquired myasthenia gravis (MG) is an autoimmune disorder of the neuromus-
cular junction in ] [which patients experience fluctuating skeletal muscle weakness
that often affects selected muscle groups preferentially.]
b. [Although the interactions between PCOS,] [ OSA, and the cardiometabolic con-
sequences are complex, a recent study has shown improvement in cardiometabolic
profile after the successful treatment of OSA (10).]

Example 4.4.2.a shows an intra-sentential relation marked as elaboration during
automatic extraction. The type of the relation in this case is correct, however the
splitting of the sentence into two parts is off by one word. The last word of the first
segment, in, should be included in the second segment in order for this relation to
be correct. Example 4.4.2.b shows a relation where the span is off by more than
one word. It is marked as a contrast relation by the extraction process, which is
again correct, however splitting the sentence on the first comma according to our
pattern caused the mistake in spans. The split should have been made between
“. . . consequences are complex,” and “a recent study...”. Some might argue that
this example belongs to the fourth category of errors (i.e. sentences which are too
complicated), however we consider it to be the second category because a list is
quite a common occurrence within sentences.

Example 4.4.3
Error 3 – Mistakes in preprocessing
a. [Tracheostomy is effective in severe or emergent cases.7 Respiratory stimulants
such as caffeine and doxapram, commonly used for apnea of prematurity and res-
piratory depression after anesthesia, could be a future treatment option in babies
with achondroplasia, due to the stimulation of breathing on the medullary respira-
tory centers and carotid bodies; however, they have not been evaluated for use in this
patient population.12 Our patient underwent three-dimensional computerized tomog-
raphy (CT) of the cervicomedullary junction without sedation instead of MRI with
sedation, ] [because of faster image acquisition time with CT than MRI, and the
risks associated with sedating an infant patient with SDB in order to acquire MRI
images.]
b. [Transient or low-affinity interactions could appear CSA/CSB independent ] [if
interactions are fixed by cross-linking as in ChIP experiments (Schwertman et al.]

Most of the errors in the third category, mistakes in preprocessing, are caused
by the sentence tokenization process. Example 4.4.3 shows two cases which are
common in our data. In the first case, the tokenizer is unable to handle citations
placed directly after the sentence boundary, resulting in a concatenation of several
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sentences. In the second case, the abbreviation et al. causes a problem. This
problem was also seen with abbreviations such as e.g. or i.e., resulting in sentences
cut off halfway.

Example 4.4.4
Error 4 – Sentence is too complicated
a. [The explanation of this phenomenon is not evident: the complex diploid tumors
cannot be regarded as aneuploid, even if the complex karyotype shows evident aneu-
ploidy (] [although at a more sensitive level).]
b. [For example, whereas vascular-specific targeting of Alk1 recapitulates the phe-
notype of HHT2 [29], vascular-specific targeting of TGF RII, ] [which is the major
type II receptor for TGF on EC, has no vascular phenotype [18].]

Finally, Example 4.4.4 shows two erroneous relations where the error occurs be-
cause the sentence is too complicated for our method to work. The first sentence
shows typical use of parentheses for creating almost another sentence within a sen-
tence. Our extraction process recognized the relation within the parentheses cor-
rectly, but because the part within parentheses is only a side-note, the relation does
not hold with the entirety of the rest of the sentence. The second sentence does
not have any side-notes hidden between parentheses, but it does consist of many
different parts separated by commas. These different parts could easily be split into
two separate, simpler sentences. In these cases it is very unlikely that our extraction
method can find one relation which hold between the two main parts, because there
are just too many sub-parts to consider.

We will not look at the errors belonging to the fifth category, since there were
only four such errors in the 200 examples. Furthermore, the errors belonging to the
last category are so different that there is no common problem to look at solving.

4.5 Improvements in the relation extraction pro-

cess

Based on manual evaluation of the errors encountered in our initial results, we
implemented and tested several ideas for improving relation extraction. The im-
provements are listed based on the error category they belong to.

Error 1 – Wrong relation

• Clearly the condition relation suffers the most from cases where an incorrect
relation is assigned. This is almost always caused by phrases such as to deter-
mine if, to assess if, or to see if. Hence an idea for decreasing the number of
these errors is to check if the word preceding if in a sentence is a verb. Upon
further inspection of the relation examples, we restrict the word appearing
before if to past tense verbs, past participle verbs, and non-verbs. This will
approve relations like [In these analyses, the whole family was excluded ] [if a
proband had T2DM (n = 2 families and 7 people).], but reject the cases we
mention above.

Error 2 – Wrong span
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• Although it is again the condition relation which suffers most from wrong span
errors, we could find no clear pattern to these errors. On the other hand, the
elaboration relation also has a lot of errors involving spans, and there is a
pattern which can be used to formulate an improvement. Most of the errors
involve the discourse marker which, because the pattern defined by Marcu
and Echihabi splits the relation directly before this marker, but it is often
accompanied by prepositions or other auxiliary words, for example in which,
for which, or at which. Hence a possible improvement is to check the word
appearing before the marker which, and to split the sentence one word earlier
if this word is a preposition or a subordinating conjunction.

Error 3 – Mistake in preprocessing

• A lot of mistakes in preprocessing are caused by the sentence tokenizer mistak-
ing an abbreviation for the end of a sentence. For this reason we remove the
punctuation marks from abbreviations which commonly appear in scientific
(and medical) documents: Fig., et al., e.g., etc., and i.e.

• Another type of error which involves the sentence tokenizer is when citations
appear after the end of a sentence. Quite a few of the articles in the corpus
use this style of citation, so to prevent this from disturbing the tokenization
process, all citations of this type are removed from the texts.

Error 4 – Sentence is too complicated

• Many sentences in medical texts contain additional information in parentheses.
Sometimes the parentheses are a complete sentence within themselves, which
causes errors during relation extraction, especially when the text in parentheses
contains one of the discourse markers. To solve this problem, any information
between parentheses is removed before relation extraction occurs, and replaced
after the algorithm has decided the relation type and the splitting point.

• Many of the sentences encountered in our corpus could easily be split into
several simpler sentences. These types of sentences are often characterized
by many phrases separated by commas. We perform a simple evaluation on
sentences which are marked as being too complicated, compared to sentences
which are marked as being correctly extracted. In this evaluation we count
the number of phrases separated by commas and the average length of these
phrases. More than 90% of the correctly extracted sentences contain less
than 5 phrases separated by commas. When looking at the phrases which are
marked as being too complicated, about 90% of the phrases are larger than 50
characters. Although it is desirable to perform further evaluation to determine
the best values at which to reject relations, time constraints push us to use
these values as cut-off points.

Although the implementation of the above improvements is a good starting point,
it is important to remember that there is another experiment from which we can draw
information. [Sporleder and Lascarides, 2008] provide a large list of 50 discourse
markers used in their experiments, so it is worthwhile to try finding patterns for
the most popular markers on their list. As explained in Section 4.1, Sporleder and
Lascarides use a different set of discourse relations than Marcu and Echihabi, but
there is some comparison. The set of discourse relations used so far in this project
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is a generalization made by Marcu and Echihabi based on several discourse theories,
including SDRT, which is the theory used by Sporleder and Lascarides. The former
authors provide a table in their paper, detailing how relation types from different
theories are categorized in the four relation types they defined (and which we use
here). From this table it is possible to see that the relations Result and Explanation
in SDRT are part of our Cause relation, and the Contrast relation in SDRT is equal
to our own Contrast relation.

To determine which of the markers belonging to the Result, Explanation, and
Contrast relations are best to add to our algorithm, we count how often each marker
appears in our corpus. The most common markers are however (Contrast), whereas
(Contrast), (in|by) contrast (Contrast), and consequently (Results). Proper ex-
traction patterns are needed to minimize errors, and since these patterns are not
provided by Sporleder and Lascarides, we created new patterns based on a manual
inspection of the occurrences of these markers in the corpus. This results in a new
pattern table, shown in Table 4.4.

CONTRAST
[BOS ... EOS] [BOS But ... EOS]
[BOS ...] [but ... EOS]
[BOS ...] [although ... EOS]
[BOS Although... ,] [... EOS]
[BOS ... EOS] [BOS However ... EOS]
[BOS Whereas... ,] [... EOS]
[BOS . . . ] [whereas ... EOS]
[BOS (In|By) contrast ... ,] [... EOS]
[BOS ... EOS] [BOS (In|By) contrast, ... EOS]
CAUSE-EXPLANATION-EVIDENCE
[BOS ...] [because ... EOS]
[BOS Because ... ,] [... EOS]
[BOS ... EOS] [BOS Thus, ... EOS]
[BOS ... EOS] [BOS Consequently ... EOS]
[BOS ... ] [(and)(,) consequently ... EOS]
CONDITION
[BOS If... ,] [... EOS]
[BOS If...] [then ... EOS]
[BOS ...] [if ... EOS]
ELABORATION
[BOS ... EOS] [BOS... for example... EOS]
[BOS...] [which... ,]

Table 4.4: Final set of patterns used in experiment

For the marker however, there is only one pattern, to check if it occurs are the
start of a sentence. The occurrence of however within a sentence is too complicated
to replicate correctly in one or two patterns, especially to decide where to split the
sentence and whether it is an inter-sentential or intra-sentential relation. In contrast,
the marker whereas is relatively easy and has similar patterns to the marker although.
Again, for the marker (in|by) contrast we only check the beginning of a sentence
because its occurrence in the middle of sentences is too complicated. However there
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are two different situations for this marker: when it appears at the beginning of a
sentence followed directly by a comma, it forms an inter-sentential relation with the
previous sentence, otherwise it is intra-sentential. Finally, the marker consequently
can appear at the beginning of a sentence to form an inter-sentential relation. When
it appears in the middle of a sentence, the pattern will only be accepted if the word
and, or a comma, or both, appear in front of the marker. This does not cover all
cases of the use of consequently, but it does reject many cases where consequently
does not indicate the main relation within a sentence (i.e. when it appears in one
of the phrases found in a complicated sentence).

After running the algorithm again with all of the improvements and the new
markers, and doing another manual evaluation of 200 relations, we found that the
first improvement listed above, which tries to decrease the number of wrong relation
errors for the condition relation, is ineffective. Therefore it was scrapped before
running the algorithm one last time to arrive at the results presented in Table 4.5.
It shows the number of relations of each type found in our text, which consisted of
82,667 sentences.

Relation type # found Ratio Initial ratio Original ratio

Contrast 6545 7.92 5.0 9.43
Cause 1726 2.08 2.05 2.16
Condition 793 0.96 1.17 2.93
Elaboration 4181 5.06 5.24 4.46

Table 4.5: Final results of relation extraction

Again, the ratio was calculated by dividing the number of relations found by the
total number of sentences, multiplied by 100. It can be compared with the ratio of
our initial results, repeated in the third column, and the ratio of the results achieved
by [Marcu and Echihabi, 2002] in the last column. Our ratios have improved for
contrast and cause, due to the extra markers taken from [Sporleder and Lascarides,
2008]. The ratios for condition and elaboration did decrease a little, however this is
compensated by the improvement in error rate of more than 10%. Table 4.6 shows
the final error analysis results.

Relation type Error 1 Error 2 Error 3 Error 4 Error 5 Total

Contrast 3 2 3 1 0 9
Cause 1 3 0 7 1 12
Condition 6 5 2 7 0 20
Elaboration 3 1 2 7 1 14

Table 4.6: Error analysis of final results

The new error analysis results show that the number of errors caused by mistakes
in preprocessing has decreased significantly, and the elaboration features less errors
in span now that the word before which is being examined for its type. There are
still quite a few errors involving sentences which are too complicated, so this requires
more experimentation to fix. Ideally it would involve methods for simplifying the
sentence based on its content, but this would require the availability of the semantics
which we want to extract in the first place. So instead, a good start to tackling the
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issue would be to further analyze which features make the sentences too complicated
and how these features can be detected. Finally, notice that the condition relation is
the most problematic relation in both the initial and final results. A possible reason
for this is that the algorithm really only has one discourse marker (if ) and three
patterns involving this pattern to check for. If it is not possible to find more markers
for the condition relation, or to improve the results found with the available patterns,
it might be better to choose a different discourse relation for future experiments.
Indeed, [Sporleder and Lascarides, 2008] chose not to use the condition relation,
they featured the continuation and explanation relations instead.

4.6 Final analysis of discourse relation extraction

The ratios found in Table 4.5 show that the relation data is very sparse. Relying
solely on explicit discourse markers in a text is clearly not sufficient for extracting
the majority of the semantics. To create a truly complete structure of a sentence re-
quires background information and semantic knowledge of words, however there are
possibilities for extending the current extraction capabilities. One such possibility
is Discourse Relation Algebra [Roze, 2011], introduced in Section 2.1.4. It provides
inference rules which can be used to generate a complete set discourse relations from
an incomplete set, hence it would be perfect for reducing the sparsity of our data.
However the method is not entirely finished, only a few rules have been defined so
far, but it is a good option for improving our data in the future.

We managed to decrease the error rate in relation extraction from 40% down to
30%, but this still carries quite a lot of noise through to the next step of this project.
In the future it would be worthwhile to attempt decreasing the error rate even
further. The sentence tokenizer is a source of quite some noise, so experimenting
with different preprocessing tools is one option for improvement. Devising other
improvements similar to the ones we’ve already introduced requires more manual
evaluation of the relations to build even more complex patterns. One final possibility
is to combine the unsupervised methods with some of the supervised methods. For
now, the results are promising enough to move on to the data mining stage.
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Chapter 5

Representation using FCA

To apply Formal Concept Analysis to relational discourse data it is necessary to de-
fine a formal context as a starting point, with a set of objects and a set of attributes
(or patterns). By applying the CloseByOne algorithm to the formal context, one can
generate the closed concepts for forming a concept lattice. And in the case of com-
plex data which needs to be represented using the formalism of pattern structures,
it is essential to define a proper similarity operator.

There are many different possibilities for converting our discourse relation data
into such a formal context format with appropriate similarity operators, and each
method can result in a very different concept lattice. Some concept lattices could
provide useful knowledge to an expert, whereas others might be less suitable. Hence
in this chapter we discuss and compare different representations of formal contexts,
possible similarity operators, as well as external resources which could add value to
the data. First, some basic choices regarding FCA representations are discussed in
Section 5.1, followed by some more complex representations using pattern structures
in Section 5.2. Section 5.3 describes external resources which we use to add addi-
tional semantic value to our data and to define an order relation between patterns.
Finally, in Section 5.4 we talk about the algorithm which is used to generate the
closed pattern concepts and the final lattice.

5.1 Representing discourse relation data in FCA

We start by discussing the options of using the basic FCA theory when representing
discourse relations, because it is possible to imagine representations where our data
is fit into a simple binary context. To illustrate how this could be done, we first
introduce three relations from our corpus in Example 5.1.1. These three relations
will be used throughout this chapter to give a better idea of what each approach
could look like. Each relation has a name, for example bc49r3, which means that this
relation is the third relation from article bc49 (the 49th article about breast cancer)
in our corpus. The relations are displayed with their XML discourse annotation
as they are stored in the corpus, such that the tag surrounding the entire relation
indicates its type (CONT for contrast, CAUS for cause, ELAB for elaboration, and
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COND for condition), and within this there are two more tags to indicate how the
sentence(s) are separated into two parts (PART1 and PART2).

Example 5.1.1
bc49r3: <CONT><PART1>Using TFSEARCH (32), a web-based program that
searches for transcription factor binding sites, an Nkx-2.5 binding site was found to
be present when the major A allele was present, </PART1><PART2>but not when
the minor G allele was.</PART2></CONT>
bc49r8: <ELAB><PART1>Phosphorylated SMAD2 and SMAD3, in association
with SMAD4, form a complex </PART1><PART2>which accumulates in the nu-
cleus and acts as transcription factors to regulate target genes.</PART2></ELAB>
bc50r4: <CONT><PART1>On analyzing the data in rs353639 polymorphism with
logistic regression, we found increased significance of both the genotype (P=0.017,
OR=4.29) as well as allele (P=0.025, OR=3.34) with clinical tumour size when com-
pared with the results of univariate analysis (Table 6).</PART1><PART2>However,
no significant association of both the polymorphisms was seen with treatment re-
sponse to NACT.</PART2></CONT>

These particular relations were chosen because they come from two articles which
both discuss the role of particular genes in breast cancer cases, so there is a higher
chance that the relations have something in common and can provide additional
knowledge when combined. Both articles contain between 10-20 relations, but in
order to keep the examples simple we chose three at random. The first two in
Example 5.1.1a and 5.1.1b come from article bc49, where the first one is a contrast
relation and the second is an elaboration relation. The third relation comes from
article bc50 in the corpus and also belongs to the category of contrast.

So one option for applying the relation data to a binary context is shown in Table
5.1 where objects are the documents and attributes are the specific relations found
in those documents (in this case limited to the three relations we specified). This
is the most näıve and direct way of fitting the data into the binary context format.
A document is related only to the relations which occur in its content. In this
particular example the context is quite small, however one can imagine that such
a method would quickly lead to contexts which are enormous in size, since most
relations are unique and belong only to one document. For this reason, this type
of context also doesn’t provide much useful information, because there will likely
be little to no overlap between documents (unless they contain exactly the same
sentence). Finally, it would be up to the expert to read and interpret every relation
in the resulting concept lattice, so it does not truly make use of the additional
information which discourse provides.

r3 r4 r8
bc49 X X
bc50 X

Table 5.1: Primitive context for discourse relations

One of the first choices which needs to be made when formulating a formal context
is the definition of the objects. In Table 5.1 each object is an entire document, but
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one could just as easily define the objects to be paragraphs, sentences, or even
words. The choice of objects is completely dependent on what it is that one wants
to compare. If the goal is to compare various medical articles and select the relevant
ones according to some criteria, then articles are the obvious choice for objects.
However if a researcher were more interested in the structure of relations, then
indeed it would be possible to use the relations themselves as objects. Since the aim
of this project is simply to create a basis for the combination of FCA with discourse
structure, we could work with either articles or relations as objects. For now we will
use the latter in our examples.

The next important consideration to make when building a formal context is
the definition of the attributes, which we defined as being whole relations in Table
5.1. In basic FCA the attributes are restricted to boolean values which can be
represented in a binary table. In the case where we have a set of articles as objects,
this means it is possible to use relations, words, relation categories, or other entities
as attributes. However each of those options is either too general (there are only
four relation categories) or too specific (almost every separate relation is unique by
at least one word). Fortunately pattern structures make it possible to define more
complex patterns to use as attributes.

5.2 Applying pattern structures

In order to determine how pattern structures can be applied to discourse data, it is
important to realize exactly what the components of a relation are. Our relations
contain three components: the type of the relation, the text of the left part of
the relation, and the text of the right part of the relation. Hence the most direct
application of pattern structures to our discourse data would be to have three types
of patterns corresponding to the three parts of our relations. This format is shown
in Table 5.2, using the three relations we introduced before.

In order to generate closed concepts it is necessary to define similarity operators
in such a way that any two rows can be compared, which is where we encounter
the first problem with this representation. There is no obvious order relation be-
tween the semantic types of discourse relations; there is no overlap and there is no
specialization/generalization relation between them. Nor is there a logical cluster-
ing between the four categories of contrast, condition, elaboration, and cause. In
the absence of a similarity operator which can be applied to the second column of
Table 5.2, it becomes necessary to redefine the formal context. A solution to this
problem is to separate the four semantic categories in the formal context, resulting
in a total of eight pattern columns, two for each semantic type. Since our example
only features two contrast relations and one elaboration relation, we show only four
of those columns in Table 5.3.

By separating the semantic categories of discourse relations, we have created a
situation which requires the definition of only one similarity operator to handle the
comparison of the strings which form the parts of the relations. Statistical methods
are one possibility for comparing two strings, such as the Levenshtein distance or the
Jaccard index. The former is an edit distance, meaning it compares two strings by
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Document Type Left Part Right Part
bc49r3 CONT Using TFSEARCH (32),

a web-based program that
searches for transcription
factor binding sites, an Nkx-
2.5 binding site was found
to be present when the ma-
jor A allele was present,

but not when the minor G
allele was.

bc49r8 ELAB Phosphorylated SMAD2
and SMAD3, in associa-
tion with SMAD4, form a
complex

which accumulates in the
nucleus and acts as tran-
scription factors to regulate
target genes.

bc50r4 CONT On analyzing the data in
rs353639 polymorphism
with logistic regression,
we found increased signifi-
cance of both the genotype
(P=0.017, OR=4.29) as
well as allele (P=0.025,
OR=3.34) with clinical
tumour size when com-
pared with the results of
univariate analysis (Table
6).

However, no significant
association of both the
polymorphisms was seen
with treatment response to
NACT.

Table 5.2: Direct application of pattern structures to discourse relation data

calculating how many changes are needed to turn one string into another. Changes
which can be made include insertions, deletions, and substitutions. So as an example
consider the two words dog and logs ; the Levenshtein distance between these two
words is 2, since changing one word into the other requires one substitution and
one insertion. On the other hand, the Jaccard index is a metric for calculating the
similarity of sets. When applied to strings, it views the strings as sets of tokens
and proceeds by calculating the similarity between two sets of tokens. Similarity
is defined as the size of the intersection of the two sets, divided by the size of the
union of both sets. Although statistical similarity measures have been applied to text
mining before, they are not ideal for applying to our data. A quick calculation on
our corpus shows that the average Levenshtein distance between sentences is above
150 changes. Another possibility is to abstract over the sentences by first applying
part-of-speech tagging and then calculating similarity with a string metric, but this
would cause loss of information. However, the string metric method in combination
with part-of-speech tagging could be kept in mind for linguistic research, since it
could provide information about how relations are structured.

Since discourse relations rely on the meaning of sentences, it would be logical to
apply a similarity operator which is based on semantics. Ideally we would build a
logical formula of the sentence based on one of the theories introduced in Section 2.1,
such as DRT or SDRT. However, as mentioned before, we lack the semantic tools to
properly build these formulas regarding both semantics and background knowledge.
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Document CONT Left CONT Right ELAB Left ELAB Right
bc49r3 Using TFSEARCH

(32), a web-based
program that searches
for transcription factor
binding sites, an Nkx-
2.5 binding site was
found to be present
when the major A
allele was present,

but not when the mi-
nor G allele was.

bc49r8 Phosphorylated
SMAD2 and SMAD3,
in association with
SMAD4, form a
complex

which accumulates in
the nucleus and acts as
transcription factors to
regulate target genes.

bc50r4 On analyzing the data
in rs353639 polymor-
phism with logistic
regression, we found
increased significance
of both the genotype
(P=0.017, OR=4.29)
as well as allele
(P=0.025, OR=3.34)
with clinical tumour
size when compared
with the results of
univariate analysis
(Table 6).

However, no significant
association of both the
polymorphisms was
seen with treatment
response to NACT.

Table 5.3: Pattern structure with separated semantic categories

Attempting to create the formulas anyway with the limited tools available would
result in a lot of noise in our data. Furthermore, such formulas would have to
be compared to create an order relation between them, and this cannot be done
through formal logic alone. They contain complex elements which require further
background knowledge to understand and compare. Although building the complete
set of formulas is not an option at this time, we can add some basic background
knowledge to the text by using an ontology. This requires the application of external
resources, like a medical thesaurus.

5.3 Adding information through external resources

In Chapter 2 we described how [Coulet et al., 2013] use the NCI Thesaurus to extract
sets of concepts from documents. The tree structure of the ontology provides an
order relation between the concepts, and the similarity operator was defined to be the
convex hull. NCI Thesaurus is one of several ontologies incorporated in the Unified
Medical Language System (UMLS) MetaThesaurus [NLM, 2009]. We describe the
UMLS MetaThesaurus and Semantic Network in Section 3.3. The elements of the
UMLS MetaThesaurus are usually referred to as concepts, but we will call them
terms to make it clear that UMLS concepts are not the same as formal concepts of
FCA. To extract sets of UMLS terms from textual data, we use the MetaMap tool1

which was developed specifically for that purpose. Example 5.3.1 shows the human-
readable output which MetaMap produces for the phrase human plasma. It finds
a total of 4 MetaThesaurus terms which can correspond to the phrase at varying

1http://metamap.nlm.nih.gov/
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confidence levels. In our experiments we use the XML output for easier processing,
but the results are the same.

Example 5.3.1
Phrase: ”human plasma”
Meta Candidates (Total=4; Excluded=0; Pruned=0; Remaining=4)
1000 human plasma [Pharmacologic Substance]
861 Plasma [Body Substance]
861 Human (Homo sapiens) [Human]
861 Plasma, NOS (not otherwise specified) [Body Substance]
Meta Mapping (1000):
1000 human plasma [Pharmacologic Substance]

In order to create the set of terms which corresponds to the text of a relation,
we select only the top candidate for each phrase identified by MetaMap. These sets
then replace the textual data in the formal context, as shown in Table 5.4 for the
three chosen relations. Although these sets do abstract over the text somewhat,
they clearly provide much more information than if we were to apply a statistical
string metric like Levenshtein distance. One disadvantage is that MetaMap does
overgenerate quite heavily; the sets shown in Table 5.4 are all quite large. On top of
that there is quite a bit of noise: the relation bc50r4 mentions a table in the sense
of a collection of information, but MetaMap links it to the term Tablefurniture. It
is possible to tweak the MetaMap results through the use of a confidence threshold,
which would at least decrease the size of the sets, even though it would not prevent
the occurrence of noise. For future work it could be worth spending time on an
empirical evaluation to determine the best threshold for our corpus.

Document CONT Left CONT Right ELAB Left ELAB Right
bc49r3 {Useof; Basisconcep-

tualentity; Program-
frameworkofgoals;
searchEntityNameUse;
BindingSites; Present;
To; Present; Major;
Alleles; Present}

{Negation; Alleles} {} {}

bc49r8 {} {} {SMAD2gene;
SMAD3gene; Men-
talassociation;
SMAD4gene; Qualita-
tiveform; Complex}

{CellNucleus; TRAN-
SCRIPTIONFAC-
TOR; CandidateDis-
easeGene}

bc50r4 {Data; LogisticRe-
gression; Present;
StatisticalSignificance;
Genotype; Pblood-
groupantibodies; Al-
leles; Pbloodgroupan-
tibodies; Tumorsize;
univariatestatistics;
Tablefurniture}

{Mentalassociation;
GeneticPolymorphism;
therapeuticaspects;
SLC13A5gene}

{} {}

Table 5.4: Pattern structure with UMLS MetaThesaurus terms

With a collection of MetaThesaurus terms populating our formal context in place
of textual data, it becomes much easier to define a similarity operator. In fact we
can use the Semantic Network2 as an ontology to order terms, similar to how [Coulet

2http://semanticnetwork.nlm.nih.gov/
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et al., 2013] use the structure of the NCI Thesaurus. Every MetaThesaurus term
links to at least one semantic type in the Semantic Network. To define an order
relation we use only the most general is a relation between terms. For simplicity we
link every term with only one semantic type in the network, namely with the type
which MetaMap lists first for that term. By linking the terms to the Semantic Net-
work, we have a tree-like structure which allows us to define the similarity operation
to be the convex hull.

5.4 Generating closed pattern concepts

Having defined a formal context in the form of Table 5.4, it is possible to apply
the CloseByOne algorithm to generate the closed pattern concepts. In fact, notice
that our formal context is similar to the formal context in Table 2.2 which shows
an adapted example from [Coulet et al., 2013]. Furthermore we define the same
similarity operator, namely the convex hull. We showed an example of this similarity
operator in Section 2.2.2, but we will now formally define it. The convex hull
Conv({c1, c2}) of the set of two terms c1 and c2 will be a set of terms {x1, x2, ..., xn}
such that:

xi ≤ lcs({c1, c2})

(xi ≥ c1 and xi ∧ c1 ≡ c1)or(xi ≥ c2 and xi ∧ c2 ≡ c2)

xi 6≡ >

where > refers to the top term of the ontology, and lcs finds the least common
subsumer of two terms (the most specific term which subsumes both smaller terms).
Furthermore, the convex hull can be recursively applied to a set of terms Cp =
{c1, c2, ..., cp}:

∀p ∈ N, Conv(Cp) = Conv({Conv(Cp−1), cp})

Since we use the same similarity operator as [Coulet et al., 2013], we can use the
modified CloseByOne algorithm defined by the same authors which we repeated
in Algorithms 1 and 2. The authors fortunately provide a java implementation of
the algorithm3. It reads the ontology of the NCI Thesaurus from an OWL format.
We replace this ontology with our own, which contains the complete structure of
the Semantic Network as well as all 12,416 terms which MetaMap found in our
corpus. It was converted to OWL format compatible with the implementation of
the CloseByOne algorithm using the Protégé tool [Tudorache et al., 2013]. There is
some discussion about whether or not the OWL format is suitable for modeling the
Semantic Network, due to ambiguities in notation and a few other issues [Kashyap
and Borgida, 2003], but a simple representation of the network using only basic
relationships and terms can be represented in OWL format without problems.

Running the algorithm on the formal context in Table 5.4 results in 8 closed
concepts. Figure 5.1 shows the structure of the resulting concept lattice. Since the
table which shows the formal context leaves out the four columns relating to the
condition and cause relations, we have also left out those categories in the lattice
image. But keep in mind that this method can work with all four types of relations

3https://github.com/coulet/OntologyPatternIcfca
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at once; every intent would have 8 sets of terms in total, to account for the left and
right text segments of all four relation types. Notice that the concept lattice is a
complete lattice; in fact it is a power set. This will be the case with any relations
compared through our pattern structure model, because the ontology is a single tree
structure, meaning that there is a path to the top starting from any term. If we
want to prevent this, we would need to choose a different similarity operator.

Figure 5.1: Concept lattice calculated from the formal context in Table 5.4

The full intents of the concepts are too long to present in the figure, therefore
they have been given names corresponding to their representations shown below.
However we will show one example of a full intent to illustrate how the lattice should
be interpreted. Example 5.4.1 shows the full intent of concept 3 in the lattice. The
intent consists of four sets contained in curly brackets, where the first two sets
respectively represent the left and right text segments of all contrast relations in
the extent of the concept, and the last two sets represent the left and right text
segments of all elaboration relations in the extent of the concept. Since concept 3 in
the lattice has an extent with relations bc49r3 and bc50r4, which are both contrast
relations, the last two sets of its intent are empty. Example 5.4.1 shows that the first
two intents are both large sets containing terms from the UMLS MetaThesaurus and
the Semantic Network.

Let us consider the very first set in Example 5.4.1. It represents the left text
segments of both contrast relations bc49r3 and bc50r4, which we converted into a set
of terms using MetaMap, the results of which are shown in the first column of Table
5.4. To combine the two relations into a formal concept, the algorithm computes
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the convex hull of the two sets of terms. Again in this example we encounter the
problem that MetaMap over-generates to produce very large sets of terms as pattern
descriptions, which result in equally large convex hulls. This convex hull contains
all of the terms from both sets, the least common subsumer of all of those terms,
and every term in between, which results in the first set in Example 5.4.1. Similarly,
the second set shown in the example is the convex hull of the original sets of terms
corresponding to the right text segments of contrast relations bc49r3 and bc50r4
(see the second column in Table 5.4).

Example 5.4.1
{Activity, Alleles, Amino Acid, Peptide, or Protein, Anatomical Structure, Basis-
conceptualentity, BindingSites, Biologically Active Substance, Chemical,
Chemical Viewed Functionally, Chemical Viewed Structurally, Conceptual Entity,
Data, Entity, Event, Fully Formed Anatomical Structure, Functional Concept,
Gene or Genome, Genotype, Idea or Concept, Intellectual Product, LogisticRegres-
sion, Major, Manufactured Object, Occupational Activity, Organic Chemical, Or-
ganism Attribute, Pbloodgroupantibodies, Physical Object, Present, Programframe-
workofgoals, Qualitative Concept, Quantitative Concept, Receptor, Research Activity,
Spatial Concept, StatisticalSignificance, Substance, Tablefurniture, To, Tumorsize,
Useof, searchEntityNameUse, univariatestatistics}
{Alleles, Anatomical Structure, Biologic Function, Conceptual Entity, Entity, Event,
Fully Formed Anatomical Structure, Functional Concept, Gene or Genome, Genet-
icPolymorphism, Genetic Function, Idea or Concept, Mental Process, Mentalasso-
ciation, Molecular Function, Natural Phenomenon or Process, Negation,
Organism Function, Phenomenon or Process, Physical Object, Physiologic Function,
SLC13A5gene, therapeuticaspects}
{}
{}

Since the ontology is structured as a tree, every set of terms can also be rep-
resented by a tree structure. Such a representation is much more intuitive than
looking at a large set of terms. Therefore we will repeat the same example of con-
cept 3 from the lattice, only now we will illustrate it with the tree structures. Each
tree shows a convex hull which is the entire intent of a concept. It is important to
understand that the colored terms (blue for bc49r3 and purple for bc50r4) are the
original MetaThesaurus terms which describe the left textual segments of the rela-
tions. All of the other uncolored terms are simple part of the hierarchy computed
by taking the convex hull of the original set of terms. The representations do not
show the top element of the ontology, so the two most general semantic types below
the top are Entity and Event. So the first two representations shown below are that
of Tree 1, which is the left part of the contrast relation bc49r3, and Tree 5, which is
the left part of the contrast relation bc50r4.

46



Tree 1 corresponds to the following text: Using TFSEARCH (32), a web-based
program that searches for transcription factor binding sites, an Nkx-2.5 binding site
was found to be present when the major A allele was present,

Tree1
Entity

Conceptual Entity
Idea or Concept

Functional Concept
Basisconceptualentity
Use

Qualitative Concept
Major
To

Quantitative Concept
Present

Intellectual Product
searchEntityNameUse

Programframeworkofgoals
Physical Object

Anatomical Structure
Fully Formed Anatomical Structure

Gene or Genome
Alleles

Substance
Chemical

Chemically Viewed Functionally
Biologically Active Substance

Receptor
BindingSites

Tree 5 corresponds to the following text: On analyzing the data in rs353639
polymorphism with logistic regression, we found increased significance of both the
genotype (P=0.017, OR=4.29) as well as allele (P=0.025, OR=3.34) with clinical
tumour size when compared with the results of univariate analysis (Table 6).

Tree 5
Entity

Conceptual Entity
Idea or Concept

Data
Quantitative Concept

Present
StatisticalSignificance

Spatial Concept
Tumorsize

Organism Attribute
Genotype

Physical Object
Anatomical Structure

Fully Formed Anatomical Structure
Gene or Genome

Alleles
Manufactured Object

Tablefurniture
Substance

Chemical
Chemical Viewed Structurally

Organic Chemical
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Amino Acid, Peptide, or Protein
PBloodgroupantibodies

Event
Activity

Occuptional Activity
Research Activity

LogisticRegression
univariatestatistics

The third representation is the convex hull formed from the first two representa-
tions Conv(Tree1, T ree5), which is equivalent to the first two sets of terms shown in
Example 5.4.1. When applying the convex hull operator to trees, we consider both
trees to form a set of all the terms they contain. So the convex hull contains all of
the original terms describing the textual segments, colored blue and purple. In this
case, the least common subsumer is the top element because it is the only element
which subsumes all of the colored terms (its is not shown in the representation, but
it connects the current top elements Entity and Event). The black terms are all of
the terms between the top element and each colored term. Hence all of the terms
together is the result of taking the convex hull of the above two trees representations.

This representation shows the convex hull of the two previous convex hulls.
Conv(Tree1, Tree5)

Entity
Conceptual Entity

Idea or Concept
Data
Functional Concept

Basisconceptualentity
Use

Qualitative Concept
Major
To

Quantitative Concept
Present
StatisticalSignificance

Spatial Concept
Tumorsize

Intellectual Product
searchEntityNameUse

Programframeworkofgoals
Organism Attribute

Genotype
Physical Object

Anatomical Structure
Fully Formed Anatomical Structure

Gene or Genome
Alleles

Manufactured Object
Tablefurniture

Substance
Chemical

Chemically Viewed Functionally
Biologically Active Substance

Receptor
BindingSites

Chemical Viewed Structurally
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Organic Chemical
Amino Acid, Peptide, or Protein

PBloodgroupantibodies
Event

Activity
Occuptional Activity

Research Activity
LogisticRegression
univariatestatistics

It is important to explain one more aspect of how the lattice should be read.
Normal concept lattices, like the one shown in Figure 2.3, have a large extent at
the top element with a minimum intent, and a minimum extent at the bottom
concept with a very large intent. Hence the further up the lattice a concept is
placed, the more general its intent description is. In Figure 2.3, the top concept has
extent {asthma, breastCancer, lungCancer} and intent {foundInAdults}. Since
every disease in that particular formal context has the attribute foundInAdults, this
is the least specific description of a disease. At first glance, our lattice in Figure 5.1
looks completely different, with the top element having both large extent and large
intent whereas the bottom element is empty on both. However it does adhere to the
same specialization/generalization structure as the simpler concept lattice. When
examining the final lattice, one must keep in mind that in this case a larger intent
is a more general description than a smaller intent due to our similarity operator.
It should be clear that a small convex hull gives a much more specific description
than a large convex hull.

The concept lattice built for the three relations we chose to use as an example
shows a clear representation of the possible relationships and combinations. It forms
a promising visualization tool. Unfortunately we were unable to run the algorithm
on the full corpus. The large number of terms which MetaMap assigns to every text
segment means the algorithm takes about two hours to run for just one article. This
time varies a lot depending on the complexity of the relations as well as the number
of relations which the article contains. An even bigger problem is that it cannot
handle the bigger articles, or indeed more than one complete article, because the
algorithm will result in out of memory errors. It ran on a machine with an Intelr

CoreTMi7-3540M processor and 16GB memory. So for future experiments it would
be crucial to run the algorithm on a cluster in order to process the bigger inputs.

However it would also be a good idea to look into decreasing the number of
MetaMap terms associated with a text segment, since this would greatly speed
up the CloseByOne algorithm. This could be done through simplification of the
sentences, but that might lead to loss of information, so a better method would be
to empirically decide the best MetaMap threshold for producing useful results on a
smaller scale. Limiting the size of the ontology could also speed up the algorithm
during its calculation of convex hulls, but since the UMLS Semantic Network is
already quite small this probably would not have a great impact in our case.

Despite being unable to run the experiments using our full corpus of 600 articles,
we believe the results show great promise. It is difficult for us to interpret the
lattices from a medical perspective, since we are not medical experts, so we cannot
tell if the convex hull allows for the extraction of new medical knowledge. However,
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once one understands how to read the lattice in Figure 5.1, it becomes easy to see
how the different relations (and by extension the different documents) interact. The
intents of the formal concepts can be difficult to interpret in the form of sets, but
by transforming the visualization into the form of trees, the intents become easy
to understand and interpret at a glance. Such tree structures provide important
hierarchical semantic knowledge, which can be very meaningful for experts who
know the domain well.

In conclusion, we have shown that combining FCA with discourse structures and
additional ontology information is possible and promising. It would be worthwhile to
have the data and the method examined by a medical expert to determine how this
method can best be applied to document summarization or document selection on
medical articles. We encountered several problems during the process of generating
the lattices, but with more research we believe these problems can be mostly resolved
and the lattices can become a visualization tool for experts to use.
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Chapter 6

Conclusion

As far as we know, this is the first attempt at combining Formal Concept Analysis
with discourse-annotated data. We believe that we have shown the merit of per-
forming more research on these types of ’deep’ text mining methods, since discourse
can provide a lot of additional information which an analysis focusing on smaller
unit of text cannot provide. In the medical field especially, there is a wealth of
articles from which one can extract causal, temporal, and other discourse relations.
Advancements in the fields of semantics, and in applying background knowledge to
text, would allow for an even more robust extraction of discourse in the form of
logical formulas.

In order to perform this research we have created a corpus of 600 full-text med-
ical articles, containing case reports, treatment and drug evaluations, demographic
studies, and historical accounts of disease treatment, with automatic annotation of
discourse relations. In the future we hope that the annotations can be expanded,
either through manual annotation, through the use of a discourse algebra with infer-
ence rules, or through improvements in our automatic extraction process. We were
able to add additional semantic information to the medical text through the use of
a medical thesaurus, as well as defining an order relation on those segments through
an ontology. The resulting lattice structure provides a clear picture of the possible
combinations of discourse relations. And combining the lattice with visualizations
of the intents in the form of tree structures makes the whole output a lot easier to
interpret. In our case we focused on the medical domain with a corpus of medical
articles, but it might be interesting to try applying this in different domains, since
discourse occurs in every type of text. Either way, it would be beneficial to even-
tually include an expert on the domain of choice, to give input on the modeling
process.

Of course we did encounter problems throughout the process of this research.
Many improvements are possible in both the linguistic side of this project, regard-
ing the extraction of discourse elements, as well as the data mining side, with the
application of external resources and the modeling of our data using pattern struc-
tures.

The biggest problem regarding the extraction of discourse structure is that we
would ideally like to have a complete structure for every document, according to one

51



of the theories described in Section 2.1. However this requires a very good semantic
interpreter as well as background knowledge about the world, both of which are
still difficult to create and model. Any advances in the practical side of discourse
extraction could greatly benefit the information modeled by our method. The idea
of extracting discourse relations between two text segments is much simpler than
extracting an entire tree or graph structure, but it does provide a start to working
with discourse in textual data. Due to a lack of annotated training data, especially
in the medical domain, the unsupervised methods currently work equally as well
as supervised methods. By combining the methods and key words used in two
different works, we extract a total of 13,245 relations. However, considering that
these relations were extracted from a total of 82,667 sentences, it becomes clear
that the annotations resulting from our experiments are still very sparse. Improving
the density of annotations could be done by adding more key words to the current
set used for extraction, or by possibly combining the unsupervised method with
a supervised option. There are also some promising developments in building a
discourse relation algebra, which could be used to complete the annotations [Roze,
2011].

Another problem is the degree of noise, regarding relations which are categorized
incorrectly, which a random evaluation of 200 relations showed to be about a 30%
error rate. Although we did manage to decrease the error rate from the original 40%
through simple adjustments to the patterns and the algorithm in general, it would
be worthwhile to invest more time in decreasing the error rate. A key problem is
that the sentence tokenizer produces quite a bit of noise, which perpetuates into
noisy discourse relation extraction. So trying out different processing tools could
help improve the results and prevent a lot of noise from being forwarded into the
rest of the process.

The process of applying pattern structures to the data gained from discourse
relation extraction also has room for improvement. One issue is the large number of
terms which MetaMap assigns to a piece of text, resulting in very large descriptions
and concept intents which are difficult to interpret. It also causes the CloseByOne
algorithm to have a very long running time and requires a lot of memory. This could
be solved by investing some time in an empirical evaluation of the threshold value
used in MetaMap, to determine the best value for our type of data. There might also
be options for simplifying the textual data before running it through MetaMap, such
as removing all data between parentheses, which is usually not the core information
of a sentence. Despite these issues, applying the UMLS MetaThesaurus ontology to
the data adds useful information about the semantics of the data, as opposed to the
limited information which statistical methods can provide. However as mentioned
before, the statistical methods could be used to apply this method to the linguistic
domain, for modeling the structures of discourse relations. In that case the set of
objects would again be the relations, and the patterns could involve string metrics
based on part-of-speech tags to see if there is any new knowledge to gain about the
linguistic features of relations.

Currently the set of objects in our formal context consists of individual relations,
so another interesting extension to this process would be to apply it to an object set
consisting of whole documents. This would add an extra level on top of the current
model, since one would need to group the current patterns into sets. A document
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contains multiple relations, each of which we can describe as a pattern. It would
be necessary to define another similarity operator to compare the sets of patterns
corresponding to documents. However once that is defined, it would be possible to
create a concept lattice for comparing articles instead of individual relations. In this
project we show just one way to model discourse-annotated data in a formal context,
but there are many possibilities for other models. Involving a domain expert in the
modeling process could produce further improvements.

Since each step of our experiments experiences some problems, there is quite
a build-up of noise by the end of the process. The sentence tokenizer introduces
noise, which causes more errors in the extraction of discourse relations, on top of
which MetaMap adds a little more noise. It is essential to reduce the amount of
noise passed forward by the process in order for this method to effectively create a
platform for experts to discover new knowledge from text. However we have shown
that the process creates an informative lattice despite the problems, and there are
many options for improving the modeling process at different stages. We believe
that performing data mining on complex linguistic structures is a very promising
field.
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Appendix A

Intents of closed pattern concepts

The following representations are the remaining convex hull representations for the
intents of concepts which contain only one relation in the extent. Intents of concepts
with larger extents can be built by taking the convex hulls of these smaller repre-
sentations. All of the colored concepts are the original MetaThesaurus terms which
describe part of the text of the relation. Every other entity in the representations
are semantic types which generalizes over the terms. None of the representations
feature the top entity of the ontology, so the most general types are Entity and
Event.

Tree 2 corresponds to the following text: but not when the minor G allele was.
Tree 2

Entity
Conceptual Entity

Idea or Concept
Functional Concept

Negation
Physical Object

Anatomical Structure
Fully Formed Anatomical Structure

Gene or Genome
Alleles

Tree 3 corresponds to the following text: Phosphorylated SMAD2 and SMAD3,
in association with SMAD4, form a complex

Tree3
Entity

Conceptual Entity
Idea or Concept

Qualitative Concept
Complex
Qualitativeform

Physical Object
Anatomical Structure

Fully Formed Anatomical Structure
Gene or Genome

SMAD2gene
SMAD3gene
SMAD4gene

Event
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Phenomenon or Process
Natural Phenomenon or Process

Biologic Function
Physiologic Function

Organism Function
Mental Process

Mentalassociation

Tree 4 corresponds to the following text: which accumulates in the nucleus and
acts as transcription factors to regulate target genes.

Tree 4
Entity

Physical Object
Anatomical Structure

Fully Formed Anatomical Structure
Cell Component

CellNucleus
Gene or Genome

CandidateDiseaseGene
Substance

Chemical
Chemical Viewed Structurally

Organic Chemical
Amino Acid, Peptide, or Protein

TRANSCRIPTIONFACTOR

Tree 6 corresponds to the following text: However, no significant association of
both the polymorphisms was seen with treatment response to NACT.

Tree 6
Entity

Conceptual Entity
Idea or Concept

Functional Concept
therapeuticaspects

Physical Object
Anatomical Structure

Fully Formed Anatomical Structure
Gene or Genome

SLC13A5gene
Event

Phenomenon or Process
Natural Phenomenon or Process

Biologic Function
Physiologic Function

Molecular Function
Genetic Function

GeneticPolymorphism
Organism Function

Mental Process
Mentalassociation
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