
Imperial College London

Department of Computing

Haptic Deformable Shapes Using Open Source Libraries

by

Alejandro Granados

Submitted in partial fulfilment of the requirements for the MSc Degree in Advanced Computing

of Imperial College London

September 2008

2 | P a g e

“Colour is the keyboard,

the eyes are the harmonies,

the soul is the piano with many strings.

The artist is the hand that plays,

touching one key or another,

to cause vibrations in the soul.”

Wassily Kandinsky

1866-1944

3 | P a g e

Acknowledgements

This dissertation report is dedicated to my parents Blanca and Alejandro and to my
sister Verónica who are indeed my entire life.

Especial thanks to Katia Castañeda who I admire and love and whose closeness and
adoration have always been enriching my life.

I absolutely appreciate the help, advice and time of Dr. Fernando Bello and Dr. Pierre-
Frederic Villard whose work, ideas, comments and suggestions have been both
professional and inspiring.

To my godchildren Alejandro, Daniela and Andrea and to my niece Ivonne and nephew
Manuel who are a source of joy in my life in addition to my family Blanca and Erik, and
Gerardo and Verónica to whom I am delighted to be their brother.

Many thanks to my friends Rene Barrera, Edgar Flores and Miguel Toledo who I respect
and admire and with whom I have spent the greatest moments together as friends and
as professionals.

Thanks to Carlos Boullosa for his worthy friendship and encouragement.

To my friends Eleni, Chara, Kyriacos, Jhyadi, Josiah, David, Antonis, Rafal, Lee and Javid
to whom I feel fortunate to meet in London.

To my English friend Henry Atterbury for all his invaluable stories about London and his
inspiring personality about classical music.

4 | P a g e

Abstract

Surgical simulation in medical applications bridges the gap between training and
performing the real intervention of patients. In this work, both haptic rendering and
deformation modelling are emphasized and represent two crucial areas of any surgical
simulation.

Haptics substantially increases the quality of interaction by adding the sense of touch.
Physiological and psychophysical foundations are present in the design of available
haptic interfaces. Haptic rendering consists of collision-detection, force-response and
control algorithms which are processed in high-frequency servo rates.

To date, research has looked into better ways for approximating a physically-based
modelling due to the nature of deformable soft tissue objects found in human organs,
especially in multi-resolution approaches. Heuristic approaches and continuum-based
mechanic approaches are described.

The advent of appealing open source software frameworks, such as SOFA and H3D,
presents new challenges that will allow a rapid integration platform for deformable
objects and haptic rendering in research.

Finally, a framework for haptic deformable shapes is presented combining haptic
rendering, deformation modelling and open source tools. A virtual human liver is used
for the evaluation and specific procedures such as needle insertion are examined.

5 | P a g e

Table of Contents

Acknowledgements.. 3

Abstract ... 4

Table of Contents ... 5

Introduction ... 9

Motivations .. 9

Objectives .. 9

Structure .. 9

Background .. 11

Haptic Rendering ...11

Haptics ...11

Human Foundations ...11

Multimodal Interaction Systems ...12

Architecture ...12

Collision-Detection algorithms ..13

Bounding Volume Hierarchies (BVHs) ...14

Stochastic methods ..14

Distance fields methods ...14

Spatial subdivision methods ...15

Image-space approaches ..15

Force-response algorithms ...15

Vector field methods ..15

God-object and proxy algorithms ...15

Force shading ...15

Control algorithms ...15

Hardware Interfaces ...16

SensAble®’s Phantom Omni Haptic Device ..16

NOVINT®’s Falcon Haptic Device ...17

Nonlinear Haptic Response of Deformable Objects ...17

Deformable Object Modelling ...18

Deformable Models for Soft Tissue Simulation ..18

Deformable Models ..19

Heuristic methods ..19

Mass-Spring Systems ..19

Linked volumes ..19

Chain mail algorithm ..19

Mass-Tensor models ..20

Continuum-mechanics-based methods ...20

Boundary Element Method ..20

Finite Difference Method ...20

Finite Fast Elements ...20

Finite Element Method ...20

Multi-resolution approaches ..21

6 | P a g e

Time discretisation effects ..22

Remeshing Deforming Objects ..22

Open Source Software Frameworks ..23

SOFA: Physical Simulation Framework ..23

Introduction ...23

Design ..23

Implementation ...25

SOFA Future ...25

H3D: Haptic Rendering Framework ...26

Introduction ...26

Design ..26

Implementation ...26

FLTK: Fast Light Tool Kit GUI..27

Introduction ...27

Design ..27

Framework Design ... 28

Introduction ..28

Objective ..28

Considerations ...28

Hardware Platform ..28

Test environment ...28

Software Architecture ...29

A Conceptual Perspective ...29

Open Source Tools..30

FLTK ...31

Libxml2 ..31

HDAL ..31

H3D..32

SOFA ..33

OpenMP ...33

Haptic Rendering ...33

Haptic Rendering Algorithm ..33

Collision Detection Algorithm ...34

Appearance Model ...35

Haptic Shapes ...35

Haptics Global Settings ...36

Deformable Shapes Modelling ..36

Geometry ...36

Dynamic Modelling ...37

Numerical Integration...37

Deformation Algorithm...37

Framework Implementation .. 38

Introduction ..38

Objective ..38

Software Architecture ...38

A Specification Perspective ...38

7 | P a g e

Open Source Tools Integration ..39

FLTK – Graphical User Interface ..39

Introduction ...39

GLEW ...39

GLU ..39

GLUT and OpenGL ..39

Freeglut ...40

H3DAPI Source Code Modifications ..40

GUI Components ..40

H3D – Haptics Rendering ..42

SOFA – Biomechanical Simulation ...42

OpenMP – Optimisation ...43

Needle Insertion ..44

Introduction ...44

Design ..46

Implementation..46

Haptics & Deformation Analysis .. 49

Introduction ..49

Objective ..49

Haptic Rendering ...49

Haptic Rendering Algorithm ..49

GodObject renderer ...49

Ruspini renderer ..50

Chai3D renderer ...51

OpenHaptics renderer ..51

Collision Detection Algorithms ..52

H3D..52

SOFA ..52

X3D Specification in H3D ..52

Introduction ...52

Abstract Classes ...53

X3D Nodes ...53

Group ..53

Transform ..53

DeformableShape ..53

Geometry ...53

IndexedTriangleSet ..53

Appearance ..53

Deformable Shapes Modelling ..54

Numerical Integration Solver ..54

Evaluation .. 55

Mesh Topology Sizes ...55

Introduction ...55

Scenarios ..55

Haptic Rendering Algorithms...55

Introduction ...55

8 | P a g e

Tests and Results ..56

Haptics Global Settings ..56

Introduction ...56

Tests and Results ..56

Optimisation ...57

Introduction ...57

Tests and Results ..57

Force Fields for Biomechanical Modelling ...57

Introduction ...57

Tests and Results ..57

Numerical Integration Solver ..58

Introduction ...58

Tests and Results ..58

Haptics Open Framework Evaluation ..60

Introduction ...60

Tests and Results ..60

Needle Insertion ..62

Introduction ...62

Tests and results ...62

Conclusion and Future Work .. 65

References ... 67

Appendix .. 71

XML Project Settings ...71

X3D Scene-Graph Example ..71

H3D Source Code Modifications ..72

X3D Needle Representation ..73

9 | P a g e

Introduction

Motivations
Surgical simulation in medical applications bridges the gap between training and performing the
real intervention of patients. Haptic features are inherent in a virtual environment with these
characteristics. Thus, haptics in training plays an important role for the framework as well as the
deformation model used.

The multi-disciplinary aspect of this field requires the integration of state-of-the-art solutions in
a diverse range of areas. As an example, advanced techniques for FEM approximation together
with available multi-resolution methods, and local refinement make easier to simulate an
interaction environment in a single-processor computing system. The use of GPUs might even
help for real-time applications. Additionally, haptic devices, such as NOVINT®’s Falcon, are an
important leverage for this project due to its availability as a consumer-based product.

Finally, the availability and flexibility of recent open source libraries for the simulation engine
and the haptic rendering bring more possibilities to this research.

Objectives
“The aim of this project is to use the Open Source libraries H3D and SOFA to build a framework
for haptic deformable shapes that will allow the interaction with objects that will deform
according to an underlying mathematical model. Such system will facilitate future development
of surgical simulators by offering a common development platform.”

Structure
This document comprises five chapters called background, design, implementation, analysis and
evaluation.

The background chapter is divided mainly in three general sections. In the first part haptic
rendering is described. Design guidelines are based on human foundations and the importance
of multi-modal environments using vision and haptics is emphasised. Haptic rendering
architecture is depicted along with some collision-detection, force-response and control
algorithms. A brief introduction to haptic interfaces is included and key features of nonlinear
behaviour are considered at the end of this section. In the second part, nonlinear deformation
models are described with especial interest in those representing physical characteristics of
human soft tissue. Deformable approaches are classified in three main groups: heuristic,
continuum-based and multi-resolution models. Time discretisation effects are considered and
an analysis of remeshing techniques is discussed. Finally, in the third section, open source
libraries are analysed. Firstly, SOFA framework is described as it will be used for the simulation
engine. H3D is described shortly thereafter as the haptic rendering engine. To finish, FLTK will be
used as the GUI platform.

The design chapter includes a summary of the project from different points of view. It serves as
a quick reference to see the overall of the implemented framework. It covers information about
the hardware platform used for the development and highlights the key aspects in the software
architecture proposed for the Haptics Open Framework. By means of UML sequence diagram,
this chapter explains how the open source tools were integrated as an overall. It also describes
what algorithms and features are used regarding to haptic rendering and deformation modelling.

10 | P a g e

The implementation chapter provides more detailed information about the software
architecture and how the open source tools have been integrated referring to implemented
classes. It also explains briefly the GUI components of the framework. In the last part of this
chapter, a specific application is described, modelled and implemented for needle insertion
procedures.

The analysis chapter links some implemented features in SOFA and H3D to the existing literature
in a way to support the decisions taken into the framework and to provide a fundament before
performing tests and confirming results in the following chapter.

Finally the evaluation chapter describe specific test scenarios and their respective results as a
proof of the proposed framework. Shortly thereafter, some conclusions and future work are
manifested.

11 | P a g e

Background

Haptic Rendering

Haptics
During the last two decades the sense of touch has become an important research topic due to
its importance in human-computer interaction systems. The understanding of sensory,
perceptual and cognitive abilities in humans has become a turning point in the design and
implementation of haptic-enabled systems. In consequence, disciplines ranging from robotics
and telerobotics to psychophysics, cognitive science and neuroscience have presented an
increased activity in this field.

‘Haptic’, from the Greek haptesthai, pertains to the sense of touch and refers to the variety of
possible human and robot interactions with real, remote or virtual objects. The process of
conveying object properties as sensory stimuli to a user is called haptic rendering, as described
by Salisbury et al [2004].

Surgical simulation and medical training along with the game industry have been the primary
application areas for haptics. In addition, haptics represents an alternative modality to sound
and vision for visually impaired people and becomes a supplement to military applications.
Decorating and sculpting in virtual environments are common example applications in virtual
arts by interacting with virtual objects in real time. Museums benefit from this principle by
allowing visitors to interact with artefacts in 3D. A more detailed explanation of these and more
applications can be found in McLaughlin [2005] and Kim [2004].

Human Foundations
Physiological and psychophysical knowledge about the sense of touch helps as a guideline for
designing haptic interfaces as proposed by Hale and Stanney [2004]. A multimodal environment
is inherent in human beings and both perception and cognition play an important role while
interacting with this environment. Touch benefits from an independent sensory bidirectional
channel that speeds reaction time and reduce hand-eye coordination errors.

Physiologically, there are two different types of haptic stimulation: tactile and kinaesthetic. This
classification depends mainly on the location of the receptors. On the one hand, tactile
mechanoreceptors are located in the skin and detect touch and pressure. There are four distinct
receptors in glabrous (hairless) skin which include Meissner and Pacinian corpuscles, Merkel
disks and Ruffini endings. Hands are a good example of glabrous skin which is most effective for
detailed tactile information. Additionally, Pacinian corpuscles and Ruffini endings are present in
hairy skin along with a third receptor called hair follicles.

On the other hand, kinaesthetic receptors can be found in joints, tendons and muscles and help
sense how fast and in which direction the limbs are moving. Ruffini and Golgi endings are
located in or near joints and are considered protective receptors. Golgi tendon organ receptors
are located in tendons and sense active positioning. Located in muscles, muscle spindles
receptors sense limb weight and consciously provide awareness of body movement.

Psychophysics is a branch of psychology and studies the relationship between objects and the
perception of its geometric and physical properties as described by Choi and Tan [2004].
Psychophysical experiments have been widely used by researchers to understand the ranges,
thresholds and stimulation of particular senses and evaluate multi-receptor perception and its
limitations. The results acquired are of extreme importance in the design of a haptic interface.

12 | P a g e

Hale and Stanney [2004] also consider cross-modal effects as a design guideline. Neurologically,
it has been proved that vision and touch are strongly linked together in dynamic contact
information. The benefits of this analysis suggest the incorporation of multimodal stimuli into
priming and cueing strategies. Priming presents stimuli to a user and expects other stimuli in a
different modality whereas cueing expects stimuli in the same modality.

Multimodal Interaction Systems
Although haptics has become an interesting field, graphical and auditory rendering are more
common in current interaction systems. Even when haptic rendering enhances dramatically the
quality of an interaction, it presents new challenges. Conveying information about a virtual
object as stimuli is computationally demanding and the physical modelling of the interacting
objects is complex. Nevertheless, a multimodal environment rendering both visual and haptics
information improves the user experience into a more realistic immersion in interactive systems.

Physical modelling involves the representation of virtual object’s physical properties, i.e. mass,
stiffness, dynamic behaviour, and interactive forces among many others. Representing rigid
objects is commonly used although deformable shapes have become of more interest in current
research where nonlinearity is present in many physical properties. Refer to Terzopoulos et al
[1987], Mahvash and Hayward [2004], and Faraci [2005] among many others.

In addition, surface and texture modelling together with friction representation is essential for
some application as presented by Kim [2004].

The next section describes a simple architecture of a virtual reality system and a more detailed
explanation of the most common force-feedback devices used in research for surgical
simulations.

Architecture
Salisbury et al [2004] describe a basic architecture for a virtual reality application featuring
visual, audio, and haptic feedback. Figure 1 depicts the main architecture components. The
simulation engine is responsible for the computation of the simulation behaviour over time.
Audio-visual and haptic rendering compute and convey graphic, sound and force responses to
the user. Transducers help to convert the rendering output into a form the user can perceive.
Displays, speakers and force-feedback devices are commonly used.

Figure 1 - Virtual Reality Application Architecture

Clearly from the diagram, there is a key difference in the information flow. Video and audio
information flows in a unidirectional way towards the user whereas haptic information flows in
a bidirectional way. While interacting with a haptic interface, the user either perceives a force
from the simulation engine or sends its position due to a movement in the interface. This
modality feature becomes an essential mechanism for the interaction in real time.

13 | P a g e

Haptic rendering algorithms are responsible to compute the interaction forces between the
virtual objects and the virtual representation of the haptic interface in the virtual environment.
This virtual representation of the haptic interface used by the user is called avatar.

Salisbury et al [2004] also identify 3 main components comprising a haptic rendering algorithm
as shown in Figure 2, i.e. collision detection algorithms, force response algorithms and control
algorithms.

Figure 2 - Haptic Rendering Algorithm Components

Collision detection algorithms detect when, where and in what conditions a collision occurred
between the avatar and objects. An avatar in the form of a tool with a tip provides a helpful
simplification because the rendering is done mainly in the avatar’s tooltip position X and the
object in contact. Force response algorithms compute the interaction forces due to the collision
as it would be normally done in the physical world. The positions X of the avatar’s tooltip and
the object as well as the collision state S between them are necessary to compute force and
torque vectors Fd. These force and torque vectors are sent to the simulation engine where the
mechanical behaviour is computed in a time-discrete approximation. Additionally, the
interaction forces are processed by control algorithms which minimize the error between ideal
and applicable forces Fr due to haptic device limitations.

The discrete-time nature of this approach is essential to approximate the dynamic behaviour of
the environment. However, the only way to detect that both objects have collide is by means of
the penetration of the avatar’s tooltip into the object owing to the discrete-time nature. Several
issues arise from this perspective, especially when dealing with thin objects. Some algorithms
extensions or variations have been proposed extensively and will be discussed later in this
document.

Haptic rendering algorithms are carried out in this sequence in a loop at each time step. Usually,
a 1KHz servo rate is common for some applications. Although higher frequencies can provide
texture sensations a trade-off is always considered due to constrained computational resources.

Collision-Detection algorithms

Collision detection has been studied for many years in computer graphics, especially for
rigid objects in animation. However, collision detection for deformable objects is an
important area of research. Cloth simulation, surgical simulation and animation are the
main applications.

14 | P a g e

Teschner et al [2005] analyse various aspects that should be addressed for collision
detection with deformable objects in contrast with rigid objects. In addition to contact
points, self-collisions should be considered (usually neglected for rigid objects). Efficient
algorithms use spatial data structures which are built in a pre-processing stage. These
structures performed well for rigid objects, although they need to be frequently updated for
deformable objects. Additionally, it is not sufficient to detect the interference of objects for
deformable bodies, more information such as penetration depth should be provided as well.
Finally, performance is of paramount importance for interactive applications of deformable
objects.

Teschner et al [2005] describe different approaches for deformable objects, including
bounding volume hierarchies (BVHs), stochastic methods, distance fields, spatial subdivision
and image-space approaches.

Bounding Volume Hierarchies (BVHs)

In a pre-processing step, a bounding volume BV tree is recursively built until a leaf
criterion is met based on object primitives. Primitives are the graphical entities that
comprise the object. BVH works well with triangles and tetrahedra. The different types
of BV are shown in Figure 3.

Figure 3 - Bounding Volume Types

During each time step, a top-down hierarchy traversal is carried out recursively to test
overlaps between pairs of tree nodes. Furthermore, for deformable objects, the
hierarchy structure needs to be updated/rebuilt, thus, efficient algorithms need to be
considered. Self-collisions are easily implemented using BVH as the overlap tests can be
done between nodes within the same object tree. The selection of the BV type, the arity
of the tree, the creation of the hierarchy and either rebuilding or updating are some of
the design features of BVH. For deformable objects, AABB type is usually selected
because it can be refitted efficiently, 4-arity and 8-arity trees introduce a better overall
performance and refitting is preferred over rebuilding.

Stochastic methods

Stochastic approaches give higher priority to the performance of collision detection
algorithms rather than its accuracy, thus no exact simulation is possible. Two main
methods based on probabilistic principles are described in Teschner et al [2005]. The
average-case approach estimates the possibility of a collision with respect to a quality
criterion based on the number of intersected polygons, whereas the randomly selected
primitives approach guesses the potential intersecting regions.

Distance fields methods

Distance fields methods represent a highly robust collision detection alternative for non-
interactive applications. Basically, space is divided by specifying the minimum distance
to a closed surface for all the points in the field. Uniform 3D grids, octrees, and BSP-trees
are used to represent distance fields. In deformable bodies, by comparing the vertices
of one object against the distance field of the other object and vice versa, a collision is
detected if the distance field mapping is less than the zero level set or sometimes less
than an offset to avoid artefacts as described by Teschner et al [2005].

15 | P a g e

Spatial subdivision methods

For deformable object collision detection, Teschner et al [2005] analyse spatial hashing
with uniform grids and tetrahedral meshes. This algorithm maps vertices into small grid
cells in a hash table, providing efficiency in memory and flexibility. Then, information of
the grids that were touched by tetrahedra is mapped. Finally, vertices and tetrahedra
are checked within a hash table entry for intersections.

Image-space approaches

These methods process projections of objects to accelerate collision queries. Although
especially targeted for environments with deforming objects due to the lack of a pre-
processing stage, these approaches present drawbacks for physical-based simulations as
collision response information is limited.

Force-response algorithms

As described previously in this document, tactile and kinaesthetic information are used in
perception and become the basis of computing interaction forces. Salisbury et al [2004]
distinguishes two different kinds of forces: forces due to object geometry and forces due to
surface properties.

Several approaches exist to compute the interaction forces due to object geometry which
includes vector field methods, god-object and proxy algorithms, force shading and some
variations and extensions of these ones.

Vector field methods

Vector field methods are based on a one-to-one mapping between force and position.
There is no record of previous avatar positions and hence difficult to handle thin or
small objects where undetected collision may occur.

God-object and proxy algorithms

God-object and proxy algorithms are based on a god/proxy object connected by a spring
to the avatar. In free space, the avatar and the god/proxy object are collocated, thus not
returning any force. The location of god/proxy object is based on a set of active
constrains as described by Salisbury et al [2005].

Force shading

Force shading is used to perceive smooth changing forces by interpolating normals. It is
equivalent to Phong shading in graphic rendering which gets smoother surfaces by
interpolation.

Various approaches are also available for computing the interaction forces due to surface
properties which includes Karnopp model, Bristle model, reset integrator model, texture
mapping, and friction.

Control algorithms

As described previously, control algorithms are useful to minimize the error between ideal
forces and applicable forces due to hardware limitations. Basically, these limitations come
from device mechanics issues and from the virtual reality nature of a simulation.

Device mechanics issues are caused mainly because of a limited magnitude of the forces
than can be applied in a haptic device. Also, forces are not properly done in all directions. In
addition to these issues, most haptic devices include friction, inertia and backlash which
diminish substantially the ideal behaviour of the device in both free space and while in
contact with an object.

16 | P a g e

Issues due to the virtual reality nature mainly consist of the time discrete feature in haptic
devices whereas the user interacting with the haptic interface acts in a continuous time.
Additionally, quantization errors arise owing to the finite resolution of haptic device sensors.

Finally, energy leaks affect stability, and some techniques have been designed to overcome
unstable behaviour. Virtual damping limits the energy flow from the environment to the
user. Virtual coupling uses stiffness and damping to create a link between the haptic device
and the avatar limiting the maximum impedance that can be done by the device. Multi-
threading is used as well with the aim of increasing servo rates by decoupling force response
algorithms from other slower algorithms.

Unrealistic scenarios are present as a consequence of not overcoming the issues described
above. In applications such as surface rendering, Choi and Tan [2004] describe perceived
instability as all those unrealistic scenarios such as buzzing, aliveness and ridge instability.
Buzzing refers to high-frequency vibrations a user feels when touching a textured surface.
Aliveness regards to pulsating force changes even when the user has no movement when
touching the object’s surface. Finally, ridge instability is related to the perception of force
directions. When the avatar’s tooltip is in contact with a ridge in the surface it is actively
pushed to the valleys.

Hardware Interfaces
To date, various haptic interfaces have been extensively used in research. It mainly refers to the
physical connection between user and device through which energy is exchanged. Stylus
interfaces and hand interfaces are the most commonly used.

Haptic interfaces may be classified by their grounding locations or more precisely by their
mechanical behaviour or by the number of Degrees of Freedom (DOF) they can handle.

Regarding to the mechanical behaviour, an interface can be either of impedance or admittance
type. Impedance devices read position and then send force whereas admittance devices read
force and send position. Devices classified by the DOF of motion, i.e. the total number of
dimensions they can handle, can be either passive or actuated, or either sensed or not sensed.

SensAble®’s Phantom Omni Haptic Device

SensAble®’s Phantom haptic device, shown in Figure 4, has been widely used in research for
many years, especially in surgical simulators. It provides a 6-DOF positional sensing using a
stylus.

Figure 4 - SensAble's Phantom Omni Haptic Device

17 | P a g e

SensAble® provides a OpenHaptics Toolkit based on OpenGL API and X3D which will be
discussed later in this document. The OpenHaptics toolkit is comprised of Phantom Device
drivers (PDD), Haptics Device API (HDAPI) and the Haptic Library API (HLAPI).

NOVINT®’s Falcon Haptic Device

Recently, NOVINT® releases one of the most exciting consumer-based haptic devices, i.e.,
NOVINT®’s Falcon, as shown in Figure 5. Nowadays, it can be purchased for around £100.
The advantage of price has leveraged both research- and consumer-oriented applications.

Falcon haptic device consists of a 3D cursor with detachable grips. It is a 3-DOF for both
input and output, although more degrees of freedom are possible through enabled grips.
Currents actuate motors at 1KHz.

Figure 5 - NOVINT®'s Falcon Haptic Device

NOVINT® provides an SDK API which can be used using C++. The API is divided in three layers:
DHDLC (low-level drivers), HDAL (mid-level device communication) and Falcon API (high-
level programming toolset).

Nonlinear Haptic Response of Deformable Objects
Thus far, a broad outline has been described for haptics above. Notwithstanding the advantages
and challenges imposed by haptics, the introduction of nonlinearity behaviour and the
modelling of deforming objects, such as soft tissue, increase the complexity of the application
design.

As above, haptic rendering algorithms convey physical properties of a virtual object by
computing interaction forces when in contact. Regarding a deformable body, Mahvash and
Hayward [2004] describe that the computed force response due to deformation is a function of
deflection only, which refers to the existing displacement of the initial point of contact of a
deformable body when touched by the avatar’s tooltip or a collision with another virtual object
occurs. This principle holds without depending on the deformable body properties even if it is
anisotropic, not homogeneous, nonlinear elastic or large deformation occurs on it.

In a virtual environment, the location of objects, their geometry, texture and friction are some
basic properties that need to be modelled and considered by haptic rendering algorithms. Both
rigid and deformable bodies present these properties. For deformable bodies more properties
are involved though. Human organs properties, for example, consist of the type of material,
support and the internal structure among others.

18 | P a g e

Furthermore, some properties differ depending on soft tissue conditions, i.e., either if it is
attached to a bone or other organs, whether it is a in vivo sample or not, or even if an organ is
filled or empty as in the case of the gallbladder. These properties are difficult to sample as they
are different in one patient over the time and from patient to patient. To date, researchers have
placed great emphasis on this area to avoid sampling in vivo and be able to model it physically
as closer as possible.

In this sense, high-fidelity is mandatory for some application, especially simulation engines
targeting deformation of soft tissue. High-fidelity implies that the virtual environment is
represented with the fewest defects possible. Mahvash and Hayward [2004] list some
simulation properties that are shared with the physical world. Firstly, the computing forces
should reproduce the actual interaction. Secondly, the discrete nature of the environment
makes difficult to obtain forces that are continuously related to displacement. Also, the principle
of conservation of energy should comply as it is done in the physical world. Finally, the update
rate of the simulation should be high enough to have a closer approximation to the real world.

Commonly, the modelling of realistic computed force responses is carried out by solving the
continuum equations of deformation. Finite element methods and its variants are commonly
used. In the following sections a more detailed explanation of these and other approaches can
be found for deformation models.

Deformable Object Modelling

Deformable Models for Soft Tissue Simulation
The deformation modelling of objects in a simulated interactive environment is an active
research area. An inherent mechanical behaviour is present in deformable objects and
understanding the motion when forces are applied on them involves the necessity of a physics-
based modelling in the simulation. The dynamic behaviour of these models is approximated by
formulating and solving the continuum equations of motion, which are obtained from
Newtonian mechanics.

Demetri Terzopoulos is one of the pioneers in integrating dynamics of deformable active models
into a simulation. In computer graphics, active models are based on principles of mathematical
physics. Terzopoulos et al [1987] used the theory of elasticity to model physical properties such
as tension, rigidity, mass and damping. In a time discrete basis, the partial differential equations
are numerically solved and hence be able to govern the evolving shape and its motion through
space.

Surgical simulation for training in virtual environments is a common application found in
research. It is computationally demanding because of the complex nonlinear, viscoelastic,
anisotropic and nonhomogeneous behaviour present in human tissue. Furthermore, real-time is
necessary to be able to simulate realistic interactive speeds for vision and haptics. Therefore,
neither accuracy nor speed can be compromised and trade-offs are frequently considered.

Some methods rely on offline pre-computation of large number of possible exerting forces
looking them up in real time. Although these methods are effective, they are not suitable for
representing nonlinearity features. Nonetheless, there are approaches that adapt them to
include nonlinearity as proposed by Mahvash and Hayward [2004].

Online methods using real time computation are most frequently used. These approaches use
numerical integration methods through time in the form of small time steps during the
simulation. In the following section a more detailed description of these methods can be found.

19 | P a g e

Deformable Models
The most frequently used deformation models are classified in three basic groups accordingly to
Meier et al [2005]: heuristic methods, continuum-mechanics-based methods, and hybrid
methods. Multi-resolution approaches are considered as a fourth classification group by Faraci
[2005].

Heuristic methods

Mass-Spring Systems

This approach simulates a solid object through its surface. Using a mesh, a set of nodes
with a given mass is interconnected through edges that behave as springs with given
stiffness and damping.

MSS is not as demanding as continuum-mechanics-based methods, computationally
speaking. Newtonian laws of motion are used to simulate the dynamic behaviour. Hence,
a system of differential equations is solved for every node by discretisation of time in
time steps. Euler and Runge-Kutta solvers are frequently used for this purpose.

Even when it is computationally attractive and a topology modification can be easily
done, the disadvantages outweigh the advantages as analysed by Faraci [2005]. The lack
of volumetric information does not allow for simulating cutting, which is a common task
in surgery. The central difference scheme, as the integration method, presents a major
drawback when handling the local mesh structure, that is, the displacement of one node
only propagates to the closest connected nodes. Consequently, it does not allow a rapid
propagation of deformations as at each time step. Also, MSS does not allow accurate
modelling of material properties which are heuristically determined and oscillations may
occur.

Nonetheless, MSS are typically used in medical and engineering simulations where a
perfect simulation is not a constraint. As an example, Nedel and Thalmann [1998] used
MSS to represent muscles at two different levels: action lines and muscle shape. More
recently, Georgii and Westermann [2005] exploit features of Graphics Processing Units
(GPUs) using two different data structures approaches to synthesize the interaction
forces: point-centric (PCA) gathers information from adjacent nodes whereas edge-
centric (ECA) uses scattering to update the position of mass points.

Linked volumes

Volumetric extension to MSS which represents the volume of a deformable object with
evenly spaced cubic elements that are commonly interconnected using springs and
dampers. It is more computationally demanding as MSSs due to the increased number
of nodes and interconnections, therefore slowing down the propagation of
deformations.

Chain mail algorithm

As linked volumes, this algorithm discretises volume, although the interconnection of
the cubic elements is represented as links of a chain. In this sense, a link can moved
feely without affecting any of its neighbours in a limited range and at the same time it
only affects displacement of adjacent links. In this algorithm, force responses are
assumed to be proportional to the penetration depth, thus non-homogeneous tissues
are not properly modelled, as described by Meier et al [2005].

20 | P a g e

Mass-Tensor models

This method is another volumetric extension of MSS which represents volume as
tetrahedra. Mass-tensor models provide a simplified linear relationship to describe the
deformation behaviour in tetrahedra. Consequently, the physical realism of a simulation
is limited to small deformations as analysed by Meier [2005]. Non-linearity variants have
been proposed with the sacrifice of computational resources.

Continuum-mechanics-based methods

Boundary Element Method

The approximation of solving the differential equations of motions is applied in a
specific domain. The boundary of an object corresponds to its surface, which is
discretised in a finite number of elements as in a mesh. Hence, there is no need to
involve internal points as part of the solution. Accordingly to Wu et al [2001], BEM is still
dense even though it is one dimension less than FEM. Also, the internal behaviour of
soft tissue cannot be modelled.

BEM evolved from integral equation methods known as Boundary Integral Equation
Methods (BIEMs). From the two different approaches for formulating problems, the
direct one is most widely and recently used in scientific applications. It is based on
finding Green’s function solutions of partial differential equations. Therefore, if the
Green’s function along with the boundary conditions of a well-defined mesh are known,
then the solution of such boundary is also known as an integral equation that can be
numerically computed, as described by Kythe [1995].

With some restrictions and assumptions on the deformable body, that is isotropic,
homogeneous and linear elastic behaviour, Monserrat et al [2001] use efficiently BEM
and ongoing research is focusing on the application of viscoelasticity and
nonhomogeneous properties as found in soft tissue. Viscosity is represented by
nonlinear strain in the velocity field as stated by Wu et al [2001].

Finite Difference Method

In FDM, a differential operator is approximated by algebraic difference operators. This
approach provides accuracy and efficiency when the geometry of the object is regular.

Finite Fast Elements

FFE simplifies a volumetric mesh by compressing the system to surface points. FFE is a
fast approach for real-time applications using linear models. Cutting cannot be modelled
by FFE because it requires offline computations, thus topological modifications are not
considered.

Bro-Nielsen [1996] overcomes the problems of a surface model by using volumetric data
and FFE for surgery simulation. As a result, a linear matrix system of equations is
computed based on Hooke’s law, which models linear elasticity of deformable objects.

Finite Element Method

FEM are often preferred by researchers in solid mechanics and structural engineering as
it allows to discretise irregular geometries. Conventional FEM is computationally
demanding in processing and in memory. Active research is constantly done to reduce
the computation overhead for real-time purposes in simulation.

Discretisation transforms the partial differential equations of motion into a system of
linked ordinary differential equations, as analysed by Terzopoulos [1987].

21 | P a g e

Linear models were initially introduced because they are fast and allow off-line pre-
computation. Linearity assumes both linear elasticity and linear strain. The linear system
of equations is represented as follows:

𝑀𝑢 + 𝐷𝑢 + 𝐾𝑢 = 𝑓

where mass matrix M, damping matrix D and stiffness matrix K are all constant and
usually sparse. The displacement vector is represented by u and force by f.

Wu et al [2001] describe nonlinear FEM in two nonlinear proportionalities, i.e., strain is
nonlinear in velocity and displacement whereas stress is nonlinear in strain. The
nonlinear system of equations is represented similarly as the linear version, although
stiffness is no longer lineal:

𝑀𝑢 + 𝐷𝑢 + 𝑅(𝑢) = 0

Essentially, this system of second-order ordinary differential equations is
computationally demanding and storage-consuming. However, due to the accuracy of
the model representation, FEM is frequently used for modelling soft tissue.

There are some well-known techniques that help to speed up the computation time
emphasising in real-time feasibility. Mass lumping and time integration are frequently
used in FEM with a single processor.

 Mass lumping produces a diagonal matrix. One of the simplest methods is column/row
summation. The total mass of the object is preserved and it allows local mesh
refinement in real-time. Even better, as shown in Zienkiewicz and Taylor [2000]
dissipation is added to the stiffness matrix whereby oscillations are cancelled out.

There are two types of time integration techniques: implicit and explicit. On the one
hand, implicit methods are commonly found in animation using large time steps. For
real-time applications it is not effectively used because of a poor convergence time,
though. On the other hand, explicit schemes are faster, although they require smaller
time steps to avoid instability. Zienkiewicz and Taylor [2000] describe a critical time step
to guarantee stability, which is directly proportional to the total number of elements
and inversely proportional to the square root of the stiffness.

Recently, Dehghan et al [2007] use FEM for fine-tuning purposes while modelling
needle-tissue interaction using ultrasound radio-frequency for motion estimation using
tetrahedral elements.

Bargteil et al [2007] were even further using FEM for more sophisticated models. They
incorporate both plastic and elastic deformations for simulating viscoplatic flow. These
properties are commonly found in everyday life such as chewing gum, toothpaste, and
shampoo.

Multi-resolution approaches

In a multi-resolution approach, different levels of detail are applied to the mesh. High
resolution is presented in areas of deformation whereas a lower resolution is presented far
from the contact area. At the same time, the physical behaviour improves by adding more
elements in the contact area. Faraci [2005] proposes a nonlinear multi-resolution scheme
by defining two levels of resolution for tetrahedral meshes: coarse for those areas not in
contact and refined for deformable areas.

22 | P a g e

Furthermore, selection of active tetrahedral, online remeshing and refinement throughout
the simulation are common tasks done in this kind of approaches, as proposed by Paloc,
Faraci and Bello [2006]. A more detailed description can be found in the following section.

Time discretisation effects
Finally, it is worthy to comment that the approximation of a physical problem merely affect the
simulation as the result of the time discretisation in numerical integration.

Passivity is a physical property that defines that some objects are incapable of generating
energy by themselves. Passivity objects in a virtual environment unavoidably add a measure of
activity owing to the discrete time nature of the simulation.

Mahvash and Hayward [2004] detect buzzing, aliasing of force signals, and low-frequency
harmonics that are not filtered out by the haptic hardware as effects of time discretisation. This
problem can be solved by increasing the rate of the simulation. However, they suggest a
multirate approach instead.

Remeshing Deforming Objects
As it was described in earlier sections, triangular mesh representations are used to model the
surface of virtual objects. Triangular meshes are efficient structures for graphical rendering.
However, physical modelling requires a more appropriate representation and tetrahedral mesh
structures are used instead.

The main advantages of using tetrahedra include the following. Cartesian, rectilinear and
curvilinear meshes can be represented using tetrahedral meshes. Tetrahedral meshes produce a
more detailed representation using fewer elements. It provides a surface triangular mesh
representation. In MSS, they are suitable to preserve volume. Finally, tetrahedral meshes are
extensively used in FEM.

Remeshing techniques are useful in multi-resolution approaches where local refinement is done
in contact areas that are likely to be deformed. The deformation of the object then requires a
higher resolution which involves online remeshing, either by inserting new mesh points or by
removing them in applications such as cutting in surgical simulation.

In either case, the complexity becomes apparent when a good enough mesh quality is required
for the numerical integration. Degradation may happen in the simulation if the elements in the
mesh include small or large angles. Therefore, Delaunay criterion is used to guarantee the
quality of the tetrahedral mesh. It is sometimes called empty sphere property. A Delaunay
triangulation maximises the minimum of the angles formed by the edges between the elements.

Figure 6 - Delaunay Circumspheres

23 | P a g e

This property states that any node must not be contained within the circumsphere of any
tetrahedra in the mesh. A circumsphere passes through all four vertices of the tetrahedron. A
common technique to restore the Delaunay property is by flipping algorithms, either using
edges or faces.

Once a local area has been refined, it is unlikely to require high-resolution at a later stage in the
simulation. The simplification procedure representing the reverse operation is called local mesh
decimation. Paloc, Faraci and Bello [2006] used these algorithms for online remeshing of soft
tissue.

Finally, Wu et al [2001] use dynamic progressive meshes for nonlinear deformable bodies, which
consist of offline pre-processing and online refinement. In the offline stage, a good quality and
detailed meshed is provided and then coarsened. The process is stored in a hierarchical tree
which is useful in the online stage. Error estimation determines where local mesh refinement is
necessary. Wu et al [2001] identify four error estimators which are based on stress
concentration, displacement field, substantial internal stress variation (optimised posterior), and
stress gradient.

Open Source Software Frameworks

SOFA: Physical Simulation Framework

Introduction

SOFA’s prime objective is focused in medical simulation research, providing a common
software framework for the community. Figure 7 shows a primal target application for
medical simulation for laparoscopy.

Figure 7 - SOFA Laparoscopic Surgery Simulator

The key difference of open source C++ library among other open source solutions is the
modularity and the flexibility of its architecture design. Furthermore, independent
developed algorithms can be incorporated within the same simulation engine minimising
integration time. Additionally, it allows the modification of simulation parameters such as
deformable behaviour, surface data representation, integration solver, constraints, collision
algorithm, and so on.

Design

Scene-graphs, commonly used in graphics, are directed acyclic graphs introduced in SOFA.
They permit the creation of complex models by organising and processing the elements of
the simulation. Each component is attached to a node in a tree structure. Figure 8 shows a
scene-graph for a pendulum with a deformable string and a rigid object. Nodes are

24 | P a g e

represented as grey hexagons and components as coloured squares (colour indicates the
component type). Thick arrows represent tree hierarchy, thin arrows represent attached
components to the nodes, and dotted arrows are pointers between components. Faure
[2007] describes this example in a software perspective.

Figure 8 - SOFA Pendulum Scene-Graph

Two levels of modularity are present in SOFA: multi-model representation and fine
granularity level for physical properties, as described by Allard et al [2007].

SOFA architecture supports a multi-model representation, i.e., simulation components can
have several representations connected together through mapping whereby allow us to use
different geometric models for a given body. Figure 9 shows an example of different
representations of a liver (mappings are depicted as arrows). Multi-model representation is
the basis of a high-level modularity scheme. As an advantage, it is possible to have models
of different nature (rigid, deformable, and fluid objects) interacting together.

Figure 9 - SOFA Multi-Model Representation

SOFA also introduces a finer level of granularity for physical models, i.e., the Behaviour
Model. Thus, physical models are decomposed into a set of basic primitives: DoF (positions,
velocities and accelerations), Mass (scalar, vector or matrix), Force Field (springs,
linear and co-rotational FEM, Mass-Tensor, and Smoothed Particle Hydrodynamics), and
ODE (Ordinary Differential Equation) Solver (Euler, Runge-Kutta 4, and implicit conjugate-

25 | P a g e

gradient based Euler). Switching among available components allows its comparison and
further analysis.

During the loop simulation, the data structure is processed using actions, which recursively
traverse the tree hierarchy calling appropriate virtual methods. Traversals can be done in
two ways: top-down traversal (TDT) and/or bottom-up traversal (BUT). InitAction,
AnimateAction, VisualDrawAction and MechanicalComputeForceAction

are some examples among others. Actions belong to namespace simulation::tree.

Implementation

SOFA framework is distributed under the terms of GNU Lesser General Public License (LGPL)
which permits its use solely in proprietary programs. Currently developed by four research
teams in two institutes: INRIA (Alcove, Asclepios, Evasion) and CIMIT (SimGroup,
MIT/Harvard/MGH). The latest release (as per the time of writing this document) is version
1.0 beta 2.

Simulation parameters can be stored in an XML file which is parsed using libxml2, which is
an XML C parser and toolkit developed for the Gnome project. The parsing process is
handled by the sofasimulation component under the
sofa::simulation::tree::xml namespace.

SOFA supports two default user interfaces: Qt by Trolltech, and FLTK (Fast Light Toolkit).
They are implemented in SOFA as sofaguiqt (sofa::gui::qt namespace) and

sofaguifltk (sofa::gui::fltk namespace), respectively. Both provide a portable
windows-handling mechanism to interact graphically with SOFA. Event handling is done
through callback procedures and widgets are used to design the window layout.

In addition, OpenGL and Ogre graphic renderers are supported. Both rendering engines are
widely used in a myriad of application.

Independently, Gmsh software has been used to visualise available human tissue data in
‘.msh’ file format. 3D point coordinates are set as nodes and then referenced to create
tetrahedra elements. This representation is loaded in the topology component
(sofacomponent) using the MeshTopology class.

Finally, NewMAT C++ library is used by SOFA. NewMAT provides the manipulation of a
variety of types of matrices using standard operations. It is part of sofadefaulttype
component library.

SOFA Future

As described previously, SOFA presents an efficient solution for medical research simulators.
Nonetheless, SOFA presents few weaknesses that need to be solved. Documentation is
incomplete, the main loop is not customisable, and constraint-based methods are difficult
to implement.

Accordingly to Faure [2007], future work within SOFA development team involves coping
with the above weaknesses and implementing features such as friction, haptics, and faster
collision detection algorithms, among others. For instance, SOFA is integrating haptics to
their framework using SensAble® devices and even at ISBM’08 they mentioned this
dissertation project as an ongoing implementation to handle haptics using H3D.

The roadmap also includes parallelisation using GPUs and clusters and an easier debugging
process. Early attempts using spring-based models have used GPUs in SOFA accordingly to
Faure et al. [2007]. They transfer part of the simulation to the GPUs using NVIDIA CUDA
library.

26 | P a g e

H3D: Haptic Rendering Framework

Introduction

H3D API is an open source, cross-platform scene-graph API. It is developed by
SenseGraphics® and provides a development framework for multi-modal applications, called
sometimes immersive systems.

In research and in industry, H3D has been recognised as an ideal development platform. It
leverages on a diverse range of haptic devices including products from SensAble®, Novint®
and ForceDimmension®.

Design

H3D has been designed using many industry standards which include X3D (Extensible 3D file
format) for the scene-graphing. X3D replaces the now outdated VRML standard. XML is
included as well along with Xerces for X3D file parsing. Additionally, OpenGL library is used
for 3D graphics. Finally, H3D is based on STL Standard Template Library which supports rapid
development by using a large collection of C++ templates.

H3DLoad program is used to load X3D files. Configuration setting can be customisable by
using H3DLoad Settings. H3D Viewer displays X3D files with haptic features. It allows the
configuration of the navigation paradigms: WALK, FLY, NONE, ANY, EXAMINE. Only the first
three paradigms support collision-detection as per its specification.

X3D is composed by Nodes and Fields which represent a structural division. Fields are data
containers that store and manipulate properties. Nodes are containers and managers of
fields. Nodes are the building blocks for traditional scene-graph APIs and they become
useful to group set of fields for large field networks.

Fields are seen as fundamental blocks in X3D and hence in H3D. It can be used as an event
handling mechanism. A field network is a directed graph structure that connects fields by
means of routes. Events are passed through the directed network where information may
be stored.

Fields can have several functions: data storage, data dependency (triggering updates based
on other fields) and functional behavior (computing its value depending on the fields routed
to it by overriding the update() function). In either case, the values are updated using
lazy evaluation, i.e., update becomes when someone ask for its value.

For haptic rendering, a Surface node with haptic properties must be added to the
Appearance tag in X3D. Current version supports the following surfaces: SmoothSurface,

FrictionalSurface, MagneticSurface, and OpenHapticsSurface. Force
effects are supported as well and represent a way to map a haptic device
position/orientation to a force/torque. Force effects include ForceField,
SpringEffect, MagneticGeometryEffect and ViscosityEffect.

Implementation

H3D is distributed under the terms of ordinary GNU General Public License (GPL) which
permits its use only in free programs. The latest release available is version 2.0 alpha. H3D
API is entirely written in C++ STL. API can be used using either C++ or Python.

H3D is easily customized to work with a wide variety of virtual reality display systems. Also,
haptic device settings and graphical render settings can be easily changed. H3DLoad
Settings program load these settings by reading X3D/XML files for the display type, the
haptic device, the stylus shape of the avatar and the starting viewpoint of the scene.

27 | P a g e

OpenGL is used for graphic rendering. This implementation uses GLUT OpenGL Utility Toolkit
which is easier to integrate than native OpenGL. GLUT in not open source and for this
reason other alternatives are considered instead, e.g. FLTK and freeglut. For haptic
rendering, H3D API uses SenseGraphics’ HAPI.

Recently, Vidholm [2008] developed a library toolkit called WISH – Interactive Segmentation
with Haptics. It is publicly available as open source code. It uses H3D API for the haptic
rendering.

FLTK: Fast Light Tool Kit GUI

Introduction

As previously described, FLTK provides a cross-platform library for window handling and
event handling. It uses widgets as the building blocks of a graphical interface. This section
briefly describes event handling, FLUID and GLUT compatibility.

Design

Events are mapped to an integer number depending on the action performed by the user.
Events can be any of the following types: mouse, focus, keyboard, widget, clipboard, or drag
and drop. The event is passed to the Fl_Widget::handle() virtual method.
Additionally, FLTK stores the information of the most recent event in static storage and it
can be accessed by inline functions of the form: Fl::event_*().

FLTK supports a GUI designer called FLUID Fast Light User-Interface Designer. It allows to
easily create GUIs by using a pre-defined set of graphic components. FLUID then creates a
‘.fl’ file storing the layout of those components and thereafter generates C++ source code. It
is a flexible approach for a fast creation of GUIs.

Finally, it is important to emphasise the GLUT Compatibility available. As described earlier in
this document, GLUT is not open source and some alternative solutions have been created
amid we can find FLTK. Therefore, a GLUT window becomes a child of a Fl_Window object.
glutInit() function should not be called. Once FL_Window is shown show(), the

GLUT code is enclosed by window->begin() and window->end() functions. Either
glutMainLoop(), Fl::run() or looping Fl::wait() can be called to run the
program.

28 | P a g e

Framework Design

Introduction

Objective
The aim of this project is to develop a framework for medical training in pre-operational tasks.
This framework is based on some topics covered as a background in the previous chapter.
Thereafter, a key element in the design is to allow users to interact with deformable objects in a
simulation environment by means of the sense of touch. Furthermore, depending on the
amount of forces exerted, virtual objects should deform accordingly based upon an underlying
mathematical model.

The framework, called Haptics Open Framework (HoF), is targeted mainly at medical staff to
whom pre-operational training in a simulation environment becomes an important tool to
perform efficiently in a surgery room.

Additionally, the aim is to build a framework for quick prototyping of procedures which involve
deformation and which are indeed common in medicine. Furthermore, it is essential to provide
a framework for testing different models regarding to deformation and haptics.

It is of paramount importance to integrate open source libraries to build the framework.
Moreover, such integration should allow the developer to both get the best of the flexibility and
modularity of the libraries and extend the framework itself. Source code modifications of the
used open source tools were considered as a minimum so the installation will not become
overwhelming.

The graphical user interface becomes an important aspect of the project as this will be the
interaction part for the user to handle the most important library settings used, especially for
the mechanical behaviour, graphics and haptics rendering. The purpose of this component is to
provide a straightforward method for interacting with virtual deformable objects while
modifying its settings. Additionally, users are able to save and load project settings for a specific
human organ model.

The last but not the least is to increase the number of frames per second in the simulation
environment so the users will be able to interact in real time.

Considerations
In this chapter, several design features are described. Firstly, the hardware platform used for
development and installation is described. Shortly thereafter, the software architecture is
defined in a conceptual perspective and how the open source libraries have been integrated in
an abstract level. Furthermore, reached design decisions regarding to the haptic rendering and
deformation modelling are explained. Such decisions are supported by the tests carried out with
analysis and results shown in the analysis and evaluation chapters.

Hardware Platform

Test environment
Haptics Open Framework is targeted to a PC environment with a dual core processor and a
graphics card. Merely by using both SOFA and H3D libraries as well as the Novint®’s FALCON
haptics device, HoF becomes a perfect solution against commercially available products and

29 | P a g e

other more expensive haptic devices without the requirement to consider an expensive
hardware platform.

HoF was developed, tested and installed in an Intel® Core 2 CPU 6700 running at 2.66GHz CPU
speed with 2GB of RAM. Additionally, an NVIDIA® Quadro FX 3500 has been used which is the
basic product in the high-end graphics solutions.

Software Architecture

A Conceptual Perspective
The purpose of this section is to describe in a conceptual perspective how the framework is
composed to have an overall understanding of its software design. In an abstract level it consists
of five different components as shown in Figure 10.

Figure 10 - Haptics Open Framework Design

The first module is further subdivided into two subcomponents. The “Main” sub module merely
runs the graphic user interface loop for event handling and windows showing. It also declares
three global variables that will be used throughout the simulation loop: the graphic user
interface itself, the SOFA’s scene-graph root node and the mechanical object for retrieving the
vertices position at each time step. The second subcomponent called “Simulation Loop”
contains the deformation algorithm and animates the object’s mechanics at each time step. It is
completely linked to the haptic rendering algorithm and detects when the avatar touches the
virtual object so the exerted forces are sent to SOFA and the new deformed nodes’ position is
updated into H3D geometry shortly thereafter. This is an important step for the deformation
modelling as the user can see how the virtual object is deformed based on a mathematical
model provided by SOFA mechanics.

The second module called “HapticsUI” provides the necessary widget objects to represent
windows, input values, menu bars, sliders, browsers, tabs and many more. One of the key
elements in this module is the GLUTWindow variable which is a customised H3D class that
displays the X3D scene-graph. This window is embedded into the framework’s main window.
There exist three more windows that are created for the mechanical behaviour, graphics
rendering and haptics rendering respectively. Moreover, the main window contain buttons to
handle the animation, shows frames per second rate and when the virtual object has been
touched, relevant information is shown by using output value widgets. Among these values the
user can see vectors such as touched positions, forces, and normals. Finally, it provides a way to

Main &
Simulation

Loop

Haptics
UI

SOFA

Loader

Mech-
anics

H3D

Loader

30 | P a g e

load or save a new project in XML format by saving the whole scene-graph (haptic and
deformation).

The third module called “SOFALoader” retrieves the mechanical behaviour settings from the
HapticsUI widgets and recursively builds an XML document tree in memory which is sent to
SOFA shortly thereafter. Such settings are used to create the SOFA scene-graph and initialise the
SOFA components before the animation starts. Some of the components include solver, mass,
force fields, constraints, context and topology among others. Finally once a project has been
loaded into the framework, this module populates the mechanical behaviour settings into the UI
widgets.

“H3DLoader” is another module and it is responsible to initialise H3D using the information held
by HapticsUI in both the graphics rendering and haptics rendering windows. Information such as
console settings, rendering mode, haptics device, stylus, viewpoints and X3D scene-graph are
sent to H3D for the creation and initialisation of the Scene object. It also populates back these
settings once a project has been loaded.

Finally, the last module called “Mechanics” is responsible to receive the touched points and
forces applied to the object. It detects which vertex indices will be set in an interaction force
field and which forces are applied to them so that SOFA computes the next vertices position as
part of its numerical integrator.

Open Source Tools
Haptics Open Framework is a conglomeration of six open source libraries as depicted in Figure
11. Extensive analysis in each of the tools has been taken into account for their integration into
the framework, especially for SOFA, H3D and FLTK. An overview of how these libraries have
been combined together and have been used is described in this section.

Figure 11 - Integrated Open Source Tools

Two UML sequence diagrams in Figure 12 and Figure 13 are used to explain the relationship
among the libraries and the main calls and loops that are executed as an overall. The first
diagram describes the interaction between the user and the framework itself before the
simulation loop starts. The second UML diagram shows the basic steps that are executed once
the simulation has been set up and the user starts to see the graphic rendering and manipulate
the haptics device. The colours in Figure 11 for each of the source tools are intended to be used
as a reference in the UML sequence diagrams in Figure 12 and Figure 13 so the reader can
associate which module correspond each tool.

Haptics
Open

Framework

SOFA

FLTK

Libxml2

OpenMP

HDAL

H3D

31 | P a g e

FLTK

FTLK is incorporated into the framework for two main reasons: as a replacement of Freeglut
in H3D and to provide the graphical user interface.

 On the one hand, even when Freeglut is open source, it does not provide GUI capabilities as
FLTK does. H3D::GLUTWindow is a particular implementation of a glut window node in
H3DAPI, therefore it represents the starting point to integrate FLTK. Basically,
H3D::GLUTWindow becomes a child of Fl_Window in addition to
H3D::H3DWindowNode. In order to guarantee that this window will be embedded into
the main one, the windows are shown in order, that is, showing the main window first and
then the embedded glut window.

On the other hand, FLTK handles the events and register the appropriate callbacks for the
H3D::GLUTWindow especially for the keyboard and mouse events. FLTK’s main loop

starts by calling Fl::run() as shown in the diagram (message #2). FLUID plays an
important role for the creation of the widgets (message #1).

Figure 12 - UML Sequence Diagram 1

Libxml2

As shown in the UML diagram in Figure 12, XML is used to either create a project file or to
parse an existing one (messages #5 and #7). In either case, an XML document tree is created
in memory and parsed recursively for getting and setting XML properties in each node
(messages #4 and #6). All framework settings are stored in an XML file. An example of an
XML project definition file can be found in the appendix.

It is important to emphasize that SOFA scene-graph can be used without any modification
under the XML node ‘sg’ within the project as soon as the nodes are parsed by the GUI and
loaded into the appropriate window.

HDAL

The Haptic Device Abstraction Layer is supported transparently by H3D for the Falcon device.
By compiling H3D’s HAPI project with the HAVE_FALCONAPI pre-processor definition,
H3DAPI associates a stylus with the position of the haptic device tip. In every time step,

32 | P a g e

device values such as force, torque, position, velocity, orientation and button status are
queried from the device and updated (messages#14 and #15). HDL library provides a series
of functions to setup these values and handle each haptics device.

H3D

H3D controls the main loop in the framework by calling the static function mainLoop() in
H3D::Scene class (message #13). The Scene node is the topmost node that takes care of the
rendering of the scene graph both haptically and graphically. The Scene::idle()
function is registered as an idle callback and the main activities performed by it are shown in
Figure 13 as an UML diagram.

Once graphical and haptics settings such as rendering mode, viewpoints, stylus, X3D scene-
graph have been loaded into H3D (message #9), the scene is traversed in each execution
cycle.

It is important to emphasize that the topology handled by H3D is merely a surface
composed by a set of haptic triangles. The vertices of such triangles match the vertices
found in the surface of the volumetric data used by SOFA.

Traversing the scene graph means rendering each node from the parent to all its children
recursively. In the particular case of a deformable shape (message #16), there is a node
called DeformableShape which inherits from a general X3D shape node. This node
allows modifying the geometry of a shape when it has been touched with a haptics device.
HoF::Motion is then created inheriting the properties of

H3D::H3DCoordinateDeformerNode and permitting to handle the deformation
modeling as required by overriding the deformPoints() function (message #17).

This is one of the key elements of the integration as HoF::Motion::deformPoints()
function has enough information available to identify when, how and where the surface has
been touched as well as the current deformed points which will be used to compute the
new deformed points position.

Figure 13 - UML Sequence Diagram 2

33 | P a g e

SOFA

Thereafter, once the simulation has been initialised (message #12), the detected forces from
the Falcon device can be sent to SOFA’s mechanical behaviour from the X3D Motion node
(message #19). An interaction external force field component is used every time the virtual
shape is touched (message #18); both the indices of the touched points and the forces are
set as values of the force field.

Then based upon the scene-graph of SOFA, new vertex positions are computed as part of a
numerical integration. The underlying mathematical simulation is animated each time step
(message #21) defined in the scene-graph and called every time the Motion simulation loop
executes. The mechanics of the object then is queried (message #23 and #24) to update the
new points’ position into H3D so each Coordinate point can be rendered accordingly
(message #25).

It is important to emphasize that the topology of the mechanical behaviour is in the form of
a mesh with a set of volumetric tetrahedra.

OpenMP

There are at least two different approaches OpenMP was used in the framework. The first
one was targeted to the Scene::idle() function as a mean to improve the frames per
second rate. This integration into H3D becomes difficult as most of the calls are recursive
while traversing the X3D scene-graph. The main goal was to define section directives so the
main tasks in the idle() function will be handled by independent threads and treated as
functional parallelism.

On the other hand, even though the second approach was easier to design and implement,
it was only supported in Visual Studio 2005 (vc8) and tested as a debug compilation. It
merely defines a for loop directive for data parallelism (message #25). Therefore the
mechanics of the deformed object will be updated in parallel into H3D.

All the libraries used by the framework have support for Visual Studio 2003 (vc7) but not all
for 2005 and even when OpenMP supports starts in vc8, the Intel C++ compiler 10.1 can be
used which has support for OpenMP and vc7. The latter approach was not tested in the
framework.

Haptic Rendering

Haptic Rendering Algorithm
In HAPI, a haptic rendering algorithm determines the forces and torque depending on the
haptics device position and all the shapes added to the scene. There exist internally
implemented algorithms such as Ruspini renderer and external library algorithms such as
OpenHaptics and Chai3D. Most of these algorithms are variants of a proxy-based model.

Proxy-based rendering defines the haptics device position as a virtual representation called
proxy which always lays outside the geometry surface. Even when a haptics device has
penetrated a surface, the proxy remains outside and the forces are computed as a spring.

In HAPI, the geometry of the proxy could be either a point or a sphere. On the one hand, by
having a point, it becomes difficult to touch small or thin objects. On the other hand, by having a
sphere it makes more difficult to constraint the proxy to the surface and more calculations are
required.

Even when any haptic rendering algorithm can be chosen by the user in the Haptics Open
Framework, Ruspini algorithm has been considered as part of its design. One of its main

34 | P a g e

advantages is that it allows for variable proxy radius, thus a sphere is used as a proxy. It is a
variant of the algorithm presented in Ruspini et al [1997]. In this paper, configuration-space
obstacles are defined consisting of all the points within one proxy radius from the object surface.
Then, constrained planes are computed depending on which element is in contact: none, one,
two or three plane constraints for free space, a point, an edge or a vertex respectively. In the
implementation chapter, a more detailed analysis and comparison of all the algorithms is
described along with its implementation in H3D.

As part of the design of the framework, a haptic rendering algorithm which perfectly fits in
dynamic environments is needed because of the nature of deformation shapes. The traditional
proxy/god-object method proposed by Zilles et al [1995] is not appropriate at all as many
fallthrough issues exists due to round-off errors in the newly computed god-object point
position.

Ruspini algorithm has both advantages and disadvantages. On the one hand, it is an open source
solution which is the key element of the framework. Also it is device independent, therefore the
Falcon haptic device can be easily integrated as opposed to OpenHaptics rendering algorithm
which is targeted only to Phantom devices. Additionally, the proxy is represented as a sphere
with variable radius so fallthrough problems are minimised. Finally, haptic surfaces can be
defined by the user to render properties of a geometric shape such as friction.

On the other hand, Ruspini algorithm is slightly slower than the others because of the
constraints construction and variable sphere radius. In the evaluation chapter this was not
perceived as a difference compared to the other algorithms. However, some fallthrough
problems exist when moving the stylus over the surface when forces are applied. Even when the
problem has been tackled by Ruspini algorithm, sometimes the proxy radius is not large enough
to avoid gaps from polygons that share a common edge. This problem is caused by small
numerical errors. Nonetheless, Ruspini algorithm has shown good performance during the
evaluation and results. Therefore, it has been chosen as part of the framework design.

Collision Detection Algorithm
Collision detection is an important subcomponent in any haptic rendering algorithm. Its goal is
to generate force and torque vectors to send them to the haptics device given a set of
geometries and current device values.

Both SOFA and H3D handles collision detection and a comparison of them was considered for
the purposes of this paper. Detailed information on how both libraries implement collision
detection is found in the Analysis chapter.

The nature way of handling collisions in the framework is by using H3D because as the scene-
graph is traversed collision objects are identified depending of the position of the avatar.
However SOFA was analysed as an alternative solution for the framework and be able to
determine which one performs better. Even though this activity was not developed, some topics
were identified for its future integration.

Basically, SOFA scene-graph would be comprised of two nodes, one for the virtual object and
one more for the avatar/stylus, each with a mechanical object. The avatar geometry will be
defined as a sphere. The avatar’s tip position and the force would be then sent from H3D to
SOFA so external forces could be applied. The mechanical behaviour will be sent back to H3D
accordingly. Finally a new haptic rendering algorithm should be created in H3D which will
communicate with SOFA’s collision detection algorithms as a wrapper.

For the aim of this project, the framework uses H3D’s inherent collision detection approach
without the complexity of generating a new algorithm to handle SOFA collision detection.

35 | P a g e

Appearance Model
Among the X3D specification settings, part of the design of the framework involves setting the
values of the appearance model which must be suitable for the framework. An example of the
settings most commonly used in the framework are shown as follows:

<Material

 ambientIntensity='1.0'

 diffuseColor='0.36 0.11 0.04'

 emissiveColor='0 0 0'

 shininess='0.2'

 specularColor='0.70 0.70 0.70'

 transparency='0' />

ambientIntensity defines the light that surrounds the object whereas diffuseColor defines the
colour of the loaded virtual object. As the framework does not intend to use glow objects,
emissiveColor field has been set to zero values. It is important to highlight as much as possible
the geometry, so a low value on shininess is used. Additionally, the specularColor property is set
to gray colour which properly highlights the view area without significantly altering the true
colour.

transparency has been set to zero and by doing this, the rendering improves significantly.
Material properties are chosen instead of an ImageTexture node because of better
performance and aiming to see how shapes are deforming accordingly. Nonetheless,
ImageTexture node is used in the surrounding organs, as shown in the spine and the
diaphragm images in Figure 14 below:

Figure 14 - Spine and Diaphragm with ImageTexture nodes

Haptic Shapes
From the haptics perspective, the geometry of the virtual object should only contain
surface/haptic shapes. They are created as a composed geometry node in X3D by means of
IndexedTriangleSet node. The geometry topology is an input into the framework and
deals merely with triangle shapes.

There exists other ways to define a composed geometry in H3D as IndexedFacedSet does.
However, the IndexedTriangleSet is used instead because triangles are defined as
primitive shapes and collision objects in H3D and the surface faces of the virtual object from the
volumetric mesh are triangles. Refer to Figure 15 as an example.

36 | P a g e

Haptics Global Settings
In H3D, global settings can be customised for the entire scene-graph. Three options were tested
and their values depend on the user needs.

In the following XML tags there are recommended options from a performance concerning point
of view. Broadly speaking, the use of bounding trees for collision detection has been disabled;
the virtual object is only touchable from outside so once the avatar falls into the object can
easily be taken out; and debug options are turned off which mainly draw bounding boxes and
haptic shapes while in contact.

<GlobalSettings>

 <HapticsOptions touchableFace="FRONT" useBoundTree="false" />

<GeometryBoundTreeOptions boundType="AABB"

 maxTrianglesInLeaf="1" />

<DebugOptions drawBound="false" drawBoundTree="-1"

 drawHapticTriangles="false" />

</GlobalSettings>

 Please refer to the Evaluation chapter to read about the tests carried out and the
justification of the recommended settings within the framework.

Deformable Shapes Modelling

Geometry
Besides the surface geometry topology found for the haptics rendering, a mesh file consisting of
a set of points and tetrahedra define the volumetric geometry for the deformation modelling.
This file is an input to the framework and data is fetched from this file using a MeshTopology
component in SOFA’s scene-graph.

<Object type="MeshTopology" filename="liver.msh"/>

By using volumetric information in the deformation modelling the mechanical behaviour
behaves realistically although the time integration is more computationally expensive as each
node’s position is calculated in each time step.

An example of a liver mesh with a cutting plane is shown in Figure 15.

Figure 15 - Volumetric Mesh of a Liver

37 | P a g e

As it could be observed in this cutting-plane image, tetrahedra elements constitute the basis for
the deformation modelling which will be integrated throughout time simulation.

Dynamic Modelling
Two different models available in SOFA using physically-based techniques for the deformation
modelling of virtual objects were tested and plotted: MeshSpring and TetrahedronFEM
force fields.

On the one hand, MeshSpring is a discrete model based on mass, springs and dampers to
represent points, their interconnections and their resistance to motion respectively. On the
other hand, TetrahedronFEM is a continuum model which uses tetrahedra as finite elements
in order to approximate a solution by reducing partial differential equations into discrete
algebraic equations.

Even when the user of the framework can choose any of the available methods, MeshSpring
force field was selected due to its performance over an approximated physical properties object
in aims for a real-time simulation with constrained hardware resources. Refer to the tests and
results section of this document to see how both techniques performed using different mesh
topology sizes.

Numerical Integration
One of the main elements of the framework is to find a solver which reaches equilibrium in real-
time using large time steps for deformable bodies. SOFA has available several solvers which
include Euler, RungeKutta, Static and CGImplicit solvers.

CGImplicit solver with a maximum of seven iterations is selected as the best solution for the
tested resolution meshes. It becomes a good solution using large time steps, efficient animation
and convergence.

In the analysis chapter solvers were studied according to the literature and the analysis support
the results done in the evaluation chapter. Refer to both chapter for more information about
the numerical integration solver.

Deformation Algorithm
Deformation algorithm refers mainly to the piece of code responsible to update the new point’s
position of a deformable shape. As described earlier, this algorithm executes the simulation loop
and an X3D node was created under the name “Motion” and used as follows:

X3D node specification: <Motion />

Broadly speaking, the tasks performed in the algorithm are the following:

 As plasticity is not a property in human organs, the resting points keep the same
throughout the simulation, thus the vector is cleared.

 Detect when the object is touched by iterating over all the connected haptic devices.

 If touched, send touch information to the GUI and console

 Then select closest vertices or closest vertex

 Send forces SOFA to identified vertex/vertices.

 Animate the mechanical behaviour

 Finally update new deformable points’ position into H3D.

By selecting the closest vertex from the touched point, the perception of touching the object
becomes more realistic especially for large topologies.

38 | P a g e

Framework Implementation

Introduction

Objective
This chapter contains relevant information about the implementation of the Haptics Open
Framework. Such information appears both as a background and as additional information of
interest to follow up from the design chapter. Firstly, a more detailed overview of the software
architecture is described as a specification perspective. Thereafter, more information of the
source tool integration appears as well as some background knowledge to explain such
integrations. Finally, a description of needle insertion tasks, the importance of simulating them
and a couple of models as well as an implementation approach into H3D and the framework
appears.

Software Architecture

A Specification Perspective
The diagram in Figure 16 shows the most important elements in the framework architecture. In
the centre of the diagram the Main component mainly handles the global variables for the

simulation, that is the graphical user interface (hui), the root of SOFA’s scene-graph which will
be animated each loop (groot) and the mechanical object as a reference for the points’

position (mechanics). Linked to the Main component appears HapticsUI, H3DLoader,
and SOFALoader as described in the design chapter.

Figure 16 - HoF UML Diagram

Additionally, in the left of the diagram, there are classes for handling the updates and routing of
some H3D fields such as viewpoints and navigation types which change based on keyboard
events.

Motion represents the incorporated node to handle the deformation of shapes within H3D. In

this module, the deformation algorithm has been coded overriding the deformPoints()
method, searches for the closest vertex given a touch point and send the forces to SOFA by

39 | P a g e

means of calling simulation_force() in SOFAInitializer module which is

represented as Mechanics in the conceptual perspective of the design chapter.

Open Source Tools Integration

FLTK – Graphical User Interface

Introduction

The FLTK integration has been carried out within H3D. The original H3D version uses
Freeglut and wxWindows as part of its GUI. Freeglut is mainly used for the GLUT functions
and wxWindows is used as a GUI in H3DViewer project. A brief description of the tools used
by H3D is found below:

GLEW

The OpenGL Extension Wrangler Library (GLEW) is a cross-platform open-source C/C++
extension loading library. GLEW is used to determine which extensions are supported
on the target platform. Currently it supports OpenGL, WGL and GLX extensions.

Once a valid OpenGL rendering context has been created, glewInit() function is
called to initialize the extension entry points. GLEW_OK should be returned by this
function. Checking for a particular extension is done by querying globally defined
variables of the form GLEW_{extension_name}

GLU

Used by Freeglut, the GL Utilities (GLU) library is a set of routines designed to
complement OpenGL by providing support for mipmapping, matrix manipulation,
polygon tessellation, quadrics, NURBS, and error handling. An OpenGL context should
be set before calling any GLU functions as they may call OpenGL routines. GLU routines
are of the form glu{routine_name}

 Mipmapping routines include image scaling and automatic mipmap generation.

 Matrix manipulation functions build projection and viewing matrices as well as
project vertices from one coordinate system to another.

 Polygon tessellation routines convert concave polygons into triangles for easy
rendering.

 Quadrics functions render basic quadrics such as spheres and cones.

 NURBS routines map NURBS curves and trimmed surfaces into simpler OpenGL
evaluators.

 Error handling routines translate OpenGL and GLU error codes into strings.

GLUT and OpenGL

The OpenGL Utility Toolkit (GLUT) is a window system independent API for writing
OpenGL programs. GLUT is used for developing simple OpenGL applications. It is
regarded as a simpler and easier approach for learning OpenGL programming. OpenGL
is window system independent and the window system operations such as the creation
of a window and the handling of window system events are left to the native window
system to be defined. Instead of binding native window system APIs to OpenGL, GLUT
provides a portable, window system independent and simple toolkit to develop
programs. However, GLUT is not open source and there are available open-source
alternatives such as Freeglut and FLTK, among others.

40 | P a g e

GLUT currently supports the following functionality:

 Multiple windows for OpenGL rendering

 Callback driven event processing

 Sophisticated input devices

 An idle routine and timers

 A simple, cascading pop-up menu facility

 Utility routines to generate solid and wireframe objects

 Support for bitmap and stroke fonts

 Miscellaneous window management functions

Additionally, GLUT routines are logically organized into several sub-APIs depending on
their functionality. Below is a list of those subcategories used by H3D:

 Initialization (glutInit, glutInitWindowPosition, glutInitWindowSize,
glutInitDisplayMode)

 Beginning event processing (glutMainLoop)

 Window management (glutCreateWindow, glutSwapBuffers)

 Callback registration (glutDisplayFunc, glutKeyboardFunc, glutMouseFunc,
glutIdleFunc)

Freeglut

Freeglut is an open-source clone of the GLUT library which allows the user to create and
manage windows containing OpenGL contexts. It can be used either as a static or as a
dynamic library (DLL).

H3D::GLUTWindow can be regarded as a wrapper containing encapsulated GLUT
functions. H3D::GLUTWindow is a child of H3D::H3DWindowNode abstract class which
contains all the information about the current window as a node. H3D::Scene class
uses this window to render the set of scenes in H3D. Both
H3D::X3DKeyDeviceSensorNode and H3D::MouseSensor classes inherits from
H3D::X3DSensorNode class. All these classes are inherited by H3D::Node abstract
base class.

H3DAPI Source Code Modifications

A window in H3D is represented as a node. H3D::GLUTWindow is a GLUT implementation
of H3D::H3DWindowNode using Freeglut. As Freeglut has been replaced by FLTK, this
class needs to extend FLTK Fl_Window class in a similar approach as Fl_Gl_Window is
extended for OpenGL inside FLTK. Refer to Figure 18 to see the inheritance diagram of
H3D::GLUTWindow.

By extending Fl_Window, H3D::GLUTWindow will be used as a subwindow embedded
into the GUI which parent window is the one containing all the widgets. Please refer to
the appendix for detailed information on H3DAPI source code modifications.

GUI Components

Figure 17 shows a screenshot of some of the widgets and windows used in the framework.
FLUID was used as a GUI editor to build the graphical user interface and connect the widget
objects to each of the modules in the framework.

41 | P a g e

Figure 17 - GUI components

From left to right, the main window appears in the background with the animate and stop

buttons which handle the animation. At the top of this main window a menu bar has been

set up. Additionally on its left, information such as points, normals and forces are displayed

when the object is in touch.

The first sub window is used for the graphics settings. The render mode can be selected

from a list and the viewpoint of the scene graph is selected by browsing a file which contains

a Viewpoint node with position information as shown below:

<Viewpoint position="0 0 0.6"/>

The next sub window has been designed for the mechanical behaviour settings. A browser

widget has been configured to create and modify SOFA scene-graph. A tree can be built in

this browser by selecting the type of component/node and their properties are customised

in several tabs which appear below the browser.

Finally, the last sub window which appears in the right of Figure 17 is used to configure the

haptics settings. Console settings can be customised and the user can browse files to specify

the device info node, the stylus representation and the surface topology. All these files are

in X3D format and an example of the device info file for the Falcon device is shown below:

<DeviceInfo>

 <FalconDevice positionCalibration="3 0 0 0

 0 3 0 0

 0 0 3 0

 0 0 0 1" >

 <RuspiniRenderer/>

 </FalconDevice>

</DeviceInfo>

42 | P a g e

There is an example of a stylus for representing a needle in the appendix as well as an

example of how the topology node is defined.

H3D – Haptics Rendering
H3DAPI provides an implementation of the X3D specification by defining nodes and their
updates as classes and fields as attributes mainly under H3D::X3DNode.

It also serves as a wrapper for HAPI to define forces, shapes, haptic devices and haptic rendering
algorithms among others so the user can create a scene-graph by means of using nodes and
fields.

The most important component is H3D::Scene class which executes the main loop and traverses
the scene-graph. Figure 18 shows the main components in H3D and their relationships.

Figure 18 - H3D & FLTK UML Integration

As it can be seen, H3D::Node is the main class which classes inherits from. Nodes could be

ranging from those found in X3D specification, coordinate deformers for deformable shapes,

haptic rendering nodes, haptic device nodes, to even the scene and the windows.

In this particular diagram, it can be observed how GLUTWindow has been customised for the

FLTK integration. Additionally it shows how the deformation algorithm described earlier in the

design chapter is connected to H3D.

SOFA – Biomechanical Simulation
The main components in SOFA that interact with the Haptics Open Framework are shown in
Figure 19.

GNode is used as a reference to the main node in SOFA’s scene-graph. It also has a Context

where the time step is set for the whole scene. Every time the deformation loop in Motion
executes, SOFA is animated using GNode. Shortly thereafter, a second reference to

MechanicalObject has the element’s new position which is fetched by calling its getX()
method.

43 | P a g e

Figure 19 - SOFA UML Integration

Regarding to the mechanical behaviour scene-graph, once the user has either created a new one
or load a project, the information contained in the FLTK widgets is used to create an XML tree
document using Libxml. This XML document is used to load the scene-graph settings into SOFA
simulation by parsing the tree looking for nodes, objects and their attributes.

Even though functions for XML parsing are provided by SOFA, some of them were adapted to
the framework because SOFA loads a file instead of an XML document. As a consequence, the
user not only can create the scene-graph by using graphical components but also can modify the
settings online during animation which makes the framework more useful.

OpenMP – Optimisation
OpenMP was tested in the framework for the update of the new points’ position from SOFA
mechanics to H3D deformed points. A for loop directive was used as shown in the code below.

Shared variables are listed and correspond to those elements which will be accessed by all team
members, that is, by all the threads in the parallel region whereas private variables are specific
to each thread. The following code was copied from the deformation algorithm and shows how
OpenMP was configured and adapted for updating the position values.

#include <omp.h>

…

#pragma omp parallel

shared(mechanics,new_deformed_points,total,chunk)

private(i,x,y,z,node)

{

 #pragma omp for schedule(dynamic,chunk) nowait

 for(i=0; i<total;i++) {

 x=(float) (*mechanics->getX())[i][0];

 y=(float) (*mechanics->getX())[i][1];

 z=(float) (*mechanics->getX())[i][2];

 node[0]=x; node[1]=y; node[2]=z;

 new_deformed_points[i] = node;

 }

}

44 | P a g e

The schedule clause describe how the for loop is divided by the members of the team. Dynamic
schedule divides the loop iterations in pieces of chunk size and shortly thereafter they are
dynamically scheduled among the threads. The chunk value was set to a value of 50 thinking
about iterations for large topology sizes. There is no need to synchronise at the end of the loop
so nowait has been set.

Needle Insertion

Introduction
The purpose of this section is to describe the importance of simulating needle insertion
procedures in medical applications and to provide current literature approaches for modelling it.
Furthermore, an explanation of how Fung model was designed and implemented into the
haptics open framework appears at the end of this section.

Needle insertions have been used in many traditional medical treatments such as injections and
biopsy. These methods are among the less invasive procedures in radiological and surgical
techniques. It is expected that these techniques increase during the following years as pointed
out by Maurin et al [2004].

Needle insertion procedures require both the visual feedback and the haptic feedback. The first
one is useful for the position of the inserting point and penetration whereas the second one
provides great source of information for practitioners. Percutaneous procedures require
accuracy for targeting organs which is achieved by the combination of imaging and haptics.

Nienhuys et al [2003] identify two main needle insertion procedures:

 Needles with a special bevel have to be inserted deeply to extract a tissue specimen as
done in biopsies.

 Brachytherapy is another application for cancer treatment where radioactive seeds are
inserted directly into the tumour

Due to deformation of soft tissue, needle insertion becomes a difficult task in order to reach the
desired target and avoid vital organs. Simulations of needle insertion may help train and plan for
these procedures.

Particularly for the liver, Zamani et al [2007] state that this organ may deform largely under the
influence of factors such as gravity, cancer and position of needle, among others. Additionally,
the liver is surrounded by a thin membrane called capsule which presents another challenge in
its nature for the needle insertion simulation. Figure 20 shows a microscopic histology image of
the liver with both the capsule and the liver parenchyma.

Figure 20 - Microscopic Histology Image of the Liver

45 | P a g e

In Maurin et al paper [2004], several experiments were carried out for both manual and robotic
insertions. They identify three phases in a needle insertion: insertion, relaxation and extraction.
In the insertion phase, forces behave as a succession of exponential-like rise before and after
the liver capsule rupture. The maximum force is felt when movement ceases and it is
proportional to the depth of penetration. During the relaxation phase, a slow decreasing
repulsion force is applied along the axis of the needle even though it is not moving. Such force
depends on the bevel of the needle. During extraction, friction forces are applied on the needle
surface. An exponential-like decrease appears as in the insertion phase after reaching 0N. Forces
experimented in each phase are plotted in Figure 21.

Figure 21 - Force Response during Needle Insertion into the Liver

Maurin et al [2004] modelled a needle insertion procedure into the liver in two different
approaches with low error rate.

 Adapted Simone and Okamura model
This model includes stiffness and friction forces only. Stiffness force is related to depth
with a second order polynomial with coefficient values 𝑎0=0N, 𝑎1=0.002N/mm, and
𝑎2=0.0023N/mm2

𝑓 𝑑 = 𝑎0 + 𝑎1𝑑 + 𝑎2𝑑
2

Friction force is given by a Karnopp model with static friction values of 0.121mN/mm
and -0.117 mN/mm were obtained, whereas damping coefficients were 3.2mNs/mm2
and -1.6mNs/mm2.

 Maurin approach based on Fung model
This model considers two phases, before and after capsule puncture. In each phase, the
force is modelled as a function of depth represented as follows, theta = [a,b,d0,F0]:

𝑓 𝑑 = 𝐹0 + 𝑏 𝑒𝑎 𝑑−𝑑0 + 𝑏

𝜃 = [𝑎, 𝑏, 𝑑0, 𝐹0]

46 | P a g e

For the first phase θ=[0.121, -0.098, 11.45, 0.2] and for the second phase θ=[-0.031, 1.7,
19.61, -3.39] were found as parametric vector values.

In the following two sections, a description about the design and implementation of needle
insertion in H3D is shown.

Design
One of the key features is to extend the Haptics Open Framework to simulate needle insertion
procedures. In order to model a procedure of this kind, the Fung’s model approach described in
Maurin et al [2004] is used for a human liver. Additionally, the modelling of the liver capsule
becomes a challenge as the framework process only the surface of a virtual object, even though
the volume is considered merely for deformation.

An initial approach for the modelling of the capsule considered haptic layers which are provided
by H3D. The liver surface and its capsule are then represented in different layers. Depending on
the layer the proxy is laying at, forces are computed based on the previous models described by
Maurin et al [2004]. Figure 22 show how the needle tip can be rendered in two different layers.

Figure 22 - Haptic Layers in H3D

However, the haptics device will receive a resulting force which is generated by adding up all the
forces computed in each layer. This is not adequate as we need the forces of each layer to be
sent independently to the haptics device depending in which layer the tip of the needle is at.
Also, a proxy-based haptic rendering algorithm will always keep the proxy along the surface and
a second geometry file for the capsule needs to be provided.

A second approach is to keep on using only one layer and to generate a force. There are two
different ways to control the amount of force that is sent to the haptics device, either haptic
surfaces or force effects. Both approaches are used for the modelling and the implementation is
described in the next section.

Implementation
A new H3DSurfaceNode called LiverSurface is created along with its counterpart
HAPISurfaceObject. The main purpose is to generate a zero valued force once the haptic
surface is in contact. By doing this, the proxy and probe’s positions are not connected by any
force spring and the distance between them will be computed as the penetration depth of the
needle’s tip. Such surface node can be defined for the DeformableShape in X3D as follows:

<LiverSurface />

This surface node works as a wrapper for the surface object defined in HAPI which is called
HAPILiverSurface. A surface object defines the haptic properties of a geometric shape
such as stiffness and friction. It is responsible for generating forces at a local contact point. As a
child of HAPISurfaceObject, two methods need to be overridden. The first one called
getProxyMovement() is used to control the feeling of the object while moving across the
surface. It has been configured exactly the same as a smooth surface which is represented by
minimising the distance between the probe and the proxy and move along the contact plane, so

47 | P a g e

no tangential forces are applied. The second method called getForces() computes the
interaction force once the new position of the proxy has been calculated. This function is used
to always set the contact force to a zero value.

Thereafter, the only forces exerted into the haptics device will be those computed by a new
node in the form of an H3DForceEffect once a penetration depth exists. By means of using
some fields to represent when the surface is touched and when the capsule has been broken,
then a resulting force is computed based on Maurin et al [2004] work. This node can be
specified in X3D as follows:

<LiverFungForceEffect DEF="FUNG" capsule="0.02" />

This force effect node is defined along with six fields listed below and which routing has been
configured in Figure 23. In X3D, fields are used as event handling mechanisms and are arranged
in a field network by means of routes which convey these events throughout the network.

 touched (SFBool) is used as a flag and determines when the object is in contact.

 capsule (SFFloat) specifies the distance from the surface to the liver capsule and
helps as a threshold to indicate that the needle tip has penetrated it.

 broken (SFBool) is used as a flag to indicate when the liver capsule has been broken.

 distance (SFFloat) represents the penetration depth distance which is computed

using touch point and penetration point in Motion node.

 force (SFVec3f) is the computed force based on Fung model which is computed with
two different θ values depending of the phase, that is, before or after the liver capsule
rupture.

 normal (SFVec3f) is the force normal applied to the haptics device and is computed as
the negative touch normal.

Figure 23 - Field Network for Needle Insertion

Both broken and force fields use the TypedField template modifier in order to update their
values based on their incoming routes as seen in Figure 23. Touched, distance and normal fields
are updated from Motion node which runs the simulation loop for deformable shapes. Routing
is configured using C++ within the constructor of the force effect node class as follows:

 capsule->route(broken);

 distance->route(broken);

 touched->route(force);

 distance->route(force);

 broken->route(force);

 normal->route(force);

48 | P a g e

Also, the deforming algorithm in Motion has been modified to access LiverFungForceEffect and
to print relevant information, as well as sending the computed force to SOFA. Therefore a new
node was created and can be specified as follows for the deformable shape.

<MotionNeedle />

Finally, a simple geometric representation of a syringe and a needle is represented for the stylus
as shown in Figure 24.

Figure 24 - Virtual Representation of a Needle in H3D

The needle has been created based on the needle tip characteristics described in Zamani et al

[2007] where the diameter of the needle is 1.25mm, its tip diameter measures 0.25mm and the

total length is 94mm. For simplicity, the needle has been divided into two sections of same

length, that is, 47mm each. The first section represents the tip’s diameter whereas the second

represents the needle’s diameter. The appendix of this document includes this X3D

representation for more detailed information.

49 | P a g e

Haptics & Deformation Analysis

Introduction

Objective
This chapter contains a link between implementation and literature in the two most important
libraries in the framework, that is, SOFA and H3D. Additionally, analysis of some features is
described in a way to compare functionality as in the case of collision detection algorithms and
at the same time provide a fundament from the implementation point of view. The reader
might use this chapter as a reference to other chapters such as Design and Evaluation.

Haptic Rendering

Haptic Rendering Algorithm
A haptic display is the process of applying forces in order to give the sensation of touching
things in an environment. Zilles et al [1995] describe a haptic display composed by three main
components: a) a haptic interface/device which is an electro-mechanical system able to send
forces to the user with one or more DOF, b) an object model which provides a mathematical
representation, and c) a haptic rendering algorithm which uses the last two components to
compute forces in real time to give the sensation of touching.

There are four haptic rendering algorithms available in H3D which are configured by means of
the X3D scene-graph DeviceInfo node:

<DeviceInfo>

 <FalconDevice positionCalibration="…">

<…Renderer/>

 </FalconDevice>

</DeviceInfo>

 GodObject renderer

Based on the research done by Zilles and Salisbury [1995], it uses a point proxy. Among the
advantages, it is open source, device independent, and supports user defined surfaces.
However, fallthrough problems appear on moving objects.

The point interaction method simplifies both device and algorithm development as just the
point tip of the avatar is rendered. Accordingly to Zilles et al [1995], most users tend to use
less than 5N (1lbf) of force in virtual environments. At the time, previous haptic rendering
algorithms had been grouped together as vector field methods which determine the force
based on the penetration depth. This approach led to some disadvantages such as an
unclear association of surface to internal volume, force discontinuities while traversing
volume boundaries, and thin objects.

God-object is the virtual representation of the haptic interface and always remains on the
surface of the objects whereas the haptic interface point does the penetration of the object
as shown in Figure 25 in green and blue colours respectively. In free space they share the
same position. The God-object algorithm basically works as follows: 1) previous and current
servo cycle god-object’s position define the surfaces touched, 2) Lagrange multipliers are
used to find the new location during contact which is the minimum distance between the
god-object and the haptic interface point subject to a particular surface, 3) then stiffness
and damping can be applied between the haptics interface point and the god-object to
compute the forces and represent local properties.

50 | P a g e

Figure 25 - Proxy-based Haptic Rendering

Ziles et al [1995] manifest some constraints in the algorithm which include: a) a mesh of
triangular elements in the surfaces is used as it is the most fundamental and assures all the
nodes are coplanar, b) fallthrough problems are caused due to round-off errors in the newly
computed god-object position, and c) for convex portions of objects, only one surface is
active at a time.

X3D node definition: <GodObjectRenderer />

 Ruspini renderer

Based on the work by Ruspini et al [1997], it uses a variable sphere proxy size. It is open
source, device independent, and supports user defined surfaces, as God-Object renderer.
However, it is slightly slower than others.

Ruspini et al [1997] based the idea of constrained-based methods such as the god-object
algorithm to introduce force shading, friction, surface stiffness, and texture by merely
changing the position of the proxy. The radius of the proxy is changed to overcome the
problem of falling through the object in a dynamic environment. Due to small numerical
errors, polygons that share a common edge tend to leave small gaps. Therefore, the radius
of the proxy should be large enough.

Ruspini devise the idea of configuration-space obstacles which are defined consisting of all
the points within one proxy radius from the object surface. Then, constrained planes are
computed depending on which element is in contact: none, one, two or three plane
constraints for free space, a point, an edge or a vertex respectively.

Force shading is analysed in Ruspini’s paper even though it is not implemented in H3D. It is
based on Gouraud and Phong for a lighting model where interpolated surface normals can
be applied to vertices. The same effect can be applied to haptics by changing the direction
of the normal force and keeping its magnitude. First, a new plane constraint is defined by
the interpolation of the vertices normal. This plane is called the force shading plane and
goes through the point in contact. The second step is to find a sub-goal perpendicular to this
plane based on the current finger position. This sub-goal eventually will become the new
finger's position. Based on the finger's new position, a new sub-goal is defined but now
depending upon the original constraint plane in order to find the new proxy goal position.
Figure 26 shows the two steps performed.

51 | P a g e

Figure 26 - Two Pass Force Shading

 X3D node definition: <RuspiniRenderer />

Chai3D renderer

It is an open source library developed at Standford University. As GodObject and Ruspini, it
is also device independent. However, user defined surfaces are not allowed and sometimes
fallthrough problems exist on moving objects.

The implementation of Chai3D in H3D uses an implicit function approach to describe a
geometric surface. Such functions are represented by mathematical definitions which make
easier to identify collisions and its point of interaction.

Additionally, Chai3D does force shading which has been pointed out during the evaluation
chapter. Mainly, interpolated surface normals have been defined in the vertices of an object
to create perpendicular resulting force to any point the proxy is laying in the surface.
Without force shading, strong discontinuities occur when the proxy reaches an edge. Both
scenarios are shown in Figure 27.

Figure 27 - Flat and Force Shaded Surfaces

X3D node definition: <Chai3DRenderer />

OpenHaptics renderer

OpenHaptics is a proprietary library developed by SensAble®. It uses a point proxy and
provides stable haptic feedback. In H3D, there is a MagneticSurface available which
performs fine with moving objects. Basically, the proxy is attracted by the surface and forces
are created accordingly. However, the algorithm is device specific for SensAble® devices, no
user defined surfaces are allowed, and it is not open source.

X3D node definition: <OpenHapticsRenderer />

52 | P a g e

Collision Detection Algorithms

H3D

Collision detection algorithm forms part of haptic rendering in H3D. The main purpose is to
generate force and torque values to send to the haptics device given a set of geometries
and current values of the device. Device values are represented in both local and world
coordinates.

HAPI::Bounds::CollisionObjects is the base class for objects that can be used in

collision detection. The inherited object classes implement the functions closePoint(),
lineIntersect(), and movingSphereIntersect().

There are three different types of object primitives: BoundPrimitives,
GeometryPrimitives and BinaryBoundTrees. Bound primitives consist of

AABoxBound, OrientedBoxBound and SphereBound. Geometry primitives include
plane, sphere, triangle, line segment and points. Binary bounding trees can be AABBTree,

OBBTree or SphereBoundTree.

SOFA

One of the main components in SOFA for collision detection is the CollisionPipeline. Basically,
the pipeline resets previous loop, computes collision detection given a model and sends
response which include colliding elements, points, normal and distance.

The second main component in SOFA is the collision model to use. A CollisionModel
contains a list of same type elements or a list of collision models each describing a level in a
bounding tree hierarchy either finer/lower/child or coarser/upper/parent.

As an example, a sphere collision model using component::collision::Sphere is
defined in the scene-graph as follows:

<Object type="Sphere" name="CollisionModel" filename="liver.sph" />

Such model defines spheres as collision objects which properties such as centre and radius
are defined by means of a SPH file. A graphical view of this representation is depicted in
Figure 28:

sph 1.0

#nums 27

xmin="-5" xmax="2"

ymin="0.25" ymax="5.25"

zmin="-2" zmax="3"

sphe 1 -4 1.25 0 0.85

sphe 1 -4 1.25 1 0.85

…

X3D Specification in H3D

Introduction

This section partly describes how H3DAPI implements X3D specification for the scene-graph
settings and some of the nodes that are used in Haptics Open Framework. Such specification
is defined by X3D in part one called “Architecture and base components”. It contains the
abstract functional specification for the X3D framework, and definitions of the standardized
components and profiles.

Figure 28 - Collision Object
Representation of the Liver

53 | P a g e

Abstract Classes

H3D::Node is the base class for all the classes that can be part of the scene-graph.
render() function is used for the traversal of the scene-graph and traverseSG() is
called once per loop.

H3D::X3DNode is the base class for all the nodes in the X3D system and

H3D::X3DChildNode abstract class handles X3D children fields. Concrete nodes derived
from H3D::X3DGroupingNode abstract class contain children nodes and it is the basis
of all aggregation. Rendering the group involves rendering all its children. In the same way,
traversing the scene graph for the group involves traversing all its children.

X3D Nodes

Group

H3D::Group contains children nodes which are enclosed by a bounding box.

Transform

H3D::Transform grouping node defines a coordinate system for its children relative
to its ancestors. A 3D point is transformed into another point in its parent coordinate
system by a series of intermediate transformations.

DeformableShape

H3D::DeformableShape makes it possible to deform the geometry of the shape
when touching it with a haptics device.

The deformer field defines an H3DCoordinateDeformer node which determines

how the coordinates should be deformed on contact. H3DCoordinateDeformer
has been used as the base class for Motion node, which is used by the Haptics Open
Framework to communicate with SOFA. H3D::H3DCoordinateDeformerNode is
the base class for all the nodes specifying deformation based on contact of haptic
devices. Deformation is defined in the implementation of deformPoints() method.

The geometry field must contain an X3DComposedGeometryNode. The deformable
coordinates are defined in its coord field.

Geometry

H3D::X3DGeometryNode is the base node for all geometry nodes in X3D.
H3D::X3DComposedGeometryNode is the base node for all composed geometry in X3D.
A composed geometry node composes geometry from a set of nodes that define
individual components such as colour, normal and texture, among others.

IndexedTriangleSet

IndexedTriangleSet node is used to specify the geometry of a surface for the

haptics rendering. This node is a subclass of H3D::X3DComposedGeometry. It
specifies a 3D shape as a collection of individual triangles. Using its Coordinate fields
it arranges every triangle by referring to its coordinate index.

Appearance

X3D defines equations for the lighting model which specifies the colours to apply to the
geometry. The model takes into consideration the Material node along with values
such as the distance from the viewer to the geometry and the distance form light to
point geometry among others.

Shape nodes can associate geometry nodes to a particular appearance. An
Appearance node defines properties such as material, texture and texture

54 | P a g e

transformation to be applied to the geometry of the shape nodes. The Material
node specifies surface material properties and is used by the X3D lighting model
equations. The fields in the material node define how light reflects off the geometry to
create colour.

Deformable Shapes Modelling

Numerical Integration Solver
Euler and RungeKutta methods use explicit time integration to approximate a solution in
order to find element’s position and velocity at time steps throughout the simulation. The
smaller the time step the more accurate the approximation. Explicit methods are based on data
already known as previous positions and velocities whereas implicit methods need to solve a
system of equations.

The standard version of the Euler method is a first order numerical procedure for solving
ordinary differential equations based on an initial value. The goal is to approximate a function
by using the slope of the tangential line of a known point in the curve. Then, a small step is
taken over the tangent line to result in a new point which is considered for the next iteration. If
this process repeats several times, a polygonal approximated curve is generated. Therefore, the
smaller the time step, the better the function approximation is. The method is explicit because
the value computed in the previous iteration is needed to compute the current iteration value.

Symplectic Euler is a modified version of the standard version in the form of a semi-implicit
integrator. It is applied to a pair of differential equations where one depends on the other as it
is the case for displacement and velocity. It is called semi-implicit because in order to get the
new particle’s position it uses the current computed velocity instead of that one from the
previous iteration.

RungeKutta4 is similar to the standard Euler method as an explicit method. However, the next
point is computed by using a weighted average of slopes computed at the beginning, in the
middle and at the end of the time step interval.

Static solver aims to find the static equilibrium of a system although can diverge when there are
infinity of solutions. It uses a conjugate gradient method. On the other hand, CGImplicit is
based on Baraff et al [1998] paper for cloth simulation. They use implicit integration with a fast
iterative algorithm, that is, a modified version of conjugant gradient method. Additionally, the
constraints are always the same regardless the number of iterations to solve the linear system.
This proposed solution achieves larger time steps which complement the small number of
iterations to converge. The use of implicit integration generates large sparse linear systems
which are easily solved using conjugate gradient as they are based on matrix-vector multiplies.

55 | P a g e

Evaluation

Mesh Topology Sizes

Introduction
Haptic Open Framework has as inputs both volumetric data and surface data for the geometry
definition of a virtual object. An ongoing project processes CT and MRI images by performing
segmentation and meshing techniques and consequently produces a 3D model representation
of that object.

Volumetric data is represented as a mesh file (*.msh) which is composed by a set of points and
tetrahedra. Additionally, an X3D file (*.x3d) contains both Coordinate and
IndexedTriangleSet nodes which are used to define the surface consisting of a set of
points and triangles respectively. The point sets from both files match in its number of elements
and coordinates, therefore a point in the surface in the volumetric representation matches the
same index of the point in the surface representation.

Scenarios
Four different resolution levels of accuracy serve as input for a human liver. The number of
points, tetrahedra and triangles are plotted in Figure 29. Each resolution has been labelled as:
Liver Simple, Liver Coarse, Liver Medium and Liver Fine. Such labels will be used throughout the
tests in this chapter and the reader can refer to them in this section.

Figure 29 - Mesh Topology Resolutions

Haptic Rendering Algorithms

Introduction
Three different haptic rendering algorithms were tested using deformable shapes in the
framework: God-object, Ruspini and Chai3D. OpenHaptics algorithm was not tested at all
because of its disadvantages to the present work: closed source and device dependent.

56 | P a g e

Tests and Results
The test scenarios involved four different mesh topology sizes which were described previously.
A CGImplicit solver with five iterations as maximum and a MeshSpringForceField
were used for the numerical integration. Stiffness was set to a value of 5000 and damping to 25.
When the surface is touched, just the closest vertex is sent as index together with the touched
force to the ExternalForceField.

As an overall, GodOject is not a good solution for deformable shapes owing to many
fallthrough problems. It was quite complicated to touch the surface and press it by any given
force using the Falcon haptics device. On the other hand, Ruspini and Chai3D perform well in
the tests even when both fall through the surface sometimes. In the case of Ruspini, these kind
of problems exist when pushing an object and moving along a surface with sharp edges at the
same time. Chai3D presented fewer problems than Ruspini in this context. Nonetheless,
unstable force feedback behaviour is presented in Chai3D for all the mesh topology sizes.

Additionally, as surface normals are not interpolated, geometry edges are perceived by using
the haptic device. This feeling decreases as the mesh topology size increases. By using Chai3D a
smooth surface was perceived when moving along the surface.

These algorithms did not show any computing overhead compared against the others and
Ruspini was more appropriate to the framework as an overall.

Haptics Global Settings

Introduction
H3D allows modifying option settings for the entire scene-graph. These options become very
important for the framework and their values depend on user needs. Therefore some tests were
carried out in order to present some recommendations. For an easier explanation, the same
XML code from the design chapter has been copied in this section and appears below.

<GlobalSettings>

 <HapticsOptions touchableFace="FRONT" useBoundTree="false" />

<GeometryBoundTreeOptions boundType="AABB"

 maxTrianglesInLeaf="1" />

<DebugOptions drawBound="false" drawBoundTree="-1"

 drawHapticTriangles="false" />

</GlobalSettings>

Tests and Results
In HapticsOptions, touchableFace becomes very important due to the fallthrough problems
found in the haptic rendering algorithms. This option specifies which sides of the haptic shapes
to render haptically. Once the avatar falls inside the virtual object, it will become
straightforward to get out of it by setting its value to FRONT, otherwise collision detection exists
and the user will touch the inside surface which is not desirable. Additionally, by setting
useBoundTree to false, a gain in the performance is obtained without affecting the perception to
the user. For the ‘Liver Medium’ topology mesh without using bounding trees, an increase of 8
units in the fps rate was seen having as total 24 instead of 16.

Even when bound trees are used, the GeometryBoundTreeOptions help to decide which
type of collision objects to use, either AABB, OBB or SPHERE as well as the maximum number of
objects in the leafs of the tree. The three different types were useful and without any perceived
difference.

57 | P a g e

Finally DebugOptions appear as disabled as these indeed affect performance. If enabled, a
bound box is drawn in addition to the bounding tree structure used for collision detection. Also,
once the virtual object is in touch, the closest triangles are highlighted with the purpose of
showing which haptic shapes are involved during the haptic rendering.

Optimisation

Introduction
OpenMP was used as an approach to improve the frames per second rate in the Haptics Open
Framework. A for loop directive was configured for data parallelism in the deformation
modelling when the mechanical behaviour is used to fetch the new points position into H3D.

By using OpenMP, the test scenario was forced to be a debug environment in VS2005. However,
as all the tests were carried out in a Release version compiled in VS2003 it was hard to do
comparisons about the improvement by using parallelisation.

Tests and Results
Nonetheless, ‘Liver Medium’ was compared using the debug version. There was not significant
increase in the frames per second rate shown in the framework. For this particular topology, an
increase of 2 to 3 fps was achieved.

Force Fields for Biomechanical Modelling

Introduction
The purpose of this test is to compare the two available force field methods in SOFA and justify
its usage in the Haptics Open Framework. For the test scenario, gravity was set to -9.8 in the y-
axis with a total mass of 1kg. and CGImplicit solver with 25 iterations as maximum for the
numerical integration. For MeshSpring force field stiffness was set to a value of 10,000 and

damping to 15. For TetrahedronFEM, young modulus was set to 100 and poisson ratio to 0.4.

Tests and Results
MeshSpring force field is considered computationally efficient then real-time simulation is
feasible. However as a discrete model it involves approximations of the true physics and small
time steps are required. To avoid smalls time steps, a Conjugate Gradient approach is used as
the solver (refer to Numerical Integration Solver Tests and Results for more information). Even
when TetrahedronFEM is computationally more expensive, it can simulate the physical
properties of an object more efficiently.

In Figure 30, the resulting frames per second in SOFA are shown given different levels of mesh
accuracy. It is important to notice that the plotted fps were collected before the object reached
equilibrium. As an example, for ‘Liver Medium’ mesh, MeshSpring is twice faster than its
counterpart using FEM. MeshSpring has been chosen as a recommendation for the
framework due to the constraints in processing resources and an approximation to the physics
of a human organ.

58 | P a g e

Figure 30 - SOFA Force Fields

Numerical Integration Solver

Introduction
Four different solvers are analysed using different mesh topology sizes in SOFA. The scene-graph
has been set with gravity magnitude of -9.8 in the y-axis and using a
MeshSpringForceField with stiffness and damping values of 10,000 and 15 respectively.
Additionally, a total mass of 1Kg for all the nodes in the system is applied.

Tests and Results
Figure 31 shows a performance comparison of four different solvers available in SOFA: Euler,
RungeKutta4, StaticSover and CGImplicit.

Euler solver was configured as symplectic for a semi-implicit Euler integration instead of the
standard Euler method which collapsed for all mesh sizes. It is semi-implicit because it uses the
next velocity to compute the next position. For the two lower resolution meshes, the numerical
integration was unstable using small time step of 0.002. For the other two meshes, the nodes
collapsed even when several time steps were tested suing symplectic Euler and RK4. Red-
coloured label values show instability.

Additionally, it was observed that Static solver reached equilibrium so fast for low quality
meshes. Even when it performs better than others, it was not adequate for the haptic
deformable shapes.

On the other hand, CGImplicit with a time step of 0.02 showed efficient performance and is
suitable for haptic deformation shapes.

59 | P a g e

Figure 31 - SOFA Solvers Comparison

Even when CGImplicit performed better in the previous test, additional tests were carried
out with different maximum iterations values using Static solver. Figure 32 shows the
captured fps in SOFA. For higher resolution meshes and high number of iterations the simulation
becomes unstable and slower.

Figure 32 - Static Solver Performance

Finally, the same tests were performed in CGImplicit solver using different maximum
number of iterations. Results are shown in Figure 33. The reason of not presenting instability
when high resolution meshes and low number of iterations are used might be due to the slow
deformation observed. For the particular example of ‘Liver Medium’ by changing the number of
maximum number of iterations to seven it becomes stable in SOFA. However, once ‘Liver
Medium’ is loaded into HoF, it was observed a better behaviour when setting the maximum
number of iterations to a value around thirty. For ‘Liver Simple’ and ‘Liver Coarse’, one iteration
as maximum is quite enough for the simulation in SOFA.

60 | P a g e

Figure 33 - CGImplicit Solver Performance (dt=0.02)

Haptics Open Framework Evaluation

Introduction
The main purpose of this section is to evaluate the performance of the Haptics Open Framework
as an overall accordingly to all the decisions taken in its design and previous evaluation results.

Tests and Results
Figure 34 shows three frames per second rates achieved using the four different topology sizes
for a human liver, that is, when the virtual object has not been touched by the avatar, when it is
deforming due to a previous contact and while in contact. The best approach is by mixing
deformation, haptics and graphics in real time and this is the particular case of ‘Liver Medium’.
For a higher resolution which is the case of ‘Liver Fine’ the simulation loop becomes slower and
not real time so deformations are not efficiently perceived, even though the collision detection
does.

Figure 34 - HoF Performance

61 | P a g e

Figure 35 shows a snapshot of how these different topology sizes are deformed when in touch
with their respective fps rate.

Liver Simple (128fps) Liver Coarse (64fps)

Liver Medium (16fps) Liver Fine (2.6 fps)

Figure 35 - Haptic Deformable Shapes Examples

Finally, a framework screenshot is shown in Figure 36 using a touched ‘Liver Medium’ within a 3D

environment using several organs and bones which are closed to the liver to achieve a more realistic

simulation scenario for a user. All organs and bones different than the liver are not touchable and

transparency values in their appearance model have been set to allow the user to view the liver.

62 | P a g e

Figure 36 - HoF Liver Deformation

Needle Insertion

Introduction
Needle insertion modelling has been described in the implementation chapter. In this section
some tests and results pretend to give a feedback on what has been implemented and if the
resulting forces and perception to the user is efficient enough for this kind of procedures.

The topics that will be tested include the avatar graphical representation of the needle,
computing penetration depth, setting a threshold value for the capsule in the force effect node
and test if forces are generated based on it. Additionally deformation will be tested by sending
the computed forces to SOFA. The perception of these procedures is quite important and
represents the main outcome of these tests.

Tests and results
Even when the graphical representation of the avatar for the stylus was quite simple it indeed
represents a needle and a syringe, then the perception to the user becomes more realistic.
However, this is just a syringe representation as the needle is merely specified for its tip which
longitude is only 94mm

 Also, even when the computation of the penetration depth based on touch point and
penetration point is realistic, it was not clearly observed when the needle was traversing the
organ without setting the transparency value. Because of this, a small sphere is drawn in the tip
of the needle and a red point is drawn at the touch point to emphasize the insertion.

63 | P a g e

It is important to notice that deformation is done in the closest vertex not in the touch point and
as forces are small the only way to notice a deformation is by changing the stiffness of the
virtual object. Nonetheless, forces are computed accordingly to Maurin et al [2004] paper and
the negative of the touch normal is used to set the force which will be sent to SOFA for
deformation modelling.

Needle extraction behaves exactly the same as the insertion phase, that is, forces are computing
merely by the penetration depth.

In Figure 37, two examples of needle insertion are shown by using a cube geometry. No
deformation is applied in aims to show the appearance of the procedure. As it could be
observed, transparency has been set in the appearance model in order to have a better
perception of the needle insertion. The sphere drawn in the needle’s tip helps to identify the
penetration depth.

Figure 37 - Needle insertion in a transparent cube (no deformation)

Introducing deformation in this needle insertion experiment became quite straightforward
which is an advantage to the proposed Haptic Open Framework. Figure 38 shows a couple of
screenshots of the ‘Liver Medium’ topology using needle insertion and deformation.

It can be seen that the sphere drawn in the tip of the needle does not appear in the surface
representing that the needle has penetrated the organ. At the same time, both examples show
deformation in the contact region. However, stiffness value was decreased from 5,000 to 1,000
in order to be able to show deformation in a clearer form.

For this example, a value of 0.02m was used for the capsule, that is, the distance from the liver
surface to the liver capsule. This value was chosen as an approximation based on the graph
presented in Figure 21. As this distance is small, it becomes complicated to position the needle’s
tip in a region between the surface and the capsule to identify the forces during the first phase
of Fung model. Nonetheless, even when forces were slightly felt in the haptics device, the
exponential increment in the forces as shown in Figure 21 was perceived.

64 | P a g e

Figure 38 - Needle Insertion in a liver (with deformation)

Due to the limited workspace of the Falcon haptic device and the small forces exerted into the
device, it was not possible to insert the needle further after the initial contact with the capsule.

65 | P a g e

Conclusion and Future Work

Several research efforts in a myriad of different areas are involved in aims to present an
efficient alternative to surgical training using simulation in real time. By combining
recent available methods in haptic rendering, modelling of deformable objects and
using open source frameworks, nowadays surgery training is becoming a fact.

Haptic rendering provides immeasurable benefits for a realistic experience, especially in
medical training. Consumer-based products such as NOVINT®’s Falcon haptic device
make efforts to gather even better as a result of cost and availability. Collision detection
and force response play an important role due to the processing demand in high-
frequency servo rates.

Although most of the physically-based models of deforming objects (continuum
mechanical-based approaches) introduce the best approximation for the dynamic
behaviour of soft tissue, they still present challenges when dealing with limited
computational resources. Furthermore, the choice of such algorithms, together with the
data structures selected for representing volume, have a direct impact on typical tasks
performed in medical training, such as cutting and grasping as this tasks imply topology
changes.

Nonetheless, recent open source software frameworks available both in haptic
rendering and simulation engines grant benefits never encountered before, owing to
the modularity and flexibility for using available algorithms and deploying new ones.
Furthermore, these frameworks provide mechanisms to do significant changes in a
relative short period of time, allowing for further outcome comparison and analysis.

Overall, even though accuracy and efficiency can be found in several approaches, trade-
offs are still of paramount concern to achieve realistic scenarios in immersive and
interactive environments.

Using both volumetric and surface information is important for modelling touchable
deformable shapes and combining them together in a real-time application is
challenging. Thereafter, this is an important key element of the Haptics Open
Framework.

The integration of SOFA and H3D in aims for a haptics-enabled framework for
deformable shapes is quite important due to the flexibility of extending these libraries in
order to implement and test recent algorithms and to be device independent as well as
a method for creating virtual scenarios.

Even when the graphical user interface integration was complicated in the first part of
the project, it could be managed satisfactory. However, as there are many values and
properties that can be set in both SOFA and H3D libraries, it becomes a time-consuming
activity to create their corresponding widgets, especially for handling both scene-graphs.

The proposed framework provides several benefits for quick prototyping of deformable
objects and a platform to test different algorithms for modelling haptics and
deformation. Also, academically this framework might be useful for teaching purposes
in the field of haptics programming and deformation modelling which indeed extends its
use.

66 | P a g e

A particular example of prototyping was implemented into the framework for needle
insertion procedures such as biopsies. Even though the implementation can be
improved, it was quick implemented using the framework and deformation was
straightforward to handle.

Future work will include a better appearance modelling which is of extreme importance
to present realistic scenarios. Also, nonlinearity deformation needs to be included due
to the nature of soft tissue. The use of massive parallelisation in computing might
enhance the performance and allow for more techniques to adapt such as mesh
refinement.

Additionally, the graphical user interface might support the X3D scene graph in the
framework. By modelling grasping and cutting, even more medical procedures can be
simulated and different tools might be integrated.

 An important part of training is the measure of performance thus statistics will be of
paramount importance for the practitioners in a virtual environment.

67 | P a g e

References

ALLARD, J., COTIN, S., FAURE, F., BENSOUSSAN, P.-J., POYER, F., DURIEZ, C., DELINGETTE, H., AND GRISONI, L.. 2007.

“SOFA – an Open Source Framework for Medical Simulation”. CIMIT Sim Group and INRIA. 1-6.

AMRANI, M., JAILLET, F., AND SHARIAT, B. 2000. “Deformable Objects Modelling and Animation: Application

to Organs’ Interactions Simulation”. University of Lyon. Journal for Geometry and Graphics, Volume 4,

2000, 181-188.

BARAFF, DAVID AND WITKIN, ANDREW. 1998. “Large Steps in Cloth Simulation”. Robotics Institute, Carnegie

Mellon University. 1-12.

BARGTEIL, ADAM W., WOJTAN, CHRIS, HODGINS, JESSICA K., AND TURK, GREG. 2007. “A Finite Element Method for

Animating Large Viscoplastic Flow”. Carnegie Mellon and Georgia Institute of Technology. SIGGRAPH

2007, 1-8.

BRO-NIELSEN, MORTEN. 1996. “Surgery Simulation using Fast Finite Elements”. Technical University of

Denmark. 1-6.

CHOI,KUP-SZE, SUN, HANQIU, HENG, PHENG-ANN, AND ZOU, JUN. 2004. “Deformable Simulation Using Force

Propagation Model With Finite Element Optimization”. Chinese University of Hong Kong. Computer and

Graphics, 559-568.

CHOI, SEUNGMOON AND TAN, HONG Z. 2004. “Toward Realistic Haptic Rendering of Surface Textures”.

Purdue University. IEEE Computer Graphics and Applications, 40-47.

CONTI F, BARBAGLI F, MORRIS D, SEWELL C. 2005. “CHAI: An Open-Source Library for the Rapid Development

of Haptic Scenes”. IEEE World Haptics.

DEHGHAN, EHSAN, WEN, XU, ZAHIRI-AZAR, REZA, MARCHAL, MAUD, AND SALCUDEAN, SEPTIMIU E. 2007. “Modeling

of Needle-Tissue Interaction Using Ultrasound-Based Motion Estimation”. University of British Columbia

and TIMC-GMCAO Laboratory. MICCAI 2007, 709-716.

FARACI, ALESSANDRO. 2005. “A Multi-resolution Nonlinear Finite Element Approach to Real-time

Simulation of Soft Tissue Deformation with Haptic Feedback”. Doctoral Dissertation, Department of

Surgical Oncology and Technology, Imperial College London.

FAURE, FRANCOIS. 2007. “Introduction to SOFA”.Grenoble Universités, 1-13.

FAURE, FRANCOIS, ALLARD, J., COTING, S., NEUMANN, P., BENSOUSSAN, P-J., DURIEZ, C., DELINGETTE, H. AND GRISONI,

L. 2007. “SOFA: A Modular Yet Efficient Simulation Framework”. Surgetica 2007, 1-7.

FLTK. “Fast Light Tool Kit 1.1.7 Programming Manual”. http://www.fltk.org

FREEGLUT. “The Open-Source OpenGL Utility Toolkit Freeglut API”. http://freeglut.sourceforge.net

GAUZAINE, C. AND REMACLE, J.-F. 2007 “Gmsh Reference Manual”. http://geuz.org/gmsh

GEORGII, JOACHIM AND WESTERMANN, RÜDIGER. 2005. “Mass-Spring Systems on the GPU”. Technische

Universität München. 1-10.

GIBSON, SARAH F. F. 1996. “3D ChainMail: A Fast Algorithm for Deforming Volumetric Objects”. Mitsubishi

Electric Research Laboratories. 1-7.

GLEW. “GLEW: The OpenGL Extension Wrangler Library”. http://glew.sourceforge.net

http://www.fltk.org/
http://freeglut.sourceforge.net/
http://geuz.org/gmsh
http://glew.sourceforge.net/

68 | P a g e

GLUT. “The OpenGL Utility Toolkit (GLUT) Programming Interface (API version 3)”

GNU. “The GNU Operating System”. http://www.gnu.org

GOKSEL, ORCUN, SALCUDEAN, SEPTIMIU E. AND DIMAIO, SIMON P. 2006. “3D Simulation of Needle-Tissue

Interaction With Application to Prostate Brachytherapy”. University of British Columbia, and Brigham

and Women’s Hospital. Computer Aided Surgery, 279-288.

H3D OPEN SOURCE HAPTICS. “H3D API Manual (for version 2.0)”. http://h3dapi.org

HALE, KELLY S. AND STANNEY, KAY M. 2004. “Deriving Haptic Design Guidelines from Human Physiological,

Psychophysical, and Neurological Foundations”. University of Central Florida. IEEE Computer Graphics

and Applications, 33-39.

HAYWARD, VINCENT AND MAHVASH MOHSEN. 2004. “High-Fidelity Haptic Synthesis of Contact with

Deformable Bodies”. McGill University and Real Contact Inc. IEEE Computer Graphics and Applications,

48-55.

HOLBREY, RICHARD PAUL. 2004. “Virtual Suturing for Training in Vascular Surgery”. Doctoral Dissertation,

School of Computing, The University of Leeds.

ISBMS. 2008. “International Symposium on Computational Models for Biomedical Simulation”. Imperial

College London. July 7th and 8th, 2008.

KIM, LAEHYUN, SUKHATME, GAURAV S. AND DESBRUN MATHIEU. 2004. “A Haptic-Rendering Technique Based on

Hybrid Surface Representation”. Korea Institute of Science and Technology and University of Southern

California. IEEE Computer Graphics and Applications, 66-75.

KYTHE, PREM K. 1995. “An Introduction to Boundary Element Methods”.

LIBXML2. “The XML C Parser and Toolkit for Gnome”. http://xmlsoft.org

MAURIN, B., BAYLE, Z., GANGLOFF, DE MATHELIN, GANGI, S., AND FORGIONE. 2004. “In Vivo Study of Forces

During Needle Insertions”. 1-8.

MCLAUGHLIN, MARGARET L. 2005. “Touch in virtual environments: haptics and the design of interactive

systems”

MEIER, U., LÓPEZ, O., MONSERRAT, C., JUAN, M.C., ALCAÑIZ, M. 2005. “Real-time Deformable Models for

Surgery Simulation: a Survey”. Universidad Politécnica de Valencia. Computer Methods and Programs in

Biomedicine 2005, 183-197.

MONSERRAT, C., MEIER, U., JUAN, MC., ALCAÑIZ, M., KNOLL, C., GRAU, V., CHINESTA, F., AND DUVAL, C. 2001. “A

New Approach for the Real-Time Simulation of Tissue Deformations”. Universidad Politécnica de

Valencia and Conservatoire National des Arts et Metiers Paris, 1-8.

MOORE, PATRICIA AND MOLLOY, DEREK. 2007. “A Survey of Computer-Based Deformable Models”. Machine

Vision and Image Processing Conference. Dublin City University, 1-10.

NEDEL, LUCIANA PORCHER, THALMANN, DANIEL. 1998. “Real Time Muscle Deformations Using Mass-Spring

Systems”. Swiss Federal Institute of Technology, 1-11.

NEWMAT. “Robert Davies’ NewMAT library”. http://www.robertnz.net

NIENHUYS, AND FRANK VAN DER STAPPEN. 2003. “Interactive Needle Insertions in 3D Nonlinear Material”.

Utrecht University, 1-7.

http://www.gnu.org/
http://h3dapi.org/
http://xmlsoft.org/
http://www.robertnz.net/

69 | P a g e

NOVINT. “NOVINT Pioneering Interactive 3D Touch Products”. http://www.novint.com

OGRE. “OGRE 3D: Open Source Graphics Engine”. http://www.ogre3d.org

OPENGL. “OpenGL – The Industry Standard for High Performance Graphics”. http://opengl.org

OPENGL. “The OpenGL Graphics System Utility Library (version 1.3)”.

OPENMP. “The OpenMP API Specification for Parallel Programming Tutorial ”. http://openmp.org/wp

PALOC, CÉLINE, FARACI, ALESSANDRO, AND BELLO, FERNANDO. 2006. “Online Remeshing for Soft Tissue

Simulation in Surgical Training”. VICOMTech and Imperial College London. IEEE Computer Graphics and

Applications, 24-34.

QT4WIN GUI. “Trolltech Qt 4.2 Reference Documentation”. http://doc.trolltech.com/4.2/index.html

RUSPINI, D., KOLAROV, K. AND KHATIB, O. 1997. “The Haptic Display of Complex Graphical Environments”.

Computer Graphics Annual Conference Series, 345-352.

SALISBURY, KENNETH AND LIN, MING. 2004. “Haptic Rendering – Beyond Visual Computing”. IEEE Computer

Graphics and Applications, 22-23.

SALISBURY, KENNETH, CONTI, FRANCOIS AND BARBAGLI, FEDERICO. 2004. “Haptic Rendering: Introductory

Concepts”. Stanford University and University of Siena. IEEE Computer Graphics and Applications, 24-32.

SALISBURY, KENNETH AND TARR, C. 1997. “Haptic Rendering of Surfaces Defined by Implicit Functions”. ASME

Dynamic Systems and Control Division vol. 61, 61-67.

SENSABLE. “SensAble Technologies”. http://sensable.com

SENSGRAPHICS. “SenseGraphics H3D API”. http://www.sensegraphics.com

SMART, J., ROEBLING, R., ZEITLIN, V., DUNN, R., ET AL. November, 2007. “wxWidgets 2.8.7: A portable C++ and

Python GUI toolkit”. http://www.wxwidgets.org

SOFA. “SOFA :: Simulation Open Framework Architecture”. http://www.sofa-framework.org

TAYLOR, ZEIKE A., CHENG, MARIO, AND OURSELIN, SÉBASTIEN. 2007. “Real-Time Nonlinear Finite Element

Analysis for Surgical Simulation Using Graphics Processing Units”. CSIRO ICT Centre and University

College London. MICCAI 2007, 701-708.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987. “Elastically Deformable Models”. Schlumberger

Palo Alto Research and California Institute of Technology. Computer Graphics 1987, 205-214.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-P.,

FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W., AND VOLINO, P. 2005. “Collision Detection for Deformable

Objects”. University of Freiburg, ETH Zurich, Tübingen University, University of Geneva, INRIA, Bonn

University, and Fraunhofer Institute for Computer Graphics. The Eurographics Association and Blackwell

Publishing 2005, 1-21.

VIDHOLM, ERICK. 2008. “Visualization and Haptics for Interactive Medical Image Analysis”. Doctoral

Dissertation, Faculty of Science and Technology, Uppsala Universitet.

WITKIN, ANDREW. 1997. “Physically Based Modeling: Principles and Practice. Particle System Dynamics”.

Carnegie Mellon University. 1-12.

http://www.novint.com/
http://www.ogre3d.org/
http://opengl.org/
http://openmp.org/wp
http://doc.trolltech.com/4.2/index.html
http://sensable.com/
http://www.sensegraphics.com/
http://www.wxwidgets.org/
http://www.sofa-framework.org/

70 | P a g e

WU, XUNLEI, DOWNES, MICHAEL S., GOKTEKIN, TOLGA, AND TENDICK, FRANK. 2001. “Adaptive Nonlinear Finite

Elements for Deformable Body Simulation Using Dynamic Progressive Meshes”. University of California.

EUROGRAPHICS 2001, 1-10.

X3D. “X3D (Extensible 3D): Part 1: Architecture and Base Component Specification”.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification_Revision1_to_Part1

ZAMANI, K., TOMOYUKI, M., AND YAMAKAWA, H. 2007. “A Simulation Method for 3-Dimension Needle

Invasive Medical Treatments of Cancer Infected Liver”. Biomedical Engineering Proceedings of the Fifth

IASTED International Conference 2007, 43-49.

ZHU, YANONG, MAGEE, DEREK, RATNALINGAM, RISH, AND KESSEL, DAVID. 2007. “A Training System for

Ultrasound-Guided Needle Insertion Procedures”. University of Leeds, Mid Yorkshire Hospitals and

Leeds Teaching Hospitals. MICCAI 2007, 566-574.

ZIENKIEWICZ, O. C. AND TAYLOR, R. L. 2000. “The Finite Element Method”.

ZILLES, C.B. AND SALISBURY, J.K. 1995. “A Constraint-based God-object Method For Haptic Display”. MIT, 1-6.

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification_Revision1_to_Part1

71 | P a g e

Appendix

XML Project Settings
An example of a framework project file for “Liver Coarse” is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<hof>

 <sofa>

 <sg>

 <Node name="root" dt="0.02" showBehaviorModels="0"

showCollisionModels="0" showMappings="0"

showForceFields="0" gravity="0 0 0">

 <Object type="CGImplicit" iterations="5"/>

 <Object type="MeshTopology" name="mesh"

filename=" livercoarse.msh" />

 <Object type="MechanicalObject" name="mechanics"

template="Vec3d" />

 <Object type="FixedConstraint" name="fixed"

indices="11 86 87 124 128"/>

 <Object type="ExternalForceField" name="extforce"

force="0 0 0" />

 <Object type="MeshSpringForceField" name="spring"

stiffness="1000" damping="5" />

 <Object type="UniformMass" name="mass" totalmass="1000"/>

 </Node>

 </sg>

 </sofa>

 <h3d>

 <graphics fullscreen="no" mirrored="no" renderMode="MONO">

 <viewpoint filename="ViewpointH3D.x3d "/>

 </graphics>

 <haptics showTime="no" showLevel="no" outputLevel="3" stream="cerr">

 <device filename="DeviceFalcon.x3d"/>

 <stylus filename="StylusH3D.x3d"/>

 <geometry filename="livercoarse.x3d"/>

 </haptics>

 </h3d>

</hof>

X3D Scene-Graph Example
An example of an X3D scene-graph is shown below.

<Group>

 <FitToBoxTransform boxCenter="0 0 0" boxSize="0.4 0.4 0.4">

 <Transform>

 <DeformableShape>

 <Motion DEF="box2"/>

 <Appearance>

 <SmoothSurface />

 <Material

 ambientIntensity='1.0'

 diffuseColor='0.36 0.11 0.04'

 emissiveColor='0 0 0'

 shininess='0.2'

 specularColor='0.70 0.70 0.70'

 transparency='0'

 />

72 | P a g e

 </Appearance>

 <IndexedTriangleSet DEF="box" solid='false'

normalPerVertex='true' containerField='geometry'

index='

...

' >

 <Coordinate point='

...

'/>

 </IndexedTriangleSet>

 </DeformableShape>

 </Transform>

 </FitToBoxTransform>

</Group>

H3D Source Code Modifications
GLUTWindow

Firstly, include the corresponding libraries for FLTK and replace Freeeglut GLUT‘s
implementation by FLTK. Also, all the GLUT callback functions for the keyboard and mouse
interaction will be enabled.

///////////////////////////////////

/ GLUTWindow.h Modifications

///////////////////////////////////

#include <FL/Fl_Window.h>

#ifdef FLTK

#include <FL/glut.h>

#endif

#ifdef FREEGLUT

#include <GL/glut.h>

#endif

class H3DAPI_API GLUTWindow : public H3DWindowNode,

public Fl_Window { … }

Thereafter, H3D::GLUTWindow implementation adds the library dependencies dynamically.
When mixing FLTK and GLUT code we don’t need to call glutInit() function, then it is
commented in GLUTWindow::initGLUT() function. The constructor of Fl_Window is called
accordingly.

///////////////////////////////////

/ GLUTWindow.cpp Modifications

///////////////////////////////////
#ifdef FLTK

#include <FL/glut.h>

#include <GL/glu.h> // important for FLTK

#define GLUT_INIT_STATE 0x007C

#endif

#ifdef FREEGLUT

#include <GL/glut.h>

#endif

#ifdef FLTK

#if defined(_MSC_VER) || defined(__BORLANDC__)

#pragma comment(lib, "comctl32.lib")

#pragma comment(lib, "fltkdlld.lib")

#pragma comment(lib, "glu32.lib")

73 | P a g e

#pragma comment(lib, "opengl32.lib")

#endif

#endif

void GLUTWindow::initGLUT() {

 if (!GLUT_init) {

 // don't call glutInit when mixing FLTK and GLUT

 //char *argv[1] = { "H3DLoad" };

 //int argc = 1;

 //glutInit(&argc, argv);

 GLUT_init = true;

 }

}

GLUTWindow::GLUTWindow(…) : H3DWindowNode(…),

Fl_Window(0,0,0,0, "GLUTWindow") {…}

The most important changes are done in the GLUTWindow::initWindow() function. As the
GUI will be the parent window, it needs to be shown first. The next step is to show the child
window and handle it as another widget. In H3D, when a Scene is created, the GLUTWindow is
pushed back in a vector and this is the time when the window initialization takes place. The
GLUTWindow::initWindow() code changes are as follows:

show(*intargc, intargv); //fltk

begin(); //fltk

glutInitDisplayMode(mode);

glutInitWindowSize(w(), h());

glutInitWindowPosition(0,0); //fltk

window_id = glutCreateWindow("H3D");

end(); //fltk

resizable(glut_window); //fltk

Scene, X3DKeyDeviceSensorNode, DynamicTransform, and SpaceballSensor

Similar to GLUTWindow, all these classes need to replace Freeglut’s GLUT implementation by
FLTK implementation as follows:

#ifdef FLTK

#include <FL/glut.h>

#endif

#ifdef FREEGLUT

#include <GL/glut.h>

#endif.

X3D Needle Representation
This section includes the X3D representation for the stylus used in a needle insertion procedure. It is

divided in different sections or shapes which constitute a syringe and a needle. These shapes appear

form the tip towards the syringe and are commented accordingly. As it could be observed,

Transform nodes are used to set translation values for each shape and just the z-axis, which is

towards the user, is modified. Also, rotation values are set to 𝜋 2 in order to have the syringe facing

towards the virtual object.

<Group>

 <Shape>

 <!--needle's tip-->

 <Appearance>

 <Material transparency="0.5"/>

 </Appearance>

74 | P a g e

 <Sphere radius="0.0025"/>

 </Shape>

 <Transform translation="0 0 0.025" rotation="1 0 0 1.570796" >

 <Shape>

 <!--needle tip diameter-->

 <Appearance>

 <Material/>

 </Appearance>

 <Cylinder radius="0.00025" height="0.047"/>

 </Shape>

 </Transform>

 <Transform translation="0 0 0.075" rotation="1 0 0 1.570796" >

 <Shape>

 <!--second half of the needle, different diameter-->

 <Appearance>

 <Material/>

 </Appearance>

 <Cylinder radius="0.00125" height="0.047"/>

 </Shape>

 </Transform>

 <Transform translation="0 0 0.15" rotation="1 0 0 1.570796" >

 <Shape>

 <!--syringe tube base-->

 <Appearance>

 <Material transparency="0.5"/>

 </Appearance>

 <Cylinder radius="0.005" height="0.1"/>

 </Shape>

 </Transform>

 <Transform translation="0 0 0.2" rotation="1 0 0 1.570796" >

 <Shape>

 <!--syringe handle-->

 <Appearance>

 <Material transparency="0.5"/>

 </Appearance>

 <Cylinder radius="0.008" height="0.01"/>

 </Shape>

 </Transform>

</Group>

