FORMALISMES DE REPRÉSENTATION ET RAISONNEMENT

Maria Boritchev 16 janvier 2020

Université de Lorraine

PRÉSENTATIONS

Maria Boritchev https://members.loria.fr/MBoritchev/maria.boritchev@univ-lorraine.fr

Et vous? D'où venez vous? Les maths et vous?

Le cours 10 séances de 2h, CM+TD

Arche / Page perso Supports de cours et informations

L'évaluation DM (exercice corrigé); examen final de 2h (feuille A4 autorisée)

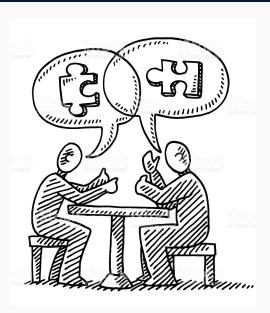
PLAN DU COURS

Généralités sur la logique

Logique propositionnelle

GÉNÉRALITÉS SUR LA LOGIQUE

MOTIVATIONS



L'ESSENTIEL

Définition (Valeur de vérité)

v(A) = 1 si A est vraie; v(A) = 0 si A est fausse.

Définition (Connecteurs)

Nom	Symbole	Valeur de vérité
négation	_	$v(\neg A) = 1 \operatorname{ssi} v(A) = 0$
conjonction	\wedge	$v(A \land B) = 1 \text{ ssi } v(A) = v(B) = 1$
disjonction	V	$v(A \lor B) = 0 \text{ ssi } v(A) = v(B) = 0$
implication	\rightarrow	$v(A \rightarrow B) = 0 \text{ ssi } v(A) = 1 \text{ et } v(B) = 0$
double implication	\leftrightarrow	$v(A \leftrightarrow B) = 1 \text{ ssi } v(A) = v(B)$

L'ESSENTIEL

Définition (Equivalences)

 $A \equiv B$ est une notation pour signifier que A et B ont la même **table** de vérité.

$$\neg(A \land B) \equiv \neg A \lor \neg B$$

$$\neg(A \lor B) \equiv \neg A \land \neg B$$

$$A \to B \equiv \neg A \lor B$$

$$\neg(A \to B) \equiv A \land \neg B$$

L'ESSENTIEL

Définition (Equivalences)

 $A \equiv B$ est une notation pour signifier que A et B ont la même **table** de vérité.

$$\neg(A \land B) \equiv \neg A \lor \neg B$$
$$\neg(A \lor B) \equiv \neg A \land \neg B$$
$$A \to B \equiv \neg A \lor B$$
$$\neg(A \to B) \equiv A \land \neg B$$

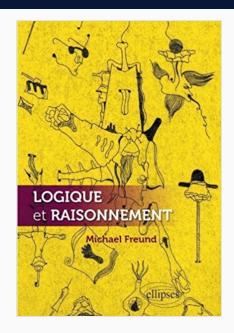
Définition (Notions importantes)

Tautologie: proposition qui est toujours vraie. Symbole \top (top). **Contradiction**: proposition qui est toujours fausse. Symbole \bot (bottom).

ÉCHAUFFEMENT

Prouver $\neg(A \rightarrow B) \equiv A \land \neg B$.

DOUCEMENT MAIS SÛREMENT



DÉFINITIONS

Définition (Formules du langage propositionnel)

- 1. Les variables propositionnelles sont des propositions (atomiques). Notées a, b, c.
- 2. Le résultat de l'application d'un connecteur à une (pour ¬) ou deux propositions est encore une proposition. Notées P, Q, R.

DÉFINITIONS

Définition (Formules du langage propositionnel)

- 1. Les variables propositionnelles sont des propositions (atomiques). Notées a, b, c.
- 2. Le résultat de l'application d'un connecteur à une (pour ¬) ou deux propositions est encore une proposition. Notées P, Q, R.

Définition (Littéral, clause)

Littéral Variable propositionnelle ou négation d'une variable propositionnelle. Exemple : a, ¬a.

Clause Disjonction de littéraux. Exemple : $P = a \lor b$.

RÉSOLUTION

Une unique règle d'inférence qui définit un système de preuve. **Cependant** : nécessite que les énoncés soient sous une forme spécifique.

NORMALISATION

Définition (Forme Normale Conjonctive)

Normalisation d'une proposition sous forme de conjonction de clauses. Une proposition en FNC est une **conjonction de disjonction de littéraux**. Exemple : $(p \lor q \lor \neg r) \land (q \lor s)$.

Toute formule du langage propositionnel peut s'écrire sous FNC.

CONVERSION SOUS FNC

- 1. Élimination des implications.
 - $A \rightarrow B \equiv \neg A \lor B$
 - $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$

CONVERSION SOUS FNC

- 1. Élimination des implications.
 - $A \rightarrow B \equiv \neg A \lor B$
 - $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$
- 2. Distribution des négations (lois de De Morgan)
 - $\neg(A \lor B) \equiv \neg A \land \neg B$
 - $\neg(A \land B) \equiv \neg A \lor \neg B$

CONVERSION SOUS FNC

- 1. Élimination des implications.
 - $A \rightarrow B \equiv \neg A \lor B$
 - $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$
- 2. Distribution des négations (lois de De Morgan)
 - $\neg (A \lor B) \equiv \neg A \land \neg B$
 - $\neg(A \land B) \equiv \neg A \lor \neg B$
- 3. Distribution des disjonctions (OU) sur les conjonctions (ET)
 - $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

EXEMPLE

Mettre sous FNC : $(a \lor b) \to (c \to d)$. Combien de littéraux? Combien de clauses?

EXERCICE

Mettre sous FNC : $a \rightarrow (b \land c \land d)$. Combien de littéraux? Combien de clauses?

RÉSOLUTION (LE RETOUR)

Règle de résolution

résolution A V p ¬p V B A V B

Résolution par réfutation :

- 1. Conversion de tous les énoncés en FNC.
- 2. Négation de la conclusion.
- 3. Application de la règle de résolution jusqu'à :
 - Obtention (dérivation) d'une contradiction.
 - Impossibilité d'appliquer la règle.

EXEMPLE

Énoncés : $a \lor b, a \to c, b \to c$. **Conclusion** : c. Écrire la résolution.

EXERCICE

Énoncés : $(a \to b) \to b, \neg c \to (\neg a \land b), (c \to d) \to \neg (d \to b).$ **Conclusion** : c. Écrire la résolution.

EXERCICE

Énoncés : $(a \to b) \to b, \neg c \to (\neg a \land b), (c \to d) \to \neg (d \to b).$ **Conclusion** : c. Écrire la résolution.