IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

The Use of Tensegrity to Simulate
Diaphragm Motion Through
Muscle and Rib Kinematics

Author: Supervisors:
Wesley BOURNE Dr. Fernando BELLO
Dr Pierre-Frédéric VILLARD

THIRD YEAR BENG PROJECT

Project Directory: http://www.doc.ic.ac.uk/ wlb05/project/

Abstract

Respiration is a complex process involving the interaction of several muscles
and other tissue. The diaphragm has a large influence as it is the central
division within the abdomen and plays a role in inflating and deflating the
lungs. It is composed of different kinds of tissue which need to be modelled
using different paradigms. Tensegrity is the use of rigid and elastic links
to give more rigidity to systems and will be used to model the more rigid
parts of the diaphragm. A mass spring will be used for the remainder.
Rib kinematics and attached tissues will also be modelled to provide a more
realistic simulation. The result is a Java simulation running in real time with
parameters to control breathing speed, force, rib motion and mass spring
parameters. The results can be exported and an evaluation of the simulator
will be provided.

Acknowledgements

e My thanks go to Fernando Bello and Pierre-Frédéric Villard for their
consistent, fast and constructive advice throughout the project.

e [would also like to thank Philip Edwards for agreeing to be my second
marker.

e Finally, I would like to thank my parents for giving me the opportunity
to study at Imperial College.

Contents

2 Background|
2.1 Medical Simulationl oo 0oL
[2.1.1 Requirements| L.
[2.1.2 3D Imaging Techniques|
[2.1.3 Sample Current Applications|
2.2 Mass Spring Systems|
[2.2.1 Equation of Dynamics|
[2.2.2 Explicit Euler Solver{
|2,2,;; (:llsz‘lss: Szl (El:l

2.4 Tensegrity]
[2.4.1 Definition and Origins|

[2.4.3 Applying Tensegrity Constraints|
[2.4.4 Potential Application to Tissue Simulation|
2.5 Diaphragm Modellingl
[2.5.1 Anatomy and Physiologyl
[2.5.2 Diaphragm Composition|

[3 Biomechanical Modelling]
[3.1 Diaphragm Mechanics and Tensegrity|
[3.2 Rigid Connections|

[4 Implementation|
I4II :i!)l “ :i!zllltl‘(}lﬂ
4.1.1 Background|
[4.1.2 Diaphragm Motion in SOFA|
4.1.3 Issues with Heterogenity|.

[4.2.2 2D Display] o0 0o
423 3D Display]
4.3 The Final Produetl

[b_FKvaluationl
b.1 Tensegrity]
5.1.1 Eftect on Diaphragm|.
5.2 Diaphragm Motion|

[5.3.2 Diaphragm Simulation|.
[5.3.3 Influence of Mesh Size with a Heterogeneous Model|
19.3.4 Influence of Mesh Size with a Homogenous Model|

6 Conclusion|

6.1.1 Work Completed|
6.1.2 Project Outcomes|

[Bibliography|

30
30
30
31
33
34
34
35
36
38

41
41
43
45
46
46
47
48
49
50
52

55
55
55
95
55
56
56
56
56

57

Chapter 1

Introduction

1.1 Motivation and Intent

The diaphragm plays a key role in the respiration of humans and its complex
motion can have an impact on interventional or therapeutic procedures. It is
mostly muscular and divides the torso, connected to the spine and ribs, with
holes through which large blood vessels pass into the lower abdomen. The
position of the diaphragm and its deformation are influenced by rib motion
combined with muscle action. This project aims to model the motion and
deformation of the diaphragm together with the surrounding organs and
bones, using a combination of mass spring systems and tensegrity. Chapter[2]
describes these methods together with the powerful and widely used finite
element method. Due to the complicated interactions between neighbouring
tissues, assumptions had to be made and heuristic algorithms applied. See
chapter [3| for a more in depth discussion of this aspect of the project.

1.2 Goals

The goal of the project is to create a simulation of diaphragm motion using
tensegrity to model the more rigid upper regions. The simulation needs to
be real-time and tuneable via a control panel to allow it to easily match the
breathing motion obtained from patient scans.

1.3 Salient Points

In order to understand the validation section of the report, it is important
to have a basic understanding of the process whereby CT scans are filtered,
segmented and meshed. This is illustrated at the beginning of chapter[2] An-
other important aspect of the project is the inability of the SOFA framework
to process two tissue simulation methods on the same model. This resulted

in having to implement the simulation outside the SOFA framework as orig-
inally planned, using Java and OpenGL instead. The full discussion of this
problem is presented in section

Finally, the simulator(figure was complete and an evaluation on the
effect of tensegrity is shown in chapter [5

Figure 1.1: The completed Java simulator with the ribs, diaphragm, lungs
sternum and ligaments visible.

1.4 Contributions

o Tuneable Simulator: The final product is a simulator with parameters
to change the speed, magnitude of forces and other factors contribut-
ing to the diaphragm motion. This allows the simulator to match
diaphragmatic or chest breathing and any mix in between.

e Customisable to Patients: The simulator has been tested on three
patients and performs realistically thanks to the tuneable parameters.

o FExtensible Framework: The project is extendable and object-orientated
and is amenable to future work by other researchers or intern students.

e Study and Analysis of Computational Cost of Tensegrity: The cost of
solving simulations involving rigid links has been studied and evalu-
ated.

e Study into Applicability of Tensegrity: Tensegrity has been shown to
have a supportive effect as a part of a tissue simulator.

e Algorithms for Diaphragm Initiation and Muscle Motion: Intuitive
algorithms have been created that link opposing sides of tissue topolo-
gies and simulate the attachment of tissue to other models and apply
muscle forces.

Chapter 2

Background

The aim of this background section is to make this document self-contained
and also to give a general understanding of the field. The discussions here
can be expanded more fully in the work of Meier et al[ML] and Vidal et
al[VB]. The section will begin with a brief summary of the current field of
medical simulation before moving to simulating tissue and ending with the
physiology of the diaphragm. The description of the kinematic equations is
based on the work of Baraff and Witkin[BW] and uses the syntax of Bhasin
and Liu[BLI,

2.1 Medical Simulation

Medicine has always been a great follower of technology and the growth in
possibilities and computational power have been closely followed by those
wanting to use these advances for medical purposes. Being such a massive
field, there are numerous applications including medical diagnosis, training,
planning and more. Another contributing factor to the rapid growth of
simulation is the wider availability of data from CT, MRI and other 3D
forms of medical information. Computers are excellent at summarising,
manipulating and finding patterns in large datasets. Their input to medical
procedures can prove invaluable.

2.1.1 Requirements

In such a high-pressure and demanding environment, any simulation must
reach a level of realism and usability. The simulation must be:

e Validated: Experts in the field must verify the validity of the simula-
tion as a useful tool.

e Realistic: There is no need for a simulation that varies so much from
the truth that it may give an inconsistent or false impression of reality
and put the patient in danger.

e Affordable: Hospital budgets must take into account which invest-
ments will give the greatest benefit to the overall population. A very
expensive simulation will deter investment.

2.1.2 3D Imaging Techniques
Filtering

Figure 2.1: The start and end points of filtering of a diaphragm.

Information entered into a computer via a scanner will most likely contain
noise. Filtering is the process by which this noise is removed by smoothing
or blurring each pixel based on a combination of its neighbours. This is
visible in figure In medical simulations, this can remove crucial detail
about anatomical boundaries. A more involved technique using anisotropic
diffusion aims to iterate towards an equilibrium state controlled by a partial
differential equation. It has proved successful and is a popular choice to
improve image quality.

Segmentation

Figure 2.2: The start and end points of segmentation of a diaphragm. A
sequence of slices from a 3D scan is turned into labelled voxels.

Once an image has been filtered to remove any noise, it is desirable to be
able to label the different anatomical areas of the image(figure 2.2). This is

a time-consuming process and is reliant on the user. Techniques include:

e Thresholding: A value is chosen to be a threshold and the image is
partitioned based on those that fall on either side of this boundary.

e Region Growing: A centre point is chosen as a seed and this region is
grown up to a boundary.

e Watershed transform: An intuitively simple algorithm which divides
the image based on basins and hills as if water were flooded into the
scene.

e Livewire: A user’s cursor is tracked and the closest approximated
boundary is selected before being approved by the user who can then
proceed to the next point.

Meshing

Figure 2.3: The meshing process begins with mutiple slices of segmented
data and proceeds to a 3D model.

After the slices of a scan have been segmented into the different organs, a
meshing algorithm can be used to create a mesh(figure [2.3)). Here are some
popular methods:

e Delaunay: In 2D, for a set of points P, the Delaunay triangulation
maximises the minimum angle in the triangles created, thus preventing
the creation of sliver triangles. The method is more complicated but
intuitively similar in 3D.

o Marching Cubes: Is the 3D equivalent of the marching squares al-
gorithm. The algorithm traverses the scalar field considering eight
neighbouring positions at a time. It determines the polygons needed to
represent this part of the isosurface passing through this cube. These
polygons are then fused to create the surface.

2.1.3 Sample Current Applications

As a result of the funding and interest applied to medicine there are a
plethora of interesting and advanced applications. A brief description of
examples are shown here.

Augmented Reality

Computer-generated artefacts are added to a scene in the real world. The
user typically has a head-mounted display. The display can aid in the dif-
ferentiation of tissue or help guide an instrument. The additions made via
the computer must be correctly orientated with the position of the user.
Performing this synchronisation can prove to be very difficult; without near
perfect alignment the slightest discrepancies can become a hindrance.

Virtual Endoscopy

In a traditional video endoscopy, an endoscope is inserted into the patient
with a small opening in the body. This is an invasive procedure and only
has limited viewing ability. A virtual endoscopy creates a simulation in
which a virtual endoscope can be manoeuvred through the patient in a 3D
environment created using a medical scan of the patient. It allows for the
interactive exploration of the tissues and removes the need for an invasive
procedure.

Patient Specific Virtual Environments

Using prior data from the patient a simulation can be tailored to an exact
specification. This means the surgeon can practise a procedure in an envi-
ronment as near to reality as possible. This possibility allows the surgeon
to be more confident and prepare for any technically challenging elements
during the operation.

2.2 Mass Spring Systems

Once it has been decided that a medical simulation is needed, there is a
requirement for accurate and real-time modelling of tissue. Popular methods
to simulate tissue are presented in the following section. Mass spring, Finite
element and Tensegrity methods will be discussed.

Mass spring systems are a popular and effective way of simulating a
variety of physical interactions. A set of masses is created with predefined
links. A subsection of a simple mass spring system is shown in figure [2.4]
These links have stiffness values and they exert forces on the masses which
in turn move. Iteratively solving and analysing the motion of the masses can
be used to simulate objects as varied as cloth or human organs. A standard

10

method of defining the forces and solving the motion is discussed in the

following section.

Figure 2.4: A 2D mass spring system, mass ¢ has three neighbours which
must be included in its force calculation.

Advantages

Distadvantages

Quick Visualisation: Simplicity be-
tween the mesh and the simulation
means it is quick to implement.
Simulation Speed: Equations of mo-
tion are fast and efficient to solve.
Mature Method: There has been
a substantial amount of research
backing the method and although
it isn’t perfect, it performs well in
many situations.

Reliance on Mesh: A mesh that
looks identical to another may per-
form very differently as a result of
different low-level connections and
constructs.

Speed of Propagation: Forces can
only propagate one neighbour at a
time. This removes from the real-
ism.

Tendency to Oscillate: The simu-
lation can get into a state where

masses oscillate. This is discussed
further in section 2.2.3]

2.2.1 Equation of Dynamics

Equation forms the basis of the forces that are calculated within the
system. It is computed for each mass at the beginning of each timestep
before being used along with the current position and velocity to numerically

11

integrate to find the position at the next timestep.

The equation indicates that the resultant force felt by a mass is the sum
of all the forces of tensile links and any outside force minus any friction
force.

f=miai= | Y kigdyy (Il = 1) | + f£ =0l (2.1)
JEN(3)

Where:

f} is the force placed on m; at time ¢.

m; 1S a mass 7.

af is the acceleration of a mass ¢ at time t.

N (i) is the set of neighbouring masses.

d;j is the distance between m; and m;.

lfj is the distance between m; and m; at time ¢.
ij is the distance between m; and m; at rest.
f!is an external force on the mass at time ¢, such as gravity.
v is the friction coefficient.
v} is the velocity of m; at time .

Manipulating equation [2.1] yields the following:

n ((Sienco Riadis (1= 15)) = ot + 1) 0

my;

The Continuous Solution
ma (2.3)
t
vl = /f(ai)da. (2.4)
0

t
rt = /f(vi)dv. (2.5)
0

These continuous equations become discretised and are solved using the Eu-
ler method. They describe standard Newtonian physics where acceleration,
velocity and position are interrelated via integrals and derivatives. The sim-
ulation uses a discrete timestep of milliseconds and for this reason these
equations must be approximated.

2.2.2 Explicit Euler Solver
The Discrete Approximation
Once all the forces have been calculated using the force equation presented

in equation the analytic equations [2.4] and [2.5] must be discretised. The

12

chosen solution for the implementation was an explicit Euler solver. The
Euler method uses the following intuitive approximations.

ot = ot 4 alt (2.6)
AL L (2.7)

These equations are easy to solve and lend themselves well to scaling mean-
ing that real-time simulation is possible.

Figure 2.5: The Euler Integration method shown graphically.

2.2.3 Choice of it

After considering figure [2.5] it becomes apparent that the correct choice of
0t makes a massive difference in the convergence of any solution. Some of
the possible convergent cases are shown in figure Choosing too small
a value leads to a case where there may be little movement and friction
may counteract any motion towards a true solution. Choosing a value too
large may lead to the simulation ‘exploding’. Both are very undesirable and
this issue leads to a great deal of time in mass spring systems being spent
on tuning parameters to arrive at a satisfactory tradeoff between speed of
solution and stability.

13

Ideal Solution 'Good' Convergence Vibration 'Explosion'

Figure 2.6: Different convergent and divergent cases.

2.3 Finite Element Method

Rather than basing the deformation model on a discontinuous approach,
an alternative has been proposed which is based on the law of continuum
mechanics computed in a continuous medium. Once assumptions have been
made about the elasticity and the lack of internal forces, the following second
order Navier equation arises[ML].

(A + p) grad(div u) + pAu =0 (2.8)

Where:
A and p are the Lame constants of the material.
u is the displacement vector of any point of the object with respect
to its initial position.

grad is the gradient function: grad(z,y,z) = (%, %’ %)

div is the divergence function: div(z,y,z) = % + % + %

An analytic solution to this equation does not exist and therefore a nu-
merical solution is required. The FEM method aims to solve this equation
by subdividing the object into a discrete number of elements. Once this has
been completed, the displacement of each one of these elements is approxi-
mated by a polynomial equation which is related to control nodes.

A system of equations arises:

KU=F (2.9)

14

Where:

K is the symmetric and spare stiffness matrix.
U is the nodal displacement vector.

F is the force vector.

Solving this equation yields the displacement of each node at that iter-

ation.

Advantages

Distadvantages

Based on Physics: Unlike mass
spring systems, the quality of the
simulation doesn’t depend on the
mesh.

Speed: The method is much more
computationally expensive. Real
time simulation is only possible for a
relatively small number of elements.
Hard to program: The method is
more involved than the mass spring
system and is much harder to im-
plement. Most people use a com-
mercial FEM package, but these are
usually not real time.

2.4 Tensegrity

2.4.1 Definition and Origins

Figure 2.7: A simple figure demonstrating tensegrity. The solid bars repre-
sent rigid links.

Tensegrity is a portmanteau of tensional integrity. This arises from its use of
both rigid and elastic links in order to form a stable structure(figure . In

15

1927 architect R. Buckminster Fuller investigated its uses in buildings|IN].
Later, artist Kenneth Snelson created structures involving tensegrity. His
structure is shown in figure 2.8

Figure 2.8: One of Snelson’s tensegretic structures.

2.4.2 Method

The presence of elastic links adds a direct correspondence with the workings
of mass spring systems. For this reason, mass spring systems (section
are usually the starting point in developing tensegrity. Constraining the
simulation to follow the properties of the rigid links is the main challenge.

2.4.3 Applying Tensegrity Constraints

Amid

Bpre

O’/ Bmid

Figure 2.9: A diagram to help explain the solution to enforcing the tensegrity
constraint. A,,e,Bpre signify the position before motion. A,,;q,Bmiq are the
locations ignoring the length constraint. Apost,Bpost are the final locations
after applying the constraint.

16

Once tensile and rigid connections have been created, an algorithm is re-
quired to ensure the length of the rigid connections are respected throughout
the kinematic motion. A solution was found in the work of Alexis Guillaume
[GU]. It proceeds by calculating the location of each mass ignoring all rigid
connections and updating their locations. Post-processing is then used to
modify the locations of the masses that have rigid connections.

ApreAmid _ AmidApost
BpreBmid BmidBpost
ApreBpre = Aposthost (211)

(2.10)

These equations along with figure [2.9| are sufficient to define the new po-
sition of A and B unambiguously. Each rigid connection is then considered
individually and constrained before the scene is redrawn. This method does
not allow a mass to have multiple rigid connections, otherwsie the dynamics
of the motion would be much more complicated. This problem is mitigated
by ensuring that the rigid connection algorithm does not create such a sit-
uation (a diagram of such a disallowed situation is shown in figure .

@)
<O
O

Figure 2.10: An undesirable situation with a single mass X having two rigid
connections.

2.4.4 Potential Application to Tissue Simulation

The technique has been used to explain complex behaviour of materials in
“viruses, nuclei, cells, tissues, and organs in animals as well as in insects
and plants” [IN]. Its intuitive role to add strength to structures seems ideal
for modelling muscle or ligaments. In fact, most physical movements in the
human body can be explained via tensegrity. Walking is a combination of
rigid links (bones) being manipulated via elastic (muscle and tendon) links
to create movement. The main purpose of this report is to evaluate the
potential use of tensegrity along with mass spring systems to model the
movement of internal organs, specifically the diaphragm during respiration.

17

2.5 Diaphragm Modelling

Lungs

Diaphragm

Figure 2.11: A human torso.

The thoracic-abdominal diaphragm (the diaphragm from this point on-
wards) is a fibromuscular sheet that sits below the ribcage and separates
the thoracic cavity from the abdominal cavity. Its location in relation to
the rest of the torso can be seen in figure 2.11] Its presence is crucial in
respiration and breathing.

18

2.5.1 Anatomy and Physiology

Fized Spine

Diaphragm Muscle
Action

Sternum Motion

Rib Kinematics

Figure 2.12: The arrows represent the motion of the diaphragm and ribs
during exhalation.

The diaphragm attaches to the lower ribs, the sternum and the vertebrae
that form the spine. It contains an opening through which blood vessels,
such as the vena cava and aorta, nerves and the cesophagus pass.

When breathing in, the muscles of the diaphragm contract to flatten
its dome-like shape. This causes a change in pressure in the upper cavity
and air enters the lungs to compensate. When exhaling, the diaphragm
compresses the upper cavity, forcing the air out. The forces exerted during
this phase of breathing are shown in figure 2.12

The diaphragm is composed of skeletal muscles and there are no smooth
muscle fibres present. The diaphragm can be controlled voluntarily or un-
consciously by the lower brain stem structures.

19

2.5.2 Diaphragm Composition

Figure 2.13: A diaphragm.

Figure illustrates that the diaphragm is made up of distinct regions
composed of different kinds of fibres. The upper section has a more ten-
donous quality. The central region is more elastic and, finally, where there
are connections to ribs and the spine, a more rigid quality is present. For
this reason, it would not be realistic to model the organ as one homogeneous
material throughout.

20

Chapter 3

Biomechanical Modelling

Vital to any physical simulation is a solid understanding of the dynamics and
a logical set of heuristic choices. This chapter assumes that a mass spring
system has been created which enforces the constraints of tensegrity. This
chapter will present the approximations and algorithms which have been
implemented to match the motion of the diaphragm as closely as possible.

3.1 Diaphragm Mechanics and Tensegrity

As discussed in section the nature of the diaphragm demands the use
of different materials to simulate its motion accurately. Tensegrity seemed
a pertinent match that would be worthy of investigation.

A decision was made that the upper tendenous section of the organ would
be modelled using a combination of mass spring and tensegrity. The central
region would be solely mass spring. Finally, the connections to the ribs
and spine would be simulated using techniques described in ‘Fixed Points’,
section This division is visualised in figure and the simulator’s
resulting sections are in figure [3.2

21

r Y Tensegrity

LN

Mass Spring

Mass Spring

IN')\ Fized Points +
¥

Figure 3.1: The regions of the diaphragm that will be simulated in different
ways.

<4— Tensegrity

. <——Mass Spring

Fized Points +
Mass Spring

Figure 3.2: The resulting division shown in wireframe form. The rigid links
are visible as the thicker lines.

As the 3D models consist of thousands or tens of thousands of points,
it is important that this division can be calculated automatically. A plane
defines the separation between the upper two regions using three carefully
chosen points. The definition of the fixed points is achieved using a distance
algorithm between the diaphragm and the rib models.

22

3.2 Rigid Connections

Figure 3.3: A cross-section of the desired result of the algorithm presented
here.

Figure [3.3] shows two surfaces in close proximity with vertices represented
by the circles. It would be ideal if the vertices directly opposite each other
were connected via a rigid link, shown here by the thicker red line. The
dotted line represents the separation between the tensegrity and tensile part
of the organ. In the final version of the application this separation is defined
by a simple plane.

The reasoning behind the heuristic algorithm is as follows. Once a suit-
able distance d has been chosen, a list of close masses is found. These
masses could either be neighbouring masses on the same surface or ideally
those on opposing surfaces. Testing the angle should remove those on the
same surface, leaving a sorted list of masses on the opposing surface.

This algorithm is performed once upon the initialisation of the simula-
tion.

23

1 foreach(Mass v) {

2 Assemble a sorted list of other vertices within distance d.

3}

4 foreach(Mass v) {

5 foreach(Mass o in v.closelist) {

6 Rem o from list if # between normal at surfaces of o and v is acute.
T}

8 }

9 foreach(Mass v) {

10 while(v.closelist is not empty & v has no rigid link) {

11 Pop o from v.closelist

12 if (o has no rigidlink & both lie above defining plane) {
13 Create rigid link between o and v, break.

14 }

15 }

16 }

Figure 3.4: Pseudocode of the rigid link creation algorithm.

Shown in figure[3.5]are the results of applying the algorithm in figure[3.4]
The connections between the layers of the diaphragm appear to match very
closely the desired result desribed at the start of this section(ﬁgure. The
two layers are heavily connected above the division between tensegrity and
mass spring. The connections appear to be roughly at the opposite point,
the aim of the algorithm.

24

7)

o R \ W I
Sty

S gy g 1)1]

\/;_,l"{',«! '2,,;';/,{ G

SRR 5 o

SRR

L ANLANY 4

T

~5
S
i

~~\/
NN
NNz

\///\\

__,
i SRR
| —-.,\r
AN ot i L
NoA
N A

SN

Figure 3.5: The connections created between the layers of the diaphragm.

3.3 Fixed Points

Rib

1
1
1
1
|

radius
-

Diaphragm

Figure 3.6: A diagram of how points on the diaphragm are transformed
relative to rib motion. The length of the arrow is proportional to magnitude.
The fall off is visible in the centre displaced mass, M, compared to A and B.
X and Y are located out of range of all the rib masses regions’ of influence.

At certain points the diaphragm is attached to the ribs. It is necessary
to mimic this connection in order for the motion to be realistic. Another

25

heuristic method was devised to fit this situation. Figure|3.6|helps to explain
how this is achieved. Firstly, pre-processing occurs in which each node in
the diaphragm is checked for proximity to a rib within a cut off point. If
there are multiple choices, the closest is chosen. Then, a fall-off factor is
determined using 1 — W‘ius. At each iteration, the distance covered by each
node in the ribs is calculated. A scaled value of this is applied to each
attached node multiplied by the fall off. This gives the desirable result that
close masses are influenced more and those further away will also move but
with less impetus. The corresponding pseudocode for these two steps is

shown below.

1 Initialisation
2 foreach(Mass v in ribs) {

3 foreach(Mass m in diaphragm) {

4 Distance d = distance(v,m)
5 if (d < radius) {
6 m.addToCloseList(v,1 — —%—)

7 }

Figure 3.7: Pseudocode for initialisation of fixed points.

1 Update code

2 foreach(Mass m in ribs.stuckmasses) {

3 Mass closest = m.closestnode;

4 Vector v = closest.getChangelnLocation();

5 m.applyForce(v*scalingfator);

Figure 3.8: Pseudocode run at each iteration to update the location of the
fixed points.

26

3.4 Action Lines

Action lines are the simulation’s equivalent to muscle motion. Success had
been observed in the work of Nedel and Thalmann[NT] and an attempt to
integrate a similar effect was made. Figure [3.9] gives an intuitive look at
the approach adopted. In order to get an understanding of how the method
works, it is best to imagine an infinitely long cylinder defined by a point, a
direction vector and a falloff radius. Pre-processing then occurs to find all
masses that fall within the fall off range of the cylinder, based on the closest
[perpendicular] distance to the central vector (shown by d in the figure).

At each iteration, a scaled value of the vector defining the direction of
the cylinder is applied to each mass after being multiplied by %CW
This means that the further away the point is, the stronger it feels the pull.
This is a heuristic judgement of fall off, but proved to be the most realistic
of the various alternatives trialed.

Radius Origin point

o

oy

vertical
distance

P

Figure 3.9: A diagram showing the basic workings of the action line method
of imitating muscles.

27

3.5 Rib Kinematics

Another factor that plays a large role in respiration and the motion of the
diaphragm is rib kinematics. Much of the work in this area was based on
that presented in [DV]. Figureshows a spine and three ribs and helps to
explain how the rotations and displacements are calculated. In this project,
existing C+4 code implementing the rib kinematics was ported to Java.

The aim of the algorithm was to have a blend between vertical and lateral
motion of the ribs. The lower ribs ‘open’ up more during deep breathing,
while the upper ribs have a more directly upward translation.

For a more in depth discussion of this process look at the work of Didier

et al[DV].

th = k(Ti) (3.1)
af = k(A4)
i € [1,20]

Rib

Figure 3.10: A diagram showing the layout of the variable in equations (3.1
. Ol

28

Chapter 4

Implementation

Once initial research and information gathering had been completed, the
implementation stage of the project began with a focus on a SOFA based
solution before migrating towards a custom Java solution for reasons to be
discussed.

4.1 SOFA Solution

The initial goal was to create a SOFA simulation that allowed the integration
of tensegrity as a forcefield. This would be highly desirable as SOFA is
a framework designed for medical simulation. Its plug-and-play structure
would make the code reusable even as SOFA was updated in the future. It
was also envisaged that a control panel would be added to allow the tuning
of parameters controlling breath length, force and rib motion.

4.1.1 Background

SOFA aims to simplify the simulation of physical and, more specifically,
medical simulations, by allowing the user to focus on the mechanics and
tuning of the simulation, rather than the implementation and routine al-
gorithms for displaying, mapping and solving systems. SOFA is written in
C++ and currently contains 250,000 lines of code written by twenty devel-
opers. The project benefited from the help of the CIMIT Sim Group, INRIA
and ETH Zurich.

‘SOFA is an Open Source framework primarily targeted at real-
time simulation, with an emphasis on medical simulation. It
is mostly intended for the research community to help develop
newer algorithms, but can also be used as an efficient prototyping
tool. Based on an advanced software architecture, it allows to:

29

e Create complex and evolving simulations by combining new
algorithms with algorithms already included in SOFA.

e Modify most parameters of the simulation — deformable be-
havior, surface representation, solver, constraints, collision
algorithm, etc. — by simply editing an XML file.

e Build complex models from simpler ones using a scene-
graph description.

e Efficiently simulate the dynamics of interacting objects us-
ing abstract equation solvers

e Reuse and easily compare a variety of available methods

SOFA is currently developed by 3 INRIA teams: Alcove, Evasion
and Asclepios.’

The SOFA Architecture [SOFAJ]

4.1.2 Diaphragm Motion in SOFA
Development

The work began as an introduction to medical simulation and consisted
mainly in experimentation with parameters and different models. It took
time to become accustomed to features such as mapping between visual rep-
resentations and the supporting mathematical simulation. This allows the
visual representation to be highly complex while reading its displacements
from a simplified underlying geometry. A diaphragm modelled by the finite
element method is shown in figure The associated XML file is shown in
figure The simulation uses a timestep of 0.02 seconds, uniform masses
throughout. Each object is fixed by three points and a simple static solver
is used.

30

Figure 4.1: A diaphragm in SOFA, the tree of the scenegraph is visible on
the left.

[Sofa [BE[5]
Fie Edt Hep

(ANIM I STEP

[RestScene Jom: 0.00m

(Flesel Vierr I Save Vien

(Save Screenshol

e Stats Giraph Help.
(R, Export Graph |
S0 oot

O EulrSolver selver
=1y diaphrsom_node
0 MeshTopology mesh
0 MechanicalDbiect diaphragm
£ FixedConstiaint diaphragm_fived_constraints
0 ExtemalForceField unnamed
0 TriangleFEMFarceFiekd urnamed
[0 UnifomMass mass
S iver_node
0 MeshTapology mesh
0 MechanicalDbiect liver
0 FisedConstraint liver_fised_constraints
[EntermalForosField unnamed
[TrisngleFEMFarceField unnamed
[UniformMass mass

< >
74.3FPS T: 00035

31

Figure 4.2: An XML scenegraph describing two objects, a liver and a di-
aphragm, both simulated using the finite element method.

<Node name="root" dt="0.02" showBehaviorModels="1" showCollisionModels="1"
showMappings="0" showForceFields="1">
<Object type="CollisionPipeline" verbose="0" />
<Object type="BruteForceDetection" name="N2" />
<Object type="CollisionResponse" response="default" />
<Node>
<Object type="StaticSolver" name="solver" iterations="25" />
<Object type="MechanicalObject" name="diaphragm" />
<Object type="UniformMass" name="mass" mass="0.1" />
<Object type="Mesh" filename="Topology/diaphragm.msh"/>
<Object type="Triangle"/>
<Object type="TriangleFEMForceField" name="FEM" youngModulus="5000"
poissonRatio="0.3" />
<Object type="FixedConstraint" indices="3 39 64" />
</Node>
<Node>
<Object type="StaticSolver" name="solver" iterations="25" />
<Object type="MechanicalObject" name="liver" />
<Object type="UniformMass" name="mass" mass="0.1" />
<Object type="Mesh" filename="Topology/liver.msh" />
<Object type="Triangle" />
<0Object type="TriangleFEMForceField" name="FEM" youngModulus="5000"
poissonRatio="0.3" />
<Object type="FixedConstraint" indices="3 39 64" />
</Node>
</Node>

Results

The results that were shown by SOFA were acceptable (15-20 iterations per
second) on a simple diaphragm model. It was during this initial testing that
the issues discussed in became apparent and forced a change in the
development platform used in the project.

4.1.3 Issues with Heterogenity

After research into the possibilities of combing two simulation methods,
FEM and mass spring, an issue within SOFA arose. In the current imple-
mentation, mixing two force fields on one object is not possible. This was a
serious problem as the aim was that parts of the diaphragm be modelled by

32

a simple mass-spring system and the rest with tensegrity. After consulting
with the developers of SOFA, they deemed it very difficult to do this in the
current codebase. It was indicated that such a mix and match approach
may be available in future iterations, but no definitive time scale was given.

4.2 Java Solution

Forced to consider alternatives, the choice was then to proceed by making
a simple 2D simulator. This simulator could then be used to study the
viability of a 3D implementation. Java fit the requirements of flexibility,
cross-platform nature, and prior familiarity and as such was chosen as the
main language for the simulator. An iterative scheme fits well with the
development plan of the project. It was first decided to concentrate on
simple structures with few nodes in 2D before considering expansion into
3D. Once the transition to 3D was made, parsers of file formats, exporters
and other options were added.

4.2.1 Basic Class Structure

Once development had begun, a modular design was necessary to keep flex-
ibility for future additions to the design and functionality. The end result
is a relatively concise, but productive set of classes to provide real-time in-
teraction. There are packages to handle the importing and exporting of
data, mathematical classes, model classes and those that aid in the anima-
tion and motion of the ribs. Another software-engineering decision was the
creation of an abstract simulator class which is then extended upon for each
individual situation. This is shown in figure [4.3]

33

Figure 4.3: A simplified UML diagram of the Simulator class hierarchy.

ComponentListener GeometryUpdater KeyListener
s A ¥
~ l -
. \ -
~ \)
3 Simulator

TIMESTEPS: int
TIMESTEP: float
zloc, xloc, yloc: float

.r.éset()

pause()

continue()

piii \
CubeTensegritySimulator CubeTensileSimulator RealSimulator PerfectSimulator

4.2.2 2D Display

The initial 2D display was just a case of plotting some points and updating
this graph to provide animation(ﬁgure. A generic graphing package was
chosen for this purpose, JFreeChartE It gave a simple method of updat-
ing and displaying charts on screen. This allowed the focus to be on the
mathematics and correctness of the data, rather than on the mechanics of
displaying it.

A simple point plot was chosen as it allowed the fastest development
time and gave a quick mapping between the data behind the simulation
and a visual representation. There are issues with flicker as a result of
the continuous updating of the point locations but this is acceptable as the
application was meant as more of a proof of concept.

"http://www.jfree.org/jfreechart /

34

Figure 4.4: An annotated diagram, thin green and thicker red lines represent
tensile and rigid connections respectively.

[sJeXe) Tensegrity
Tensegrity Simulation

-35 -30 -25 -20 -15 -0 -05 00 05 10 15 20 25 3.0
X

= Rigid ® Normal - Fixed

4.2.3 3D Display

Once the solving of systems involving tensegrity had been shown to be possi-
ble in real time and of possible interest in tissue simulation, the decision was
taken to develop a 3D visualisation. Several options were available here, but
the decision was taken to use the Java3D libraryﬂ as it is a mature codebase
with low-level driver integration. The fact that the intensive code is native
and not part of the Java Virtual Machine means that it is much more likely
to give high performance in more strenuous circumstances.

Initially, only simple nodes and connections were represented without
faces. Later on, support for shading, lighting, textures and specularity were
added. A simple box simulation was created and manipulated by random
forces to test the behaviour of the system and check for realism(figure [4.5)).

http://java.sun.com/products/java-media/3D/

35

Figure 4.5: An early 3D version of the simulator with a basic tensegrity
situation.

Changes Required

The conversion from 2D to 3D was not that involved as a result of the high
cohesion within the classes. The majority of modifications were made in
the vector and display classes. An extra component needed to be created
and taken into account in such calculations as distance metrics. The display
needed to feed the updated points to Java3D, which at first were set on an
individual basis.

Exporting the result

In a medical simulation, verification and validation are a crucial aspect of
the application. Even if the system looks to be performing correctly, it is
imperative that there is a way to export data that can be inspected using
other software. GmshE| was selected as a tool which provided the function-
ality required for visual verification of diaphragm and rib deformation.

The ‘.depl’ format was cumbersome to implement. Its layout is shown
in table Header information alerts the parser to the kind of shape
data incoming and the number of vertices. After the initial location has
been stored, the change in x, y and z on a vertex by vertex basis from
the previous iteration is required at each timestep. In systems with tens of
thousands of vertices, storing this amount of data can become a strain on
memory of the machine.

Shttp://www.geuz.org/gmsh/

36

Table 4.1: ‘Depl’ file format showing basic structure. The file is then flat-
tened, preserving the newlines shown below.

Vertex Timestep X Y
1 Linitial 5 10 5
ty 0.9 0.4 0.1
to 0.31 0.25 0.2
t3 0.4 0.1 0.3
tn tn(7) —th-1(z) ta(y) —tn-1(y) tn(2) —th-1(2)
2 Linitial 2 -6 18
ty 0.0 0.0 0.1
to 0.5 0.3 0.2
ts -0.17 -0.1 -0.2
tn tn() —tn-1(2) tn(y) —tn-1(y) tn(z) —tn-1(z)
Optimisations

Once the system had been converted to 3D, it became possible to repre-
sent structures within the human body. These were provided in ‘.msh’ files
which could be parsed using a custom built package. Once this had been
completed, it was then possible to simulate the mass spring system using
a large scale simulation. The results were not adequate as one frame was
drawn every thirty seconds or more. After investigation, it became apparent
that the bottleneck was the copying of data between the internal Java3D
representation of the scene and that held in the model of the simulation. To
solve this problem, Java supports another paradigm to update geometries.
It allows a geometry to be passed as an array of floats. This array must
be 1-dimensional, which reduces code-readability as offsets and multipliers
must be used for access; this is necessary if higher speed is a requirement.
It is then just a case of alerting the Java3D classes that changes have been
made. This allowed the full scale simulations to run in real time therefore
making tuning an option.

4.3 The Final Product

At the completion of the project, a fully-tunable simulation system was
created with four options available. Two involving simple cubes to see the
effect of tensegrity, one of a ‘perfectly’ modelled diaphragm and one from CT

37

scans (shown in figures [4.6)). The control panel used to tune the simulation
in real time can be seen in figure [4.7]

Figure 4.6: Images from the completed simulator. Left: The simulator using
the ‘perfect’ model. Right: The result of using the data from the CT scan.

Figure 4.7: The final control panel for the ‘perfect’ simulator.

Timestep:
0.0 0.05 01
e)
Breath Force Scalar:
54321012345
—_
Breath Length:
1234567 8910
——-
Rib motion |
012345678910
_l
Elasticity:
0 10 20 30 40
fp——————————
Transparency:
0.0 0.5 1.0
Apply muscles:
Show torso: [
Show shaded: [
Show wireframe:
Show action lines: (|
L]
X-Direction Left & Right Arrows [
Y-Direction Up & Down Arrows
Z-Direction Shift + Up & Down
Rotation Click and Drag
l Reset Simulation H Continue

38

Where:
Timestep: The parameter used in the Euler solver.
Breath Force: Controls the force of the action lines, see figure
and equation {4.1
Breath Length: Sets the length of each breath, see figure (.8 and

equation [.1]

Rib Motion: Modifies the angle by which the ribs rotate.
Elasticity: A parameter of the mass spring system.
Transparency: Used to show or hide the shaded faces.
Apply Muscles: Activates or deactivates the action lines.
Show etc.: Visual options

Figure 4.8: Illustrating the breathing motion.

Force

Breath Force

Time

Y ~

Breath Length

) T
= B F —_—— 4.1
y = C1(BreathForce)sin <BreathLength> (4.1)

(1 and Cy are two constants chosen to make the values of Breath Force
and Breath Length scale to interesting values for each simulation. 7" is the
time elapsed in the simulation.

39

Chapter 5

Evaluation

The Java implementation presented in the previous sections will now be
quantitatively and qualitatively evaluated along with the influence of tenseg-
rity.

5.1 Tensegrity

One of the main purposes of this project was to evaluate the viability of
tensegrity for simulating the tendonous tissue of the diaphragm. This is not
a trivial task and a few different methods were used to test this.

Firstly, it was decided to have a test to see if tensegrity did indeed provide
more support than a typical mass spring system. This was tested using a
simple cube as shown in figure [5.1] The‘ cube was created with diagonal
rigid supports between the upper and lower levels.

Figure 5.1: The standard tensegrity cube that was used in the initial eval-
uation of the effects of tensegrity.

Two points on the upper square were then manipulated by applying a
sinusoidal motion. The data was exported and visually analysed. It was

40

obvious that the mass spring system collapses in on itself with much lower
forces, while the tensegrity solution is able to maintain its shape. The results

are shown in figures and

FN]
o

0 500 1000 1500 2000

Time [ms]

A force is applied to two nodes: positive along the X axis, negative along the
Y axis and has an intensity given by a sinusoid curve

4

time=66% of the period time=76% of the period time=81% of the period
Behaviour of the cube with a mass spring system.

0 0f B

time=66% of the period time=76% of the period time=81% of the period

Behaviour of the cube with tensegrity.

Figure 5.2: Cube (10 x 10 x 10m3) evolution with time. Top: boundary
conditions, Middle: results with a mass spring system, Bottom: results with

tensegrity

41

E 0 E 001
E’ % ‘é -0.02
5 4 5 -0.03
8 -5 3 -0.04
7 g 005
o 3 o -0.06
> .9 > .0.07
0 500 1000 1500 2000 0 500 1000 1500
Time [ms] Time [ms]

2000

Figure 5.3: Y-value of a mass p in figure The mass spring system is on
the left, tensegrity on the right. The tensegrity is system able to absorb the

pressure and rebound, the mass spring collapses.

5.1.1 Effect on Diaphragm

Figures[5.5 and [5.6] quantify the effect of tensegrity. The data for the graphs

was extracted as follows:

1. A point on the top of the diaphragm was chosen, illustrated by fig-
ure (.41

N

W
i

SRR
DN RATY

N

i

N
NN

/7
KT

A
V o,

vl

ay
AN
PV
,ggggmm

el

Figure 5.4: The chosen node was within the region shown.

2. 200 iterations were performed and the location of the chosen point was
saved each time.

3. This simulation was performed with and without rigid links and the
values were then subtracted to produce the data. The y-axis was

chosen to be plotted as it is the main direction of translation in the
diaphragm.

In figure[5.5] the difference is small initially and steadily rises. This could
imply that there is just noise that is slowly being accumulated. It could also
imply that the forces are not strong enough to require the rigid constraint.

42

A

i
g

AR
AR
SR

"M‘L

Figure provides a more interesting situation. In this case the forces
were multiplied by a factor of 10. The difference between the values is
no longer a steadily increasing function. There are abrupt troughs and
hills as the constraints of tensegrity are applied. This shows that in more
strenuous circumstances tensegrity can be used to enforce the proximity of
the opposing sides of the diaphragm.

0.014

e
=
=
o

0.01

o o
c o
2 3
(=) oo

Displacement Difference
o
(e
o
=

(=)
o
=
NS}
!

o
!

1 51 101 151
Iteration

Figure 5.5: A plot of the difference between the y-component of the chosen
point with and without rigid links. Weak action line forces were applied.

e
=
oY

=]
—
~

o
—
(V]

e
=

I
o
=

Displacement Difference
o (e}
2 &

I

=

o
)

(=)
!

1 51 101 151
Iteration

Figure 5.6: A plot of the difference between the y-component of the chosen
point with and without rigid links. Strong action line forces were applied.

43

5.2 Diaphragm Motion

The ‘Perfect’ Model

Rigid Tissue (Tendon) N

e 3

Displacement Scale (mm)

Figure 5.7: The resulting motion during the simulation.

The favourable results observed in the simple simulation were encouraging
and the task of analysing the realism of tensegrity in diaphragm was to
follow. For the so called ’perfect’ model, a commercially available reference
model of the diaphragm was used. It consisted of 11359 vertices and 22722
triangles. It can be very difficult to verify the realism of the motion in such
a large model.

The wireframe visible in represents the initial state at the end of an
inhale. The coloured geometry represents the diaphragm at the end of an
exhale. The upper region has kept its shape due to the tensegrity while the
lower region has been more deformed as it had no rigid links to help retain
its shape.

The three sources of motion on the diaphragm are visible here:

o Muscle Motion: The muscle relaxation that increases the height of the
domes is visible.

e Rib Kinematics: On the sides of the diaphragm the motion as a result
of the rib kinematics is visible.

o Sternum Motion: In the central front region the effect of the sternum
is also visible as it influences the tissue to which it is connected.

Verification was also made by a clinical collaborator who validated the
motion and also explained how only the diaphragm’s domes descend during
light breathing. The tuning options provided by the control panel mean such
a situation is easily simulated. Under heavier breathing, the diaphragm can
move substantially and this is also possible to recreate.

44

5.2.1 The Patient Model

Verification of the patient model was achieved using data from a 4D CT
scan. The diaphragm was segmented and smoothed. This process is shown
in 5.8 The resulting diaphragm mesh is composed of 20740 vertices and
41480 triangles.

Figure 5.8: Left: Segmented diaphragm inside CT scan and right: Combi-
nation of segmentation and the mesh, the smoothing is visible on the right.

The simulation was validated by comparing the results of the simulation
to the 4D CT scan data at the same point in the breathing cycle. The export
function of the simulation software was used. The CT scan data was used
for the real patient. The distance between the two were studied using the
MESH] software to analyse meshes. It then found the Hausdorff distance?]
The results of the analysis are visible in figure[5.9] By visual inspection, clear
similarities are present in several regions. The correspondence appears to
be relatively close, but inaccurate in terms of magnitude in certain regions.
This led to the conclusion that the tuned simulation mirrors this patient’s
true breathing pattern effectively.

5.3 Simulator

The tests below were performed on a dual core 2.4 ghz machine with 2
gigabytes of ram and a 256 megabyte graphics card. The operating system
was Windows Vista Service Pack 1 with Java 1.6 installed. The parameters
of the simulation were on their default values. All results are in seconds
unless otherwise stated.

"http://mesh.berlios.de/

2The Hausdorff distance between two sets of points is the longest distance an adversary
can force you to travel by choosing a point in one of the two sets, from where you then
must travel to the other set.

45

Hausdorff Diaphragm Relaxation

Distance (mm) /|\

Initial to final state Simulation to final state

Figure 5.9: Distance error measurement between left: beginning and end of
real inhale and right: simulated end of inhale and real end of inhale.

5.3.1 Cube Simulation

To test the cube simulation and the influence of tensegrity on simulation
performance, 100,000 iterations were performed and the two cubes with
sinusoid forces being applied.

Figure 5.10: Cube simulation performance (in seconds).

Tensegrity Tensile
Simulated Vertices 8 8
Trial 1 4.174 3.155
Trial 2 4.287 3.337
Trial 3 4.069 3.602
Trial 4 4.599 3.244
Trial 5 4.198 3.387
Average 4.2654 3.345

Figure 5.11: A graphical representation of the results, each colour represents
a separate trial.
25s

20s
15s

10s

Tensegrity Tensile

46

It can be seen from the graph that the addition of the tensegrity con-
straint makes for a slightly slower simulation, but it is still more that ad-
equately fast. The use of tensegrity shows a computational cost of 27%.
This cost is offset by the desirable strength that the rigid links provide as
discussed in section [B.11

5.3.2 Diaphragm Simulation

Now that the realism of the simulations have been evaluated it is time to
verify the computational cost of the simulation parameters. Two cases were
tested for the perfect simulator. In one case, the fixed points were no longer
calculated and adjusted at each iteration. The other variation was the re-
moval of rib kinematics.

Figure 5.12: Diaphragm simulation performance (in seconds).

Full No Rib/Sternum Attachment No Rib Kinematics
Simulated Vertices 20740 20859 11359
Trial 1 15.472 12.174 12.256
Trial 2 15.39 12.098 12.097
Trial 3 15.448 12.126 12.043
Trial 4 15.654 12.565 12.129
Trial 5 15.435 12.534 12.261
Average 15.4798 12.2994 12.1572

Figure 5.13: A graphical representation of the results, each colour represents
a separate trial.

80s
60s

40s

20s

No Rib/Sternum Attachment No Rib Kinematics

It can be seen that the slowest simulator is the ‘real’ simulator. This can
be attributed to the high count of vertices involved in the simulation. The
‘perfect’” simulator is slightly faster and the variations do make a difference
to the speed of calculation. Rib kinematics make a considerable difference
to the speed. This is a result of some large equations being solved to update
the locations at each iteration. If a patient is observed to only be using the

47

diaphragm and no rib action during respiration, a large computational cost
can be avoided.
5.3.3 Influence of Mesh Size with a Heterogeneous Model

Another influencing factor on the speed of a simulation is the size of the
mesh. Both the ‘perfect’ and patient models were tested with different
resolutions.

Figure 5.14: The timed results of the perfect mesh being resized.

High Medium Low

Simulated Vertices 20909 16023 12047
Trial 1 12.174 9.543 7.851

Trial 2 12.098 9.63 7.735

Trial 3 12.126 9.552 7.907

Trial 4 12.565 9.725 7.842

Trial 5 12.534 9.603 7.763
Average 12.2994 9.6106 7.8196

Figure 5.15: The perfect mesh times.
70.0s

52.5s

35.0s

17.5s

High Medium Low

Figure 5.16: The timed results of the patient mesh being resized.

High Medium Low

Simulated Vertices 20740 10162 5185
Trial 1 15.931 8.597 5.167

Trial 2 15.386 8.313 5.092

Trial 3 15.778 8.077 5.217

Trial 4 15.659 8.501 5.081

Trial 5 15.748 8.018 5.225

Average 15.7004 8.3012 5.1564

48

Figure 5.17: A graph of the patient data.

High

80s

60s

40s

20s
= -
Low

Medium

A quick look at figures shows an intuitive linear relationship
between the number of vertices in the scene and the time taken in compu-
tation. Figure [5.18| shows this relationship in the patient data case.

Figure 5.18: A graph of simulation time against the vertices in the hetero-

geneous patient simulator.

18

16

14

12

Time
—
[en)

S N R O

0

T T T T 1

5000 10000 15000 20000 25000

Vertices

5.3.4 Influence of Mesh Size with a Homogenous Model

Similar to section the mesh sizes were reduced in complexity and then
tests were conducted without rigid links, creating a standard mass spring

model.

49

Figure 5.19: The timed results of the perfect mesh being resized.

High Medium Low
Simulated Vertices 20909 16023 12047
Trial 1 11.542 9.703 7.832
Trial 2 11.831 9.206 7.645
Trial 3 11.732 9.144 7.451
Trial 4 11.657 9.043 7.621
Trial 5 11.672 9.691 7.705
Average 11.6868 9.3574 7.6508

Figure 5.20: The perfect mesh times.

60s
45s

30s

15s

Medium

Figure 5.21: The timed results of the patient mesh being resized.

High Medium Low

Simulated Vertices 20740 10162 5185
Trial 1 14.522 7.839 5.063

Trial 2 14.865 7.929 5.047

Trial 3 14.469 7.92 4.983

Trial 4 14.629 8.016 5.087

Trial 5 14.614 7.992 5.214
Average 14.6198 7.9392 5.0788

50

Figure 5.22: A graph of the patient data.

80s

60s
40s
] 20s
= -
Low

High Medium

As seen in figures [5.19}5.22] the recorded times were very similar to those
with tensegrity and were only off by a small percentage. This demonstrates
that even in large models with hundreds of rigid links, the computational
time is not massively increased. The linear relationship between vertices
and time still holds as shown in figure [5.23]

Figure 5.23: A graph of simulation time against the vertices in the homoge-

nous patient simulator.
16

14

12 /
10 /

2 /

[

0 T T T T 1
0 5000 10000 15000 20000 25000

Vertices

5.3.5 Conclusions

After many tests, table provides a succinct summary of all the data.
It gives the average iterations per second after five trials. The relationship
between the parameters of the simulation and the mesh size are available

here, but are better visualised in figures and Figure [5.25| shows
more interesting behaviour. The computational time of the rib kinematics is

o1

shown to be quite high as when they are removed in the ‘Action Lines Only’
trial the simulation hits its peak. Figure[5.26]is a fairly intuitive graph that
shows an inverse relationship between model complexity and iterations per
second.

Figure 5.24: A summary of the iterations per second of all the simulations.
The trials have been averaged into a single value.

Perfect Model
Vertices Heterogenous Homogenous Rib Kinematics Only Diaphragm
Model (All Forces) | Model (All Forces) (Heterogenous) Contraction/Relaxation
Only (Heterogenous)
High 20909 8.13 8.56 8.24 9.68
Medium 16023 10.41 10.69 10.93 11.76
Low 12047 12.79 13.07 13.27 14.70
Patient Model
Vertices Heterogenous Homogenous
Model (All Forces) [Model (All Forces)
High 20740 6.37 6.84
Medium 10162 12.05 12.60
Low 5185 19.39 19.69

Figure 5.25: A 3D plot of the iterations per section of the ‘perfect’ simula-
tion. The axes are: simulation parameters, mesh quality, and iterations per
second.

16
14
12
1
0 14-16
Low 12-14
8 Medium
~ E10-12
= B .
< 5 3 Hieh 8-10
= g —_ L X-
g a 8 = cg.w %) =
SSw £ 2 %
=R : 2
o oR 3 2) g
T QO Q
s = M))
58E o= = 3
Qﬂi = o b
) A = <
a T

52

Figure 5.26: A 3D plot of the iterations per section of the patient simula-
tion. The axes are: simulation parameters, mesh quality, and iterations per
second.

22

18
£18-22
14 14-18
Low ©10-14
£6-10

10

Medium

Heterogenous Model

(All Forces) High

Homogenous Model
(All Forces)

Computational Cost of Tensegrity on Simulations

Figure shows the cost on the speed of the simulator that the addition
of tensegrity makes. The largest change is visible in the high quality perfect
model. This is due to the very high number of connections created in this
case. The overall cost of the tensegrity connections is seen to be relatively
low.

Figure 5.27: The percentage change in each of the simulations.

Perfect Model
Vertices |Tensegrity | Mass Spring Rigid Links: Percentage
Vertices Ratio Change
High 20909 8.13 8.56 1663:20909 5.24%
Medium 16023 10.41 10.69 1022:16023 2.71%
Low 12047 12.79 13.07 602:12047 2.21%
Patient Model
Vertices |Tensegrity| Mass Spring Rigid Links: Percentage
Vertices Ratio Change
High 20740 10.40 10.78 4858:20740 3.65%
Medium 10162 10.41 10.69 648:10162 2.711%
Low 5185 10.39 10.79 940:5185 3.85%

93

Chapter 6

Conclusion

6.1 Discussion

6.1.1 Work Completed

By the end of the project, a tuneable simulator capable of simulating tissues
within the body was created. It receives input in the form of mesh files and
rigid links are created automatically once a plane has been defined. Muscle
action is simulated through action lines. After initialisation, the simulation
is controlled via a panel containing parameters such as breath length, force
and rib motion. These parameters allow the simulation to match closely a
patient’s breathing pattern. Finally, an analysis and evaluation was con-
ducted to investigate the effectiveness and computational cost of tensegrity.

6.1.2 Project Outcomes

The result is a code base that is malleable to future modifications to fit other
purposes. It can be seen through the background work that the diaphragm
is composed of materials of various properties and heterogeneity is needed
for a true simulation of diaphragm motion. Tensegrity can be shown to
provided additional support in structures(figure . Verification of realism
was adequate but, for an organ with so many influencing factors, more
evaluation is required.

6.1.3 Limitations

At the current time, although the design is very tuned to the purpose of
simulating the diaphragm, some minor work would be required to modify it
to a more generic form. There are also several other useful paradigms that
SOFA has that could be desirable here. Mapping between a visual model
and a mechanical backing would allow the simulation to take place at a lower
level and the visual model to be of a much higher quality. Finally, probably

54

the largest limitation is the lack of interchangeability of simulation methods.
If the project had been completed wholly in SOFA, other tissue simulation
methods could quickly be substituted for easy comparison.

6.2 Future work

The project had a large research aspect to it and therefore there is plenty
of scope for future work.

6.2.1 Integration with SOFA

Now that the use of tensegrity has been found to be valid and worth im-
plementing, it would be ideal to integrate it into SOFA. Creating a system
of mixing mass spring and rigid links could be completed in the current
version of SOFA. For the potential mixing of rigid and the finite element
method, a newer version of SOFA with the combination of force fields would
be required.

6.2.2 Educational Context

Once a more thorough and complete evaluation has been completed and any
modifications made, the tool could be used to give an insight into the motion
of the diaphragm during different kinds of breathing. The results should be
enough to give the correct impression and coupled with the interactivity and
visible combination of forces, it could prove to be an interesting teaching
tool.

6.2.3 Haptic Integration

Haptic means pertaining to the sense of touch. In medical simulation, the
use of touch to give the impression of applying forces or the feeling of vi-
bration adds a very strong element of realism. A future project could be
the integration of haptic elements to the simulator. Liver access is greatly
complicated by the motion of the diaphragm and a haptic aspect of the
simulation could prove to be a valuable tool in training surgeons.

95

Bibliography

[AC] M.N. Acharya, “Modelling of Diaphragm Motion for Simulation
of Liver Access”, Surgery and Anaesthesia BSc Project, Imperial
College London, May 2008, Pages 13-14, 33-35.
http://wwwl.imperial.ac.uk/resources/A7C4A779-D4F9-4527-90BC-6D5C1A6435BC/

[BL] Y. Bhasin, A. Liu, “Bounds for Damping that Guarantee Stability in
Mass-Spring Systems”, The Surgical Simulation Laboratorye, 2005,

Pages 1-3.
http://simcen.org/pdf/bhasin20mmvr%202006.pdf

[BW] D. Baraff, A. Witkin, “Large Steps in Cloth Simulation”, Robotics
Institute, Carnegie Mellon University. Pages 1-5.
http://ai.stanford.edu/~latombe/cs99k/2000/cloth.pdf

[DV] A. Didier, P. Villard, J. Bayle, M. Beuve, B. Shariat, “Breathing
Thorax Simulation based on Pleura Physiology and Rib Kinematics”,
Hopital Louis Pradel, Lyon, France, 2007, Pages 1-5.
http://www710.univ-1lyonl.fr/ mbeuve/pvillard/zurich07.pdf

[GU] A. Guillaume, “Simulation 3D du comportement biomécanique des
cellules”, Masters Thesis, Université Claude Bernard Lyon I, 28 June
2004, Pages 7-12.

[IN] D.E. Ingber, “Opposing views on tensegrity as a structural framework
for understanding cell mechanics”, Journal of Applied Physiology 89:
1663-1678, 2000.

[ML] U. Meier, O. Lopez, C. Monserrat, M.C. Juan, M. Alcaniz, “Real-
time deformable models for surgery simulation: a survey ”, Computer
Methods and Programs in Biomedicine (2005) 77, 183-197.

[NT] Nedel, Luciana Porcher & Thalmann, Daniel, “Real Time Muscle
Deformations Using Mass-Spring Systems”, EPFL - Swiss Federal
Institute of Technology, Pages 2-11.

[SOFA] SOFA, Simulation Open Framework Architecture,
http://www.sofa-framework.org/

o6

[VB] F.P. Vidal, F. Bello, K.W. Brodlie, N.W. John, D. Gould,
R. Phillips, N.J. Avis, “Principles and Applications of Computer
Graphics in Medicine”, Computer Graphics Forum, Volume 25, Num-
ber 1, March 2006 , Pages 113-137.

o7

Appendix A

Appendix

A.1 User Guidance

A.1.1 Adding a new object

1. Convert your model to ‘msh’ format: Before importing a model it
needs to be converted into the correct format. A parser has been
created that will do this for you and is included. It requires simple
‘.obj” models without textures or lighting.

2. Add Java3D and Topology variables: Java3D needs to have variables
to store the geometries you are going to be adding, these are declared
at the top of the simulator classes.

static Topology diaphragm = null;
TriangleArray diaphragmtriangles;

Shape3D diaphragmshape;

3. Create an entry in init3D(): This method is where the Java3D pa-
rameters of the display such as colour, specularity and material are
set.

if (diaphragm != null) {
Appearance app = new Appearance();

Material material = new Material();
PolygonAttributes pAttr = new PolygonAttributes();

pAttr.setPolygonMode (PolygonAttributes.POLYGON_FILL) ;
pAttr.setCullFace(PolygonAttributes.CULL_NONE) ;

o8

pAttr.setBackFaceNormalFlip(false);

material.setShininess(128f);
material.setDiffuseColor(1.0f,0.0f,0.0f);
material.setAmbientColor(1.0f,0.0f,0.0f);

app.setMaterial (material);
app.setPolygonAttributes (pAttr);

diaphragmtriangles = new TriangleArray(diaphragm.triangles.size()*3,
GeometryArray.COORDINATES | GeometryArray.BY_REFERENCE |
GeometryArray.NORMALS) ;
diaphragmtriangles.setCapability(GeometryArray.ALLOW_REF_DATA_READ) ;
diaphragmtriangles.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);
diaphragmtriangles.setNormalRefFloat(diaphragm.normals) ;
diaphragmtriangles.setCoordRefFloat (diaphragm.locations);

diaphragmshape = new Shape3D();
diaphragmshape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE) ;
diaphragmshape.setAppearance (app) ;
diaphragmshape.addGeometry(diaphragmtriangles) ;
transformGroup.addChild (diaphragmshape) ;

4. Parse file and setup connections in init(): The model needs to be
bound to the diaphragm topology. Connections also need to be cre-
ated.

MSHParser diaphragmparser = new MSHParser();
diaphragm = new Topology("Diaphragm");

try {
diaphragmparser.parseFile("diaphragm.msh",diaphragm,
MSHParser.SETUPCONNECTIONS,-135);
diaphragm.setupArrays();
new ActionlLine(diaphragm.nodes.get(9113).initialloc,
new Vector(0.0f,1.0f,0.0f), 17.0f, new Vector(0.0f,0.2f,0.0f), diaphragm);
new ActionlLine(diaphragm.nodes.get(1557).initialloc,
new Vector(0.0f,1.0f,0.0f), 14.0f, new Vector(0.0f,0.2f,0.0f), diaphragm);
} catch (Exception e) {
System.out.println("Error parsing files");
e.printStackTrace();
return;

99

The MSHParser.SETUPCONNECTIONS tells the parser that you would
like the mass spring connections to be created for you. This may not
be desirable if you are going to be using this as a rigid structure, such
as the spine. In this case you should use MSHParser . NOCONNECTIONS.
The —135 argument of the parseFile(...) call is a y-value scalar.
This is used to centre the diaphragm as the model was off-center. 0
should be placed here if the model is already centred around the origin.

Actionlines are also created here with the form: new ActionLine(Origin,
Direction Vector, Radius, Force Vector, Object);

. [Optional] Create rigid links in init(): The topology can be told to
create rigid links between its internal surfaces.

diaphragm.setupInternalConnections(3474,1994,636,1.5f);

The first three are the node numbers of the nodes to define the plane.
The fourth argument is the maximum distance each node will consider
as neighbours.

. [Optional] Create attachments between objects in init(): The topol-
ogy can be attached to other topologies to simulate connected tissues.

diaphragm.stickTo(sternum_ligaments, 0.5f,20f);
diaphragm.resolveClosestEntries();

The first argument is the opposing tissue you wish to attach to, the
second is the distance limit for neighbours and the third is a scalar for
the forces to be applied.

Finally, the computation to find closest node in the neighbouring topol-
ogy is completed by diaphragm.resolveClosestEntries().

. [Optional] Add references in toggleShaded (): The GUI allows shaded
models to be hidden. A reference needs to be added here if you want
your object to be hidden also.

public void toggleShaded() {
if (diaphragmshape.numGeometries() > 0) {
diaphragmshape.removeAllGeometries();
} else {
diaphragmshape.addGeometry(diaphragmtriangles) ;

60

A.1.2 Action Line Fall Off Modication

The action line method is very amenable to tuning for a variety of situations.
For this reason I will show the method that needs to be modified to perform
the tuning.

public void applyForces(float scalingfactor) {
for (Node n: nodes) {
float[] p = n.getLocation();
Vector3f point = new Vector3f(pl[0],pl[1],pl[2]);
float distance = point.y-origin.y;
float falloff = distance/radius;

if (falloff > O & n.force == null) {
forcevector.Multiply(scalingfactorxfalloff);
n.addForce(forcevector.clone());
forcevector.Divide(scalingfactor*falloff);

As is visible here the fall off is currently concerned with the ratio between
the difference of the y values of the point and the origin and the radius.
Changing this fall off calculation will provide vastly different behaviour of
the action line.

A.1.3 Euler Solver Implementation

The solver is another crucial aspect of the project that could be tuned to
provide better convergence or a faster simulation.

The simulator has the following code within the performIteration()
method.

for(Node n: t.nodes) {
Vector v = n.calculateTensionForces();
n.applyForce(v);
n.updateVelocity();
n.updateDamping() ;
n.updatePosition();

}

The tension forces are calculated using equation applyForce(Vector
f) is defined as follows and is a simple application of Newton’s second law,
f=ma.

61

public void applyForce(Vector f) {
/* £f =ma, a = f/m *x/
if ('this.isFixed()) {
f.Divide(mass);
acceleration = f;
} else {
acceleration = new Vector(0,0,0);

}
updateVelocity () is defined as:

public void updateVelocity() {
acceleration.Multiply(Simulator.TIMESTEP) ;
velocity = Vector.add(velocity, acceleration);

}

updateDamping () is defined as follows where dampingfactor is an experi-
mentally chosen constant of —0.02.

public void updateDamping() {
applyForce(Vector.Multiply(velocity, dampingfactor));
velocity = Vector.add(velocity, acceleration);

}
Finally updatePosition():

public void updatePosition() {
Vector distance = Vector.Multiply(velocity,Simulator.TIMESTEP);
newloc.x += distance.x;
newloc.y += distance.y;
newloc.z += distance.z;

}

The numerical integration shown here is simple and quick to process. Other
methods such as Runge-Kutta could be used to provide a better solution.

62

	Introduction
	Motivation and Intent
	Goals
	Salient Points
	Contributions

	Background
	Medical Simulation
	Requirements
	3D Imaging Techniques
	Sample Current Applications

	Mass Spring Systems
	Equation of Dynamics
	Explicit Euler Solver
	Choice of t

	Finite Element Method
	Tensegrity
	Definition and Origins
	Method
	Applying Tensegrity Constraints
	Potential Application to Tissue Simulation

	Diaphragm Modelling
	Anatomy and Physiology
	Diaphragm Composition

	Biomechanical Modelling
	Diaphragm Mechanics and Tensegrity
	Rigid Connections
	Fixed Points
	Action Lines
	Rib Kinematics

	Implementation
	SOFA Solution
	Background
	Diaphragm Motion in SOFA
	Issues with Heterogenity

	Java Solution
	Basic Class Structure
	2D Display
	3D Display

	The Final Product

	Evaluation
	Tensegrity
	Effect on Diaphragm

	Diaphragm Motion
	The Patient Model

	Simulator
	Cube Simulation
	Diaphragm Simulation
	Influence of Mesh Size with a Heterogeneous Model
	Influence of Mesh Size with a Homogenous Model
	Conclusions

	Conclusion
	Discussion
	Work Completed
	Project Outcomes
	Limitations

	Future work
	Integration with SOFA
	Educational Context
	Haptic Integration

	Bibliography
	Appendix
	User Guidance
	Adding a new object
	Action Line Fall Off Modication
	Euler Solver Implementation

