CHAÎNAGE ARRIÈRE

On peut envisager la recherche de preuve dans l'autre sens :

- On part de ce que l'on veut prouver, et on cherche quelles pourraient en être les prémisses.
- On remonte ainsi jusqu'aux énoncés de la base d'énoncés donnée.
- On construit ainsi un arbre de déduction inverse.

ALGORITHME

Pour prouver un littéral α :

- 1. Empiler α sur la pile.
- 2. Répeter les actions suivantes jusqu'à ce que la pile soit vide ou que les actions ne soient plus possibles :
 - i. Dépiler le littéral λ le plus haut dans la pile.
 - ii. Choisir un énoncé dont λ est la conséquence. Si aucune correspondance, FAIL.
 - iii. Empiler les prémisses de cet énoncé (dans l'ordre) sur la pile.

ATTENTION

Éviter les boucles infinies : vérifier si λ est déjà dans la pile.

Éviter de répéter des traitements : vérifier si λ est déjà vrai (cela a été prouvé) OU déjà faux.

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \wedge l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \wedge l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \wedge b) \rightarrow l$

- 6. a
- 7. b

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

8. p

1

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \wedge l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b
 - ... 1
- 8. p 1 [p]
- 9. l∧ m

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \wedge b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \wedge l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

- 8. p 1 [p]
- 9. l∧m 2
- 10. b∧l 3

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \land l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

Prouver q

- 1. $p \rightarrow q$
- 2. $(l \land m) \rightarrow p$
- 3. $(b \wedge l) \rightarrow m$
- 4. $(a \land p) \rightarrow l$
- 5. $(a \land b) \rightarrow l$
- 6. a
- 7. b

7. D

8. p 1 [p]

- 8. p
 - 9. l∧ m
- 2

10. b∧l

- 3
- 11. a ∧ b 5
- [l,b] [a,b]

[q]

[l,m]

RETOUR VERS L'EXERCICE SUR LES CHAÎNAGES AVANT

Base de règles :

R1 : si Bénédicte et Denis et Etienne viennent alors Farida vient

R2 : si Gérard et Denis viennent alors Amélie vient

R3 : si Coralie et Farida viennent alors Amélie vient

R4: Si Bénédicte vient alors Xavier vient

R5 : si Xavier et Amélie viennent alors Herman vient

R6 : si Coralie vient alors Denis vient

R7 : si Xavier et Coralie viennent alors Amélie vient

R8 : si Xavier et Bénédicte viennent alors Denis vient

Base de faits = {Bénédicte, Coralie}

4. En utilisant un algorithme de chaînage arrière, déterminer quelle suite d'applications de règles permettent de prouver que Herman doit être invité.

POUVOIR EXPRESSIF DE LA TABLETTE DE CHOCOLAT

Une tablette de chocolat bon marché c'est rare, tout ce qui est rare est cher.

Donc le chocolat bon marché c'est cher.

DÉFINITIONS: LANGAGE PRÉDICATIF (1)

Définition (Termes élémentaires)

- 1. Les **constantes** sont des **termes**. Notées a, b, c. Exemples : 0, 1, Alice, Bob, Claude.
- 2. Les **variables** sont des **termes**. Notées x, y, z, t. Exemples : un booléen, une personne.
- Les constantes et les variables sont des termes élémentaires du langage.

« À part 0 et 1, aucun nombre n'est égal à son carré. »

« À part 0 et 1, aucun nombre n'est égal à son carré. »

DÉFINITIONS: LANGAGE PRÉDICATIF (2)

Définition (Fonctions, prédicats)

• Une fonction n-aire (d'arité n) s'applique sur un n-tuple de termes et produit un terme.

Notées f, g, h.

Exemples: 2 (1), + (2), équipe-de-foot (11).

 Un prédicat n-aire (d'arité n) s'applique sur un n-tuple de termes et produit une expression logique, qui peut être évaluée. Notés p, q.

Exemples: est-le-carré-de (2), est-la-somme-de (3), sont-une-équipe-de-foot (11).

Soient les constantes a et b; les fonctions unaires f et g et la fonction binaire h, avec la représentation :

- 1. Que représente g(h(a,b))?
- 2. Écrire le terme qui traduit l'expression « le fils d'Alice et du frère de Bob ».

On considère la formule du premier ordre suivante où x, y et z sont des variables :

$$(a(x,y) \rightarrow (\neg b(x,y,c(z,y)) \lor (d(x)))) \land e(f(x,g(y)))$$

Pour chacun des symboles a, b, c, d, e, f, g dire s'il s'agit d'une fonction ou d'un prédicat, et donner leur arité.

DÉFINITIONS : LANGAGE PRÉDICATIF (3)

Définition (Quantificateurs)

Alice est un être humain VS Bob est un être humain

DÉFINITIONS : LANGAGE PRÉDICATIF (3)

Définition (Quantificateurs)

Alice est un être humain	VS	Bob est un être humain
est-être-humain(a)	VS	est-être-humain(b)

DÉFINITIONS: LANGAGE PRÉDICATIF (3)

Définition (Quantificateurs)

```
Alice est un être humain VS Bob est un être humain est-être-humain(a) VS est-être-humain(b)
```

Quantificateur universel Notation et utilisation : ∀x.

Quantificateur existentiel Notation et utilisation : ∃x.

DÉFINITIONS : LANGAGE PRÉDICATIF (4)

Définition (Variable liée, libre)

Une occurence de x est dite **liée** dans une formule si elle apparaît sous la forme $\forall x$ ou $\exists x$.

Si une variable n'est pas liée, elle est **libre**.

DÉFINITIONS: LANGAGE PRÉDICATIF (4)

Définition (Variable liée, libre)

Une occurence de x est dite **liée** dans une formule si elle apparaît sous la forme $\forall x$ ou $\exists x$.

Si une variable n'est pas liée, elle est libre.

- $f(x, 0) \lor \forall x.f(x, y)$
- $\exists x.(\exists y.f(x,y)) \lor f(x,y)$

DÉFINITIONS: LANGAGE PRÉDICATIF (4)

Définition (Variable liée, libre)

Une occurence de x est dite **liée** dans une formule si elle apparaît sous la forme $\forall x$ ou $\exists x$.

Si une variable n'est pas liée, elle est libre.

- $f(x, 0) \lor \forall x.f(x, y)$
- $\exists x.(\exists y.f(x,y)) \lor f(x,y)$

Attention : derrière le point, des parenthèses invisibles!

DÉFINITIONS: LANGAGE PRÉDICATIF (4)

Définition (Variable liée, libre)

Une occurence de x est dite **liée** dans une formule si elle apparaît sous la forme $\forall x$ ou $\exists x$.

Si une variable n'est pas liée, elle est libre.

- $f(x, 0) \lor \forall x.f(x, y)$
- $\exists x.(\exists y.f(x,y)) \lor f(x,y)$

Attention : derrière le point, des parenthèses invisibles! **Attention** : Si une variable peut être capturée par plusieurs quantificateurs, elle l'est par le plus proche.

$$\forall x. \exists x. f(x) \lor \neg f(x)$$

EXERCICE : ÉCRITURE EN LPO

Traduire les énoncés ci-dessous en logique du premier ordre en utilisant les symboles de prédicats suivants :

h(x) : x est un hommem(x) : x est méchantchat(x) : x est un chata(x,y) : x aime y

p(x): x est une personne

- 1. Il existe un homme méchant.
- 2. Il n'existe pas d'homme méchant.
- 3. Tous les hommes sont méchants.
- 4. Il y a des personnes qui n'aiment pas les chats.
- 5. Les personnes qui aiment les chats ne sont pas méchantes.
- 6. Chaque personne aime quelqu'un et personne n'aime tout le monde, ou bien quelqu'un aime tout le monde et quelqu'un n'aime personne.