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1. Introduction	
	
1.1. Aims	of	Project	
The	aim	of	the	project	is	to	build	on	the	work	done	on	simulating	the	motion	of	several	of	
the	key	organs	during	the	respiration	cycle	from	previous	academic	years	at	the	Department	
of	Biosurgery	and	Surgical	Technology,	Imperial	College	at	St	Mary’s	Hospital,	London	1,2,3.		
The	previous	work	focused	mainly	on	motion	of	the	diaphragm	and	ribs	during	the	
respiration	cycle	as	a	surrogate	for	motion	of	the	liver	during	the	same	period,	to	allow	the	
creation	of	a	realistic	model	for	liver	motion.	
	
The	main	aim	of	this	project	is	to	create	an	anatomically	and	physiologically	realistic	
simulation	of	the	deformation	of	the	major	organs	involved	in	respiration	for	medical	
student	teaching.		This	will	be	created	in	X3D,	Python	and	C++	under	the	H3D®	open	source	
development	framework	to	be	fully	compatible	with	the	department’s	haptics	devices.	
	
If	successful,	the	simulation	will	hopefully	form	the	basis	of	a	future	liver	access	procedure	
simulator	for	the	training	of	clinical	personnel	in	the	technically	difficult	procedure	of	liver	
biopsies.		
	
	
1.2. Contributions	
i.e.	what	has	this	project	added	and	how	has	it	moved	the	field	forward.	
	
The	main	contribution	of	this	project	has	been	to	implement	a	dynamic	mass	spring	system	
under	the	H3D	development	framework	and	to	apply	it	to	the	technically	difficult	area	of	
anatomical	and	physiological	modelling	of	organ	movement	and	deformation	during	the	
respiratory	cycle.		
	
The	project	has	drawn	on	my	various	backgrounds,	notably	medicine,	physics	and	
computing	science	to	produce	a	realistic	simulation	of	the	above	and	has	resulted	in	a	new	
simulation	of	lung	and	costal	cartilage	movement	and	deformation	during	the	respiratory	
cycle.	
	
It	has	also	built	on	and	improved	on	previous	years’	work	at	the	Department	of	Biosurgery	
and	Surgical	Technology	and	resulted	in	an	improved	realism	of	the	rib	anatomy	and	motion		
and	a	more	medical	student	centred	and	useful	package	overall.	
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2. Problem	Domain	
	
	

2.1. Fundamentals	of	Medical	Simulation	
	

i.e.	Fundamentals	of	what	is	to	be	achieved	and	why	
	

Simulations	are	artificial	models	of	real	systems	which	have	certain	rules	that	define	the	
system	and	how	it	behaves.		Certain	elements	are	removed	or	not	modelled	to	simplify	and	
focus	on	the	important	features.		This	not	only	aids	understanding	but	reduces	drain	on	
resources,	notably	computing	power.	
	
Simulations	are	often	used	to	visualise	systems,	perform	tasks	or	model	the	effect	of	change	
which	are	simply	not	possible	to	do	so	on	a	regular	basis	due	to	expense,	safety	or	
feasibility.		Simulations	are	also	used	to	model	events	and	so	predict	the	future.	
	
The	ultimate	aim	of	a	simulation	is	to	provide	a	greater	understanding	of	the	world	and	
universe	around	us.		To	achieve	this	aim,	simulations	need	to	be:	

1. Realistic:	Closely	represents	reality	now	and	in	the	future	
2. Validated:	verify	that	the	simulation	is	realistic	and	gives	consistent	results	
3. Accessible:	affordable	and	easy	to	use	by	the	target	audience		
	

Medicine	utilises	simulation	for	training	of	students	and	doctors	at	all	levels.		It	is	seen	as	a	
way	to	develop	a	greater	understanding	of	complex	systems,	e.g.	biochemical,	physiological	
or	pathological	processes.			Medical	simulations	can	also	allow	practice	to	develop	
familiarity	with	instruments	for	technically	difficult	procedures	and	so	simulate	the	likely	
outcome	from	a	procedure	performed	in	a	certain	way.		
	
This	project	will	be	used	primarily	for	teaching	medical	students	the	anatomy,	physiology	
and	biomechanics	involved	in	the	respiration	cycle	and	how	this	is	affected	by	factors	such	
as	respiration	rate,	diaphragm	and	rib	motion	and	the	effect	this	has	on	the	surrounding	
organs.		If	successfully	validated,	it	will	then	be	used	as	a	starting	point	on	which	to	build	a	
liver	access	procedure	simulator.	
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2.2. Anatomy	and	Physiology	
	
i.e.	What	the	relevant	anatomy	and	physiology	of	each	organ	is	and	how	it	moves	during	
respiration	
	
As	mentioned	above,	it	is	necessary	to	simplify	the	anatomy	to	be	represented	in	the	
simulation	for	several	very	good	reasons.		Firstly,	it	is	only	necessary	to	include	that	which	
will	actually	aid	the	student’s	understanding	of	the	process.		It	is	also	necessary	to	remove	
organs	that	will	only	clutter	the	scene	and	impede	the	students’	understanding.		To	this	end,	
organs	which	have	little	involvement	or	are	simply	too	complicated	have	been	omitted.	
	
From	a	point	of	view	of	computing	power	and	time,	very	complicated	structures	such	as	the	
heart	have	had	to	be	omitted	as	it	would	in	fact	be	a	project	in	its	own	right	to	model	the	
cardiac	cycle	during	respiration.			Other	organs	have	been	left	static	such	as	the	aorta	and	
inferior	vena	cava	which	would	obviously	contract	and	expand	during	the	cardiac	cycle.	

	
Those	organs	which	have	been	included	are:	

• Muscular	structures-	diaphragm	
• Bony	structures-	ribs,	sternum,	spine	
• Costal	cartilages	
• Solid	organs-	lungs,	trachea,	liver	
• Vessels-	aorta,	inferior	vena	cava	

	
	
Respiration	cycle:	
	
The	respiratory	cycle	is	driven	by	the	respiratory	centre	in	the	medulla	oblongata	in	the	
brainstem.		From	this	coordinating	centre	the	skeletal	muscles	of	the	diaphragm	and	those	
involved	in	expanding	the	rib-cage	are	controlled	via	efferent	neurones.	
	
The	respiratory	drive	is	usually	in	response	to	arterial	carbon	dioxide	concentration,	PaCO2	
(the	partial	pressure	of	carbon	dioxide	in	the	serum),	but	at	higher	levels	of	exertion	or	
metabolic	demand	(e.g.	exercise	or	infection)	then	other	factors	come	into	play	such	as	
hydrogen	ion	concentration,	levels	of	arterial	oxygen	(PaO2)	and	other	metabolites.	
	
The	normal	respiratory	rate	is	about	8-14	breaths/minute	but	this	can	increase	to	about	40	
breaths/minute	in	times	of	maximal	exertion	or	during	illness,	although	this	cannot	be	
sustained	form	more	than	a	few	hours	due	to	the	significant	effort	required.	
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The	respiratory	cycle	follows	an	approximately	sinusoidal	pattern	as	can	be	seen	from	figure	
1.		There	is	an	inspiratory	phase	followed	by	an	expiratory	phase.		Normal	respiration	occurs	
with	a	tidal	volume	(TV)	of	about	500ml	of	air	in	an	average	70kg	male,	where	the	inspired	
air	mixes	with	that	left	in	the	lungs	at	the	end	of	expiration.		The	volume	of	air	left	in	the	
lungs	on	normal	expiration	is	called	the	functional	residual	capacity	(FRC),	a	result	of	the	
spaces	produced	by	the	non-elastic	or	incompressible	airways	of	the	bronchi	and	
bronchioles.			
	
Maximal	inspiration	results	in	a	vital	capacity	(VC)	usually	around	3.5	-	4	litres.		At	maximal	
expiration	the	volume	left	in	the	lungs	is	the	residual	volume	(RV),	the	minimum	
physiological	volume	of	the	lungs.	
	

	
Figure	1.	Respiratory	volumes	during	normal	breathing	and	at	maximal	inspiration	and	expiration4	
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2.2.1. Diaphragm	
	
Accurate	modeling	of	the	diaphragm	is	central	to	the	development	of	a	realistic	simulation	
as	it	is	a	surrogate	for	liver	motion	during	respiration.		

	

Anatomy:	
	

	

	
Figure	2	Inferior	view	diaphragm5		 	 Figure	3	Anterior	view	diaphragm	and	attachments6	
	

As	can	be	seen	from	figure	2	and	figure	3	the	diaphragm	is	a	thin	layer	or	muscular	and	
tendinous	tissue.		Its	primary	attachments	are	at	the	following	positions	5,7,8:	

1. Sternal	portion:	
• Anteriorly	at	the	xiphoid	process	at	the	bottom	of	the	sternum	

2. Costal	portion:	
• Anteriorly	to	the	5th-10th	ribs	and	their	costal	cartilages	
• Laterally	along	the	lower	border	of	the	ribcage	

3. Lumbar	portion:	
• Posteriorly	to	the	thick	aponeurotic	medial	and	lateral	arcuate	ligaments	

which	themselves	are	attached	to	the	inferior	tips	of	the	11th	and	12th	ribs	
and	the	spinous	processes	of	the	1st	Lumbar	vertebra	(these	allow	the	
lumbar	psoas	and	quadrate	(quadrates	lumborum)	muscles	to	pass	behind	
the	diaphragm).	

• Finally	it	forms	the	thick	tendinous	attachments	to	the	1st	to	3rd	Lumbar	
vertebrae	called	the	cruae	with	the	right	crus	being	longer	than	the	left,	
extending	to	the	3rd	lumbar	vertebra	whilst	the	left	extends	only	as	far	as	
the	2nd	lumbar	vertebra.	

• The	aorta	passes	through	the	aortic	hiatus	inside	the	thick	median	arcuate	
ligament	formed	from	the	two	cruae	
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• From	these	points	of	attachment	originate	the	skeletal	muscle	fibres	of	
the	diaphragm,	which	form	the	dome	shape	attaching	to	the	fibrous	
central	tendon	through	which	the	inferior	vena	cava	and	esophagus	pass.	

	
Physiology:	
	
The	action	of	the	diaphragm	is	complex	and	depends	on	its	shape,	attachments	and	
surrounding	structures9.		The	diaphragm	can	essentially	be	separated	down	into	zones	
depending	on	their	different	movements:	

1. Determined	points	at	the	bottom	of	the	lateral	rib	cage,	medial	and	lateral	
arcuate	ligaments	and	crura	which	move	only	in	relation	to	those	structures.	

2. Central	tendon	which	is	almost	rigid	and	so	is	pulled	and	pushed	in	relation	to	
the	tension	in	the	muscular	apposition	zones	

3. Apposition	zones	composed	of	the	skeletal	muscle	fibres	which	do	all	of	the	
movement	

During	the	respiration	cycle	the	domes	of	the	diaphragm	move	cranially	and	caudally.	Figure	
4	shows	reconstructed	MRI	images	of	the	diaphragm	showing	the	change	in	its	shape	during	
respiration.			
	

	
Figure	4.		Reconstructed	MRI	images	of	the	change	in	shape	of	the	diaphragm	between	its	relaxed	state(a),	at	tidal	

volume(b)	and	total	lung	capacity(c)	5	

	
From	Whitelaw	et	al.10	it	can	be	noted	at	relaxation	the	right	dome	is	2	cm	higher	than	the	
left	dome	and	3	cm	higher	than	the	midline.		At	tidal	volume	the	right	dome	is	only	0.5	cm	
higher	than	the	left	dome	and	1.5cm	higher	than	the	midline.		This	means	that	there	is	a	
rotation	and	slight	flattening	out	of	the	central	tendon	during	inspiration.	
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2.2.2. Thoracic	Wall	
	

Anatomy:	
	

The	major	components	of	the	thoracic	wall	are	the	bony	structures	of:	
1. Sternum	and	the	cartilaginous	xiphoid	process	anteriorally	
2. Thoracic	spine	posteriorally	
3. Ribs	between	these	2	points	connected	by	the	flexible	costal	cartilages	

anteriorally	and	by	fibrous	ligaments	across	the	synovial	joints	with	the	vertebrae	
posteriorally	

	
	

	
Figure		5.	Bony	structures	of	rib	cage11	

	
As	can	be	seen	from	figure	5	the	first	six	ribs	are	true	ribs	which	have	their	own	costal	
cartilages,	ribs	7-10	being	false	ribs	sharing	a	composite	cartilage.		The	11th	and	12th	ribs	are	
floating	ribs	as	they	do	not	wrap	round	to	fuse	with	the	sternum.	
	
The	ribs	as	already	mentioned	are	anchor	points	for	the	diaphragm	but	the	ribs	themselves	
are	interconnected	by	a	thin	pair	of	muscles	called	the	intercostals,	composed	of	the	
internal	and	external	intercostals	muscles.	
	
Accessory	muscles	also	attach	at	various	points	including	the	scalene	and	the	
sternocleidomastoid	muscles	to	the	sternum	and	1st	ribs	superiorally	and	the	rectus	abdomi	
muscles	attach	to	the	lower	sternum	and	the	5th	and	6th	ribs	and	their	costal	cartilages	
inferiorly	as	shown	in	figure	6.	
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Figure		6.	Accessory	Muscles	of	Respiration12	

	
Physiology:	

	
The	chest	wall’s	motion	depends	on	the	complicated	interaction	of	the	structures	
mentioned	above	causing	it	to	expand	and	contract	during	the	respiratory	cycle.		The	chest	
wall	expands	in-order	to	create	a	negative	intra-thoracic	pressure	to	draw	air	into	the	lungs,	
inflate	the	airways	and	allow	gas	transfer.		When	the	chest	wall	contracts	it	pushes	the	
expired	air	out	of	the	lungs,	to	prepare	for	the	next	inspiration.	

	
The	main	component	which	determines	how	much	the	chest	wall	expands,	and	so	the	
degree	of	lung	inflation,	is	rib	movement.		This	has	been	studied	over	centuries	and	is	tied	
intricately	to	the	action	of	the	intercostal	muscles.		It	was	classically	thought	that	the	
internal	intercostals	pull	the	ribs	closer	together	during	inspiration	and	the	external	
intercostals	pull	the	ribs	apart	opening	up	the	chest,	increasing	intra-thoracic	volume,	
during	inspiration.		It	has	since	been	discovered	that	while	this	is	largely	correct	the	action	is	
not	as	simple	as	this9	with:	

• Ventrally,	the	external	intercostals	contribute	a	significant	expiratory	effect	from	
rib	6	onwards	

• The	internal	intercostals	switch	to	having	a	large	inspiratory	effect	from	rib	6	
onwards	

	
The	main	motions	of	the	ribs	have	been	described	in	terms	of	2	actions:	

• Bucket	handle	movement	which	increases	the	lateral	excursion	of	the	ribs	
• Pump	handle	movement	increases	the	anteroposterior	diameter	of	the	thorax	

	
The	net	effect	is	essentially	to	increase	the	intrathoracic	diameter	in	the	anteroposterior	
and	the	transverse	directions.	
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A	study	by	Wilson,	et	al.	13	showed	that	each	rib	is	contained	in	a	plane	that	has	a	certain	
orientation	relative	with	the	original	coordinate	system	(x,	y,z)	.		They	defined	a	new	
coordinate	system	(ξ,η,ζ	),	where	ξ	is	the	intersection	of	the	plane	of	the	rib	and	the	sagittal	
midplane,	η	the	intersection	of	the	plane	of	the	rib	and	the	perpendicular	of	the	sagittal	
midplane,	and	ζ	is	perpendicular	to	the	plane	of	the	rib	(see	figure	7.).				

	

	
Figure	7-	Wilson	et	al.	definition	α	and	β	angles	

	
	
Data	was	obtained	at	Total	Lung	Capacity	(TLC)	and	Functional	Residual	Capacity	(FRC)	for	
the	2nd	to	the	9th	rib.		In	particular,	they	obtained	values	for	α	and	β,	which	are	the	angles	
between	the	new	axis	and	the	original	ones.			α	is	called	the	‘pump	handle’	angle,	and	β	is	
called	the	‘bucket	handle’	angle.	
	
All	the	ribs	showed	a	decrease	in	both	α	and	β	with	passive	inflation	to	TLC.		It	seems	logical	
that	the	plane	of	the	rib	has	a	tendency	to	coincide	with	the	transverse	plane.		However,	the	
changes	in	amplitude	decrease.			For	instance	αTLC	−αFRC	went	from	14.3	°	for	the	2nd	rib	
to	6°	for	the	9th	rib,	and	βTLC	−	βFRC	went	from	13.7°	for	the	2nd	rib	to	6.3	for	the	9th	rib.	
	

Rib 
Number 

αTLC	–αFRC	
(degrees) 

αTLC	–αFRC	
(radians)	

βTLC	–	βFRC	
(degrees) 

βTLC	–	βFRC	
(radians) 

2 14.3 0.2496 13.7 0.2391 
3 11.4 0.1990 13.3 0.2321 
4 10.7 0.1868 10.1 0.1763 
5 9.6 0.1676 8.9 0.1553 
6 9.4 0.1641 6.9 0.1204 
7 7.9 0.1379 6.6 0.1152 
8 7.9 0.1379 6.2 0.1082 
9 6 0.1047 6.3 0.1100 

Table	1.	α	and	β	angles	ribs	2-9.	
	

Movement	of	the	lower	10th	rib	has	not	been	presented	but	it	should	be	noted	that	
movement	of	the	7-9th	do	not	vary	much	and	as	rib	10	is	one	of	the	false	ribs	its	rotation	
angle	will	likely	be	similar	to	the	previous	3	rotation	angles.	
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The	11th	and	12th	ribs	have	minimum	rotation	as	they	are	splinted	by	the	quadratus	
lumborum	muscles	14.		The	net	effect	is	to	provide	a	fixed	base	for	the	diaphragm.	
	
Another	issue	is	the	lack	of	a	1st	rib	rotation	angle	and	after	an	extensive	review	of	literature	
this	cannot	be	found	so	again	this	will	have	to	be	estimated	visually.	
	
	
2.2.3. Lungs	and	Pleura	

	
The	lungs	are	surrounded	by	the	pleura.		The	pleura	itself	is	composed	of	2	layers	separated	
by	the	pleural	cavity,	a	potential	space	(see	figure	8).		The	thin	visceral	pleura	lines	the	lungs	
and	secretes	fluid	into	the	pleural	cavity.		The	parietal	pleura	is	a	thick	fibrous	layer	that	
closely	adheres	to	the	inside	of	the	chest	cavity.		

	 	 	
Figure	8.	Lungs	and	surrounding	pleura15	 	 Figure	9.	Trachea,	bronchi	and	terminal	airways16	

	
The	lungs	are	composed	of	three	main	components,	the	bronchial	tubes	along	which	
inhaled	and	expired	air	passes,	the	pulmonary	arteries	and	veins,	and	the	pulmonary	
parenchyma,	composed	of	the	terminal	bronchioles	and	alveoli	which	are	responsible	for	
gas	exchange	(see	figure	9).	
	
In	terms	of	their	behaviour	the	lungs	are	anchored	at	the	hili	(the	roots)	to	the	main	bronchi	
and	the	pulmonary	veins	and	arteries.		During	the	respiration	cycle	the	lungs	expand	and	
contracts,	following	the	chest	wall,	expanding	into	the	pleural	space.			
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2.2.4. Liver	
	
The	liver	is	a	fragile	vascular	structure	surrounded	by	a	tough	membrane.		It	is	attached	to	
the	diaphragm	by	the	falciform	ligament	which	splits	the	liver	into	left	and	right	lobe.		Its	
motion	during	breathing	follows	that	of	the	diaphragm.	
	
	
2.3. Physical	Modelling	
	

i.e.	Basic	overview	of	differences	geometrically	and	physically	based	models	and	then	
talk	about	each	of	the		physical	models,	what	each	type	involves	and	pros	and	cons	

	
2.3.1. Mass	Spring	Model	
	
A	Mass	Spring	model	is	a	type	of	dynamic	model	where	the	position	of	the	object	is	
dependent	on	time.		The	object	is	represented	as	a	particle	cloud,	where	each	particle	
represents	a	vertex	defined	in	the	topology	of	the	original	object	data.			The	particles	are	
connected	together	by	damped	springs	which	correspond	to	edges	between	vertices	in	the	
object.	
	
Each	particle	has	a	resting	position,	a	current	position,	a	mass,	a	velocity	and	a	net	force	
applied.		Calculation	of	the	force	occurs	in	real-time	where	it	is	dependent	on	the	position	of	
the	neighbouring	particles	connected	by	springs.	
	
This	method	of	deformation	is	fast	and	easy	and	closely	approximates	the	real-world	
physical	behaviour	of	tissues.		Along	with	its	speed	and	capability	means	that	it	is	the	most	
commonly	used	method	of	tissue	modelling.	
	
Basic	Mass	Spring	Model		
	
Using	Newton’s	second	law	of	motion	it	is	possible	to	derive	the	position	of	a	particle	in	
space	as:	
	 	 	 	 F=ma	 	 where	F=	force,	m=mass,	a=acceleration	

As,	a=	dv/dt	where	v=	velocity,		t=	time	
	 	 	 	 And	v=dx/dt,	therefore	a=dx2/d2t	

Therefore	F=	m	*	dx2/d2t	
	
This	means	that	to	find	the	position	is	a	case	of	solving	a	2nd	order	differential	equation	once	
the	force	has	been	found.	
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In	a	Mass	Spring	system	the	force	is	usually	assumed	to	be	linear	and	is	found	from	Hooke’s	
Law:	

F=	-k	*	Δx	 	where	k	is	the	spring	constant	and	determines	the	
rigidity	of	the	spring	and	Δx	is	the	difference	between	
the	current	position	and	the	resting	position	of	the	end	
of	the	spring.	

	
Fortunately	this	is	fairly	simple	to	calculate	from	the	positions	of	the	particles	in	3D	space,	
the	complexity	arises	when	there	is	a	network	of	springs	as	the	forces	have	to	be	
accumulated	through	all	the	neighbouring	springs	and	then	passed	through	the	network	
iteratively.	
	
Damping	has	to	be	introduced	into	the	system	to	increase	stability	and	simulate	energy	loss	
due	to	friction	and	even	air	resistance.	
	
The	resulting	position	of	the	particle	is	then	calculated	using	a	2nd	order	differential	
equation	solver	using	for	example	the	explicit	Euler	or	Runga	Kunta	methods.	
	
The	problems	with	this	method	are:	

• The	behaviour	can	become	quite	unrealistic	for	large	deformations.	
• There	is	also	a	limited	volumetric	behaviour	because	of	the	local	structure	of	the	

mesh	
• The	Mass	Spring	system	has	a	predisposition	to	oscillate	because	of	its	iterative	

structure.	
	
	
Relaxation:	
	
It	has	been	recognised	that	the	problem	of	springs	being	stretched	unrealistically	in	relation	
to	others	is	a	major	problem	in	Mass	Spring	systems.		Relaxation	is	a	heuristic	that	has	no	
direct	physical	interpretation	that	has	since	been	applied	to	remove	this	problem17.		As	it	
sounds	it	iteratively	transforms	the	springs	to	their	relaxed	configuration.			
	
It	is	calculated	as	follows:	
	 	 Lrelaxed	=		Lnatural	+	linear	factor.	Lnatural		if	(Lactual	>	Lnatural	+	linear	factor.	Lnatural)	

or:		 		Lnatural	-	linear	factor.	uLnatural		if	(Lactual	<	Lnatural	-	linear	factor.	Lnatral)	
	 	 or:	 	 	 	 	 Lnatural	else	
	
	
Essentially	the	relaxation	algorithm	displaces	the	nodes	once	the	difference	between	the	
initial	length	(Lnatural)		plus	the	current	length	(Lactual)	is	greater	than	the	linear	factor.	
	
The	net	effect	is	to	allow	deformation	to	propagate	through	the	model	quickly.		The	issue	
with	this	method	is	that	form	large	deformation	models	it	can	result	in	a	big	computation	
cost.	
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Quasi-Static	Mass	Spring	Model:	
	
Implementing	this	model	involves	finding	an	approximation	to	the	dynamic	solution17.		
There	is	no	mass,	inertia	and	no	damping	is	required	as	no	energy	introduced	into	the	
system.		This	should	resolve	the	oscillation	problem	in	the	basic	model,	meaning	that	no	
waves	or	vibrations	will	pass	through	the	system.	
	
This	is	achieved	by	assuming	that	the	internal	and	external	forces	are	in	equilibrium,	i.e.	
	
	 	 	 ∑internal	forces	on	particle	–	external	forces	on	particle	=	0	
	
An	iterative	algorithm	is	used	to	this	end	where	an	attempt	at	calculating	the	configuration	
where	the	forces	balance	during	each	frame	interval	is	performed.		To	help	this	succeed	
each	iteration	is	seeded	with	the	solution	of	the	previous	as	this	might	be	close	to	the	
solution	for	the	configuration	of	that	frame.	
	
If	the	frame	interval	has	been	reached	and	a	no	solution	where	equilibrium	is	achieved	is	
reached,	then	the	current	(best)	result	is	used.	
	
	
2.3.2. Finite	Element	Models	
	
A	Finite	Element	Model	(FEM)	is	based	on	the	law	of	continuum	mechanics	and	computes	a	
solution	closer	to	the	continuous	solution	rather	than	a	discrete	solution	acquired	by	the	
Mass	Spring	models.		In	a	FEM	the	object	is	subdivided	into	a	mesh	of	simple	elements,	such	
as	tetrahedra	or	triangles.		Physical	properties,	like	elastic	modulus,	stress,	and	strain,	are	
associated	with	each	of	these	elements.	The	corresponding	equilibrium	equations	are	
solved	numerically	by	the	approximation	provided	by	a	polynomial	equation	which	is	related	
to	key	control	nodes.	
		
The	advantage	of	the	FEM	is	that	it	has	a	greater	accuracy	compared	to	Mass	Spring	models,	
and	the	results	can	be	very	realistic,	but	it	has	a	very	high	computational	cost	and	is	far	
more	difficult	to	implement	than	the	mass	spring	system.	
	
The	high	computational	cost	means	that	the	FEM	is	rarely	used	for	real-time	simulations	
although	methods	such	as	the	Boundary	Element	Method	solves	equations	for	unknown	
displacements	and	forces	only	on	the	boundary	of	the	object,	rather	than	the	interior	as	
with	FEM.	The	movement	is	then	governed	by	a	large	linear	system	of	equations.	Such	a	
system	could	normally	not	be	solved	in	real	time,	but	with	some	pre-computations,	it	
becomes	possible	to	obtain	at	each	step	a	modified	system	with	only	few	updates	compared	
with	the	previous	system.	This	allows	for	fast	and	accurate	deformations.	
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2.3.3. Tensegrity	
	
Tensegrity	is	a	blend	of	methods	using	both	rigid	and	elastic	links	in	order	to	form	stable	
structures18.		The	elastic	links	make	part	of	its	function	very	similar	to	that	of	the	Mass	
Spring	systems	but	the	main	part	of	the	model	is	constraining	the	simulatation	by	the	rigid	
links.		
	
	
2.3.4. Chainmail	
	
The	Chainmail	model	is	another	method	developed	by	Gibson19.		It	is	a	geometrically	based	
method	that	was	developed	to	preserve	the	size	and	geometry	of	volumetric	objects	during	
deformation	in	surgery	simulations.			It	was	specifically	designed	to	speed	computation	and	
so	can	be	used	with	large	datasets.	
	
	In	this	model,	the	object	is	defined	as	a	set	of	point	elements.	The	elements	are	
interconnected	as	links	in	a	chain.		Each	point	can	move	freely	without	influencing	its	
neighbours	whilst	within	certain	pre-defined	limits.	When	one	element	of	the	object	is	
moved	and	reached	its	maximum	or	minimum	geometric	size,	the	neighbours	are	then	
deformed	accordingly,	setting	up	a	chain	reaction	that	is	governed	by	the	stiffness	of	the	
links	in	the	mesh.		This	has	the	net	effect	that	any	deformations	are	usually	absorbed	in	
small	areas	rather	than	as	in	the	mass	spring	model.	
	
In	FEM,	there	are	complex	calculations	on	a	small	number	of	elements.	The	Chainmail	
model	is	doing	simple	calculations	on	a	large	amount	of	elements.			As	in	the	Mass	Spring	
model	there	is	also	a	relaxation	step	in	which	the	energy	of	the	configuration	is	minimized.		
	
As	with	the	Mass	Spring	model	its’	great	advantage	is	its’	simplicity20.		The	volumetric	
behaviour	is	guaranteed	by	the	chainlike	structure	of	the	model.		It	is	also	fast	deformable	
model	but	required	some	optimization	of	Gibson’s	initial	algorithm	to	model	inhomogenous	
data21.	
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2.4. Previous	work	
	
As	mentioned,	this	project	builds	on	previous	work.			Below	is	a	summary	of	previous	
projects	that	this	project	uses:	
	

i. Initial	project	2008:	“Modelling	Diaphragm	Kinematics	for	3D	Simulation	of	Liver	
Access”	1	
	
This	focused	on	the	movement	of	the	diaphragm	during	respiration	separating	out	
key	anatomical	and	physiological	zones.		Non-rigid	registration	techniques	were	
applied	to	record	tension	and	displacement	vectors.		The	main	contribution	of	this	
project	is	to	show	the	areas	of	the	diaphragm	movement.	
		

ii. Follow-up	project	2008:	“The	Use	of	Tensegrity	to	Simulate	Diaphragm	Motion	
Through	Muscle	and	Rib	Kinematics”		2	
	
This	project	used	the	Step	forward	as	diaphragm	motion	and	rib	movement	were	
simulated	with	a	mass-spring	based	method.		Good	modelling	of	the	diaphragm	and	
close	approximation	to	physiological	results	from	patient	CT	images	were	achieved,	
but	adding	in	rib	kinematics	slowed	simulator	considerably.		Another	issue	was	that	
the	simulator	was	written	in	Java	and	not	possible	to	include	haptic	APIs.	
	

iii. Late	2008	project:	“Computer-based	multi-sensorial	environment	for	anatomy	
teaching:	Dynamic	modelling	of	the	rib	cage	anatomy	during	respiration”		3	
	
Attempt	to	convert	simulator	to	C++	using	the	H3D	development	framework	to	allow	
haptic	interaction.		Use	of	chainmail	rather	than	mass-springs/tensegrity	for	
deformation.		Good	attempt	and	key	organs	modelled,	but	not	anatomically	or	
physiologically	realistic.		Another	problem	was	that	the	deformation	based	on	the	
chainmail	algorithm	with	haptics	was	too	slow	to	be	off	any	use	for	training.			
Comparisons	with	CT	images	showed	result	slightly	worse	than	the	mass-spring	
based	method.	
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3. Materials	and	Methods	
	

3.1. H3D-	Adapted	from	reference	22	
	
H3D	is	an	open-source,	cross-platform,	scene-graph	API22.		It	is	written	in	C++	using	the	
Standard	Template	Library	(STL).		H3D	uses	the	Open	Source	Graphics	Library	(OpenGL)	for	
graphics	rendering	and	Haptics	API	(HAPI)	for	haptics	interaction.		
	
H3D	is	designed	using	the	extensible	3D	(X3D)	graphics	file	format,	an	ISO	standard	file	
format	based	on	the	XML	(Extensible	Mark-up	Language)	standard.		X3D	is	used	for	scene-
graph	design	and	allows	rapid	development	adding	new	functionality	in	a	modular	way.	
	
Programs	can	be	written	to	run	with	the	H3D	API	in	3	different	languages-	C++,	Python	and	
X3D.		Each	has	their	own	advantages	and	disadvantages:	

• X3D:			Allows	rapid	modular	development	but	programs	written	entirely	in	X3D,	they	
will	be	slow	and	are	only	able	to	use	the	pre-defined	X3D/H3D	nodes	and	fields	(see	
section	3.1.1),	limiting	adaptability.	

• Python:	 Allows	relatively	fast	development	but	again	programs	would	have	a	
reduced	run-time	speed	as	python	is	an	interpreted	language.		However,	user-
defined	H3D	nodes	can	be	developed	allowing	greater	adaptability.	

• C++:		Slower	and	more	intensive	development	as	it	is	a	compiled	language	but	
results	in	greatly	improved	run-time	performance	and	maximum	adaptability.		

	
In	practice	a	combination	of	these	3	languages	is	used	to	gain	maximum	benefit	from	each.	
	
3.1.1. Fields	and	Routes	

	
Fields	are	the	most	fundamental	building	blocks	of	X3D	and	the	H3D	API.		Fields	have	
several	functions:	

•	Data	storage:	fields	contain	data	of	some	type	
•	Data	dependency:	fields	can	be	set	up	to	be	dependent	on	each	other	so	that	a	
change	of	value	of	one	field	triggers	an	update	of	another	(see	the	update()	function	
in	section	3.1.3).	
•	Functional	behaviour:	fields	can	calculate	values	in	any	way	they	want,	depending	
on	the	fields	routed	to	them.	

	
Fields	are	usually	of	type	SFields	or	MFields,	where	the	SField	contains	a	single	value	of	
some	type,	e.g,	SFVec3f	contains	a	single	Vec3f	or	SFInt32	contains	a	single	32	bit	integer	
value.		MFields	contain	multiple	values,	e.g.	MFFloat	contains	multiple	floats.	
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Dependencies	between	fields	in	H3D	are	specified	by	connecting	them	by	routes.		These	are	
arranged	in	a	directed	graph,	creating	a	field	network	where	events	are	passed	from	field	to	
field	according	to	how	the	field	network	has	been	constructed.	
	
A	route	between	field	A	and	field	B	means	that	if	something	changes	in	field	A	an	event	
message	is	sent	to	field	B	to	let	it	know	that	A	has	changed	and	B	can	take	appropriate	
actions.			By	default,	routes	can	only	be	set	up	between	fields	of	the	same	type.	
	
3.1.2. Nodes	
	
Nodes	are	containers	for	fields,	grouping	together	fields	to	create	larger	reusable	entities.		
They	are	used	to	build	the	X3D	scene-graph	as	they	control	all	the	behaviours	of	the	
composite	fields,	specifying	the	interface	to	itself,	determining	what	fields	the	user	of	the	
node	can	access	and	then	hides	away	all	the	internal	functionality	from	the	user.		
	
Fields	in	a	node	can	be	one	of	only	four	types:	

•	inputOnly	–	Input	fields	to	the	node.		Can	only	be	set	and	routed	to.		It	is	not	
possible	to	get	the	value	or	route	from	it.	
•	outputOnly	-	Output	fields	from	the	node.	Can	only	route	from	and	get	the	value,	
not	route	to	or	set.	
•	inititalizeOnly	–	Value	of	these	fields	can	only	be	initialized.			After	that	the	value	
can	only	be	used	as	an	outputOnly	field,	with	no	routing	to	or	setting.	
•	inputOuput	-	No	restrictions,	can	both	get	and	set	the	value	as	well	as	route	to	and	
from	the	node.	

	
3.1.3. Important	functions	and	fields	
	
Global	field	member	functions	
	
Important	functions	that	are	available	for	all	fields	are:	

•	route(	Field	)	-	sets	up	a	route	from	a	field	to	another.	An	event	is	generated.	
•	routeNoEvent(	Field	)	-	same	as	route,	but	no	event	is	generated.	
•	unroute(	Field	)	-	remove	a	route.	
•	touch()	-	manually	generate	an	event	from	this	field.	

	
For	SFields	and	MFields:	

•	getValue()	-	get	the	value	of	the	field.	
•	setValue(	value	)	-	set	the	value	of	the	field.	

	
Traversing	the	scene-graph	

	
The	two	important	functions	that	for	traversing	the	scene-graph	are:	

•	render()	-	makes	all	the	OpenGL	calls	in	order	to	graphically	render	the	node.	
•	traverseSG(	TraverseInfo	&ti	)	-	called	upon	traversal	of	the	scene-graph.	The	
TraverseInfo	object	contains	information	about	the	coordinate	space,	current	
surfaces,	haptics	devices	that	are	active	
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Note	that	the	scene-graph	is	traversed	twice	each	loop,	one	time	to	do	the	graphics	
rendering	and	one	time	for	other	things	like	adding	haptics	primitives.	
	
	
Update	function	
	
When	the	value	of	a	field	is	called	by	e.g.	the	getValue()	function	or	by	a	route		the	following	
happens:	

•	If	the	field	is	up	to	date,	just	use	the	current	value.	
•	If	not,	an	event	has	been	received	and	we	have	to	update	the	value.	

	
This	is	called	lazy-evaluation.		The	update()	member	function	of	the	field	takes	care	of	
updating	of	the	value.			The	default	case	is	simply	to	just	copy	the	value	of	the	incoming	
event,	but	it	can	be	changed	to	do	any	arbitrary	calculation	by	specialising	the	update	
function	yourself.			In	C++	the	default	case	would	look	like:	
	

class	SFFloat:	public	Field	{		
virtual	void	update()	{	

value	=	static_cast<	SFFloat	>(event.ptr)−>getValue();	
}	

}	
	
This	simply	sets	“value”	to	the	value	of	the	field	that	caused	the	event	to	happen	e.g.	from	a	
route.	
	
A	more	complicated	conditional	update	to	set	the	value	to	0	or	1	would	be:	
	

class	TrueOrFalse:	public	SFInt32	{		
virtual	void	update()	{		

value	=	0;	
if(static_cast<	SFFloat	>(event.ptr)−>getValue()	==	1)	

value	=	1;	
}	

}	
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AutoUpdate	field	
	
If	lazy	evaluation	is	not	wanted,	i.e.	update	is	wanted	every	frame	whether	the	value	is	
called	or	not	then	this	can	be	done	by	using	the	AutoUpdate	field,	which	calls	the	update	
function	every	frame.			In	C++	this	would	be:	
	

class	PrintInt32:	public	AutoUpdate<	SFInt32	>	{		
virtual	void	update()	{		

SFInt32::update();	
cerr	<<	value	<<	endl;	

}	
}	
	

	
TypedField	
	
Routes	can	be	set	up	between	fields	of	different	types	by	using	the	TypedField	template	
modifier.		The	TypedField	modifier	allows	specification	of	what	type	the	route	must	have.		In	
C++	you	would	specify	the	class	as	follows:	
	
class	MyField:	public	TypedField<	SFFloat,	Types<	SFBool,	SFFloat	>	>{		

virtual	void	update()	{		
bool	b	=	static_cast<	SFBool	*	>(	routes_in[0]	)−>getValue();	
H3DFloat	f1	=	static_cast<	SFFloat	*	>(	routes_in[1]	)−>getValue();	
if(b=1)	
	 value=	f1;	
else	
	 value=	0;	
	

}	
}	
	
The	first	argument	given	to	the	TypedField	template	states	that	the	base	class	is	of	SFFloat	
and	the	Types	template	specifies	that	it	takes	in	an	SFBool	and	an	SFFloat.		The	Boolean	
determines	whether	it	is	set	to	the	incoming	route	value	or	zero.	
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3.1.4. Creating	User-defined	Nodes	
	
In	any	custom	H3D	program	it	is	necessary	to	define	and	create	new	nodes.		This	is	done	in	
either	C++	or	Python.			
	
When	designing	new	nodes	it	is	necessary	to	first	of	all	determine	what	fields	should	be	
available	in	the	interface	to	the	node.			After	resolving	this,	dependencies	between	fields	
have	to	be	determined	to	create	an	internal	field	network	that	allows	the	node	to	perform	
as	required,	using	a	combination	of	the	above	functions	and	fields.	
	
For	a	complete	description	of	how	to	write	simple	nodes	in	H3D	please	refer	to	reference	15.	
	
After	the	new	node	has	been	written	it	is	possible	to	use	them	in	X3D	files	by	either	
combing	them	with	the	executable	X3D	viewer	(in	the	case	of	H3D,	H3DLoad)	or	to	compile	
the	nodes	into	Dynamic	Linked	Library	(DLL).		This	is	preferred	as	you	keep	nodes	created	for	
specific	purposes	out	of	the	X3D	viewer	but	can	simply	include	them	as	required	by	
importing	the	DLL.	
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3.2. Analysis	Previous	Model	
	
As	mentioned	earlier,	the	aim	of	this	project	was	to	build	on	the	work	done	during	previous	
years,	especially	on	Mathieu	Jacob’s	project3	which	was	the	first	attempt	within	the	
Department	of	Biosurgery	and	Surgical	Technology	at	Imperial	College	London	to	implement	
a	respiration	simulation	under	the	H3D	development	framework.	
	
A	logical	place	to	start	is	with	a	full	analysis	of	the	problems	with	the	previous	simulation	
that	resulted	in	it	being	deemed	unsuitable	for	use	as	an	anatomical	and	physiological	
teaching	model.			After	completion	a	list	of	improvements	to	be	made	will	be	compiled.	
	
The	viewing	of	the	previous	project	was	performed	on	a	dual	core	2.1	GHz	machine	with	3	
GB	of	RAM	and	a	256	megabyte	ATI	Radeon	HD	2600	graphics	card.		The	operating	system	
was	the	32	bit	Windows	Vista	Service	Pack	1.	
	
	
3.2.1. Simulation	of	Skin	
	
The	movement	of	the	skin	on	top	of	the	chest	is	unrealistic	with	poor	deformation	of	the	
skin	with	the	respiration	cycle	and	no	fixed	contact	points	at	the	shoulders,	resulting	in	gaps	
appearing	in	which	the	underlying	organs	can	be	seen.	
	

	
Figure	10.	Screenshot	of	skin	deformation	

	
There	is	also	no	movement	of	accessory	muscles	in	the	neck,	such	as	the	
sternocleidomastoids	or	scalene.		There	is	also	no	contribution	from	the	rectus	abdomini	
muscle	and	no	abdominal	movement	at	higher	respiration	rates.	
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3.2.2. Rib	and	Sternal	Motion	
	
The	rib	motion	looks	some-what	unrealistic	with	a	swinging	motion	that	is	applied	almost	
equally	across	all	the	11	ribs	shown,	rather	than	the	physiological	tapering	that	occurs	and	
has	been	documented.		Also	the	11th	and	12th	ribs	(not	shown)	are	static	due	to	the	
aforementioned	splinting	by	the	quadrate	muscles.	
	
Sternal	motion	is	difficult	to	determine	with	no	previous	figures	available,	so	will	be	
assumed	to	be	satisfactory	at	the	moment.	
	
The	absence	of	the	costal	cartilages	seems	to	me,	to	exacerbate	the	swinging	motion	of	the	
entire	rib-cage	and	detracts	from	the	correct	motion	of	the	upper-ribs.	
	

	
Figure	11.	Screenshot	of	rib,	lung	and	diaphragm	

	
	
3.2.3. Diaphragm	
	
The	diaphragm	has	been	modelled	well	at	the	bases	with	the	rigid	portions	represented	by	
the	medial	and	lateral	arcuate	ligaments	being	appropriately	modelled,	attached	to	the	
transverse	spinous	processes	of	L1,	although	there	are	no	rigid	attachments	to	the	fixed	11th	
and	12th	ribs.		The	left	and	right	crura	are	again	well	represented	again	being	fixed	to	the	
underlying	lumbar	vertebrae.		The	chainmail	does	give	a	sense	that	it	is	a	muscular	flexible	
organ	under	tension.	
	
The	motion	of	the	diaphragm	seems	rather	mechanical	and	seems	slower	than	the	rib-cage.		
It	does	not	follow	the	motion	of	the	rib-cage	as	it	should	do,	expanding	out	at	the	lower	rim	
with	each	breath.		At	greater	inspiratory	volumes	there	is	collision	with	the	underlying	liver	
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and	there	is	motion	of	the	arcuate	ligaments	which	is	completely	artificial.		Even	at	lower	
inspiratory	volumes	there	is	collision	with	the	lower	ribs	bilaterally.	
		
	
3.2.4. Lungs	
	
This	is	probably	the	most	unrealistic	part	of	the	current	model	with	the	lungs	not	being	fixed	
anywhere	in	space,	rather	floating	and	being	pulled	and	pushed	by	the	motion	of	the	
surrounding	structures	it	is	anchored	to.	
	
There	is	little	deformation	of	the	lungs	with	no	appreciable	change	in	volume	during	the	
respiration	cycle.		The	touch	points	on	the	diaphragm	and	ribs	look	completely	artificial	and	
detract	from	the	model.	

	

				 	
Figures	12	and	13.	Screenshot	lungs	moving	during	respiration	

	
3.2.5. Controls	
	
The	original	graphical	user	interface	(GUI)	is	intuitive	and	easy	to	operate.		Issues	that	require	
updating	are:	

• Ability	to	hide	all	bony	tissue	leaving	the	soft-tissue	organs	displayed	
• Ability	to	hide	the	diaphragm	to	display	the	underlying	liver	
• Make	a	little	more	physiological	rather	than	using	common	terminology	
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3.3. Implementation	
	
The	implementation	of	the	project	will	build	on	the	source	code	from	Mathieu’s	model	and	
so	will	be	a	step-wise	improvement	on	his	work	and	in	many	sections	part	of	his	code	has	
been	reused	for	simplicity	and	speed	of	development.	
	
The	early	stages	of	the	project	were	occupied	with	learning	the	basics	and	later	the	
intricacies	of	X3D,	H3D	and	the	C++	implementation	of	H3D	nodes.		This	has	not	been	trivial,	
as	having	limited	programming	experience	in	C++	and	Python	and	certainly	none	in	X3D	and	
H3D,	work	has	had	to	start	at	a	very	basic	level,	learning	and	working	up	to	deformation	of	
the	actual	organs	themselves.	
	
	
3.3.1. Organ	Modelling	
	
i.e.	What	models	have	been	applied	to	what	and	how	
	
The	model	has	been	implemented	using	a	dynamic	mass-spring	model	rather	than	the	
preferred	quasi-static	mass	spring	model.		The	reason	for	this	was	that	due	to	my	
inexperience	and	the	enforced	time	constraints	after	the	initial	delay	getting	the	required	
software	to	work	on	my	machine	and	the	time	to	familiarize	myself	with	X3D	and	H3D,	I	
decided	to	maximize	the	time	spent	working	with	the	actual	organ	deformation,	rather	than	
optimizing	the	underlying	deformation	model.			
	
Although	not	ideal,	it	offers	the	opportunity	to	study	the	application	of	a	widely	accepted,	
tested	and	documented	model	under	H3D	that	will	hopefully	give	some	interesting	results	
and	it	would	not	be	a	massive	task	to	implement	the	quasi-static	mass	spring	on	the	current	
system	in	the	future.	
	
3.3.2. Node	Implementation	(see	appendix	1	and	2	for	c++	source	code)	
	
DeformableShapeNew:	
	
The	basic	DeformableShape	node	is	a	simple	X3DShapeNode,	which	has	the	added	ability	to	
have	its’	geometry	deformed	when	touching	it	with	a	haptics	device.		As	the	ultimate	aim	is	
deform	the	geometries	of	the	objects	by	stretching	the	vertices	and	to	use	haptics	under	
H3D	it	is	necessary	to	implement	under	this	than	a	simpler	Shape	node.		
	
In	the	DeformableShape	node	are	the	following	unique	non-inherited	fields:	

• deformer-	contains	an	H3DCoordinateDeformerNode	that	determines	how	the	
deformation	should	be	done	
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• origCoord-	contains	the	original	coordinates	of	the	object	before	any	deformation	
began	

• deformedCoord-	contains	the	coordinate	after	the	deformation	and	is	used	for	the	
graphics	rendering	

• restingCoord-	contains	the	coordinates	that	the	geometry	will	go	back	to	when	there	
are	no	contacts	to	the	geometry	any	longer,		(if	the	deformation	is	non-plastic,	this	
will	be	the	same	as	origCoord)	

	
New	nodes	have	had	to	be	created	that	are	organ	specific	as	the	organs	being	modelled	are	
inhomogeneous	with	widely	differing	structures	and	behaviours.	
	

	
Figure	14.	Inheritance	diagram	for	DeformableShapeNew	and	derived	nodes	

	
The	inheritance	structure	is	seen	in	figure	14	where	there	is	a	general	
DeformableShapeNew	which	has	all	the	required	common	functionality	and	the	derived	
nodes	for	the	diaphragm,	lung	and	the	cartilage.	
	
To	implement	the	mass	spring	system	requires	calculation	of	the	neighbours,	their	indicies	
and	some	manner	of	finding	them	in	real-time.			The	DeformableShapeNew	node	contains	
vectors	that	contain	all	the	neighbours	of	every	coordinate.	
	
As	is	required	in	the	mass	spring	system	there	are	also	fields	that	contain	all	velocities	and	
forces	for	every	particle,	i.e.	vertex.			It	also	contains	fields	with	the	specified	anchor	nodes	
which	are	fixed	and	those	with	pre-defined	movement.		From	these	MFVec3f	fields,	arrays	
stating	which	point	is	anchored	or	moving	is	created	so	that	the	deformation	on	these	
vertices	once	they	are	passed	onto	the	deformer	node	is	either	pre-defined	or	as	in	the	case	
of	anchored	vertices	non-existent.	
	
The	node	also	has	routed	to	it	the	values	for	speed	of	respiration	and	magnitude	of	
contraction	and	the	degree	of	rib-rotation.		
	
The	derived	nodes	will	be	spoken	about	under	the	organ/structure	being	modelled.	
	
	
MassSpringDeformerDynamic:	
	
Implementation	of	the	dynamic	mass-spring	model	is	in	the	MassSpringDynamicDeformer	
node	in	the	important	deformPointsNew	function	which	takes	in	all	the	original	coordinates,	
deformed	coordinates	of	the	current	frame,	the	pre-accumulated	velocities	for	every	vertex.		
It	then	performs	calculations	using	the	user	defined	Spring	Coefficient	and	Damping	Factor	
and	Mass	of	that	organ/	structure.		
	
Once	solved	using	an	explicit	Euler	solver,	it	then	updates	the	velocity	and	the	position	of	
each	of	the	vertices,	before	changing	the	deformed	coordinates	of	the	DeformableShape	
node	to	be	graphically	rendered.			
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The	MassSpringDynamicDeformer	node	also	contains	a	function	called	relaxation,	which	
relaxes	the	mesh	every	frame,	to	prevent	excessive	lengthening	of	the	springs.	
	
	
RotTransform:	
	
This	is	the	same	node	used	from	Mathieu’s	project	which	has	fields	for	the	centre	of	the	
rotation	and	the	composite	‘pump	handle’	angle	(α)	and	‘bucket	handle’	angle	(β).		This	also	
creates	and	manages	the	touch	points	for	motion	of	the	chainmail	objects.		
	
	
3.3.2.1. Diaphragm	
	
The	work	done	on	the	diaphragm	simulation1	showed	that	the	following:	

1. Central	tendon	shape	largely	does	not	change	but	right	side	pulled	down	more	
than	left	side	in	relation	to	respiration	(1.5	cm	more)	so	will	need	to	be	
shortened	or	rotated	

2. Apposition	zone	dimensions	change	remarkably	between	relaxation	and	maximal	
at	total	lung	capacity	where	the	size	of	the	apposition	zone	is	essentially	zero	
when	the	diaphragm	is	flattened	9	

3. Fixed	points	do	not	vary	much	except	in	relation	to	underlying	attachment	
change	

	
The	diaphragm	as	mentioned	earlier	required	separation	out	into	several	sub-structures	
with	different	properties	and	actions,	allowing	a	more	realistic	motion	can	be	more	easily	
tailored.			
	
The	diaphragm	was	split	into	regions	using	Meshlab®	(an	open	source	3D	mesh	editing	and	
rendering	package)	to	create	lists	of	selected	vertices	that	were	to	be	either	anchored,	
moving	or	rotated.	
	
The	regions	correspond	to	the	following:	

1. The	fixed	points	of	the	crura,	aortic	hiatus,	arcuate	ligaments,	the	lower	margins	of	
the	rib-cage	and	costal	cartilages.	

2. Moving	apposition	zone	where	shape	changes	in	relation	to	force	contraction	and	
the	tension	(force	per	unit	length)	assumed	to	move	out	radially	from	central	
tendon	to	the	anchored	points.	

3. Central	tendon	where	movement	is	generally	sinusoidal	in	the	cranio-caudal	
direction	but	if	time	allows	required	a	transform	to	flatten	and	rotate	it	slightly	
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Figure	15.		Central	tendon	region	delimited	in	Meshlab	

	

					 	
Figures	16	and	17.	Anchor	points	at	crura,	and	lower	margin	

	
The	apposition	zones	were	the	region	in	which	the	mass-springs	were	allowed	to	act,	with	
the	forces	determined	by	the	movement	of	the	central	tendon	region.	
	
Some	decisions	had	to	be	made	as	to	what	was	feasible:	
Attachments	to	the	costal	cartilages	were	going	to	be	too	difficult	to	model	as	this	structure	
itself	had	the	mass-spring	model	so	would	be	in	a	constant	state	of	flux	giving	unpredictable	
results,	so	a	fourth	region	containing	the	fixed	but	rotating	points	of	the	lower	margins	of	
the	rib-cage	and	costal	cartilages	was	created.	
	
	
	
	
	
	
	
	
DeformableShapeDiaphragm	 Fields	for:	

• fixed	vertices		
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• moving	points	central	tendon	
Functions:	

• order	the	moving	points	in	the	same	way	as	the	
original	coordinates	for	graphics	rendering	

	
	
	
3.2.1.2. Thoracic	Wall	
	
The	motion	of	the	chest	wall	is	complex	and	with	so	many	structures	involved,	it	obviously	
required	simplification.		The	motion	of	the	ribs	is	determined	primarily	by	the	intercostal	
muscles,	but	as	they	would	obscure	the	view	of	the	rib-cage	and	not	being	available	they	
have	not	been	modeled.		Rather	their	net	effect	on	the	ribs	themselves	have	been	modeled,	
the	pump	and	bucket-handle	motion	described	earlier.	
	
Ribs:	
	
The	ribs	themselves	are	modelled	as	rigid	structures	which	do	not	deform	and	rotate	during	
the	respiration	cycle	increasing	and	decreasing	the	intra-thoracic	dimensions.		The	bulk	of	
this	work	was	done	during	the	previous	project	and	is	defined	in	the	RotTransform	node	
which	rotates	by	the	α	and	β	angles	defined	earlier.	
	
The	contribution	here	has	been	to	apply	the	correct	angles	to	the	rotation	of	ribs	1-6	
bilaterally	and	apply	a	more	natural	looking	movement	to	the	false	ribs	(ribs	7-10	bilaterally)	
which	is	essentially	an	approximation.	
	
	
Costal	Cartilages:	
	
The	costal	cartilages	are	flexible	cartilaginous	structures	that	bend	and	flex	during	the	
respiration	cycle,	allowing	the	thoracic	dimensions	to	change	whilst	maintaining	the	
integrity	and	strength	of	the	rib-cage	itself.		They	are	therefore	modelled	as	rigid	mass-
spring	systems.	
	
The	composite	costal	cartilage	was	broken	down	into	individual	cartilages	to	allow	a	greater	
modularity	and	reuse	of	code,	rather	than	creating	a	clunky	node	for	the	whole	cartilage.		
This	did	however	require	the	ability	to	specify	multiple	attachments	for	the	large	composite	
cartilage	anchoring	to	the	7-10th	ribs.	
	
To	simplify	the	number	of	varying	attachment	positions	it	was	assumed	that	the	points	at	
the	sternal	edge	were	anchored	and	so	did	not	move.		The	points	simply	followed	the	
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rotation	of	the	sternum	during	the	respiratory	cycle.		Rather,	the	deformation	requires	the	
vertices	attached	to	the	tip	of	the	articulating	rib	to	deform.		
	
The	anchored	and	moving	vertices	had	to	be	delimited	using	Meshlab	(see	figure	18)		The	
sternal	edge	is	obviously	anchored	to	the	sternum.		The	ends	which	articulate	with	the	ribs	
are	altered	in	accordance	to	the	updated	position	of	the	rib	with	which	they	are	articulating,	
being	stretched	towards	it	during	the	respiration	cycle.	
	
	

	
Figure	18.	Cartilage	with	sternal	anchor	region	and	moving	vertices	delimited	

	
To	achieve	this,	the	following	nodes	had	to	be	created	(see	appendix	:	
	
	
DeformableShapeCartilage	 Fields	for:	

• anchored	vertices	
• moving	vertices	
• routed	rib	tip	vertices	to	follow	once	rotated	

Functions:	
• order	the	moving	points	in	the	same	way	as	the	

original	coordinates	for	graphics	rendering	
• displace	the	moving	vertices	towards	the	rib	tip	

point	using	a	vector	calculated	from	the	
subtraction	of	the	routed	rib	tip	point	and	the	
centre	point	of	the	cartilage	

RibRotTransform	 Simplified	version	of	RotTransform	that	takes	in	the	
SFVec3f	or	MFVec3f	and	rotates	it	before	routing	it	
back	
	

RibShape	 Extra	output	field	for	the	rib	tip	vertices,	otherwise	

Sternal	anchor	

Moving	vertices	
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same	as	basic	Shape	node	
	
	
Initially	a	basic	algorithm	that	simply	outputted	a	single	point	at	the	end	of	each	rib	was	
used	with	fairly	poor	results.		This	has	been	improved	by	using	a	matching	algorithm	where	
all	the	rib	tip	vertices	are	utilised.			The	algorithm	works	by	initially	finding	the	closest	rib	tip	
vertex	to	each	of	the	moving	cartilage	vertices,	storing	the	index	of	the	rib	tip	vertex	for	
future	use	in	an	array,	so	that	for	every	frame,	the	cartilage	vertex	is	moved	to	the	rib	tip	
vertex’s	position.	
	
	
3.2.1.3. Lungs	
	
The	lungs	as	mentioned	earlier	were	the	part	of	the	model	that	required	the	greatest	
improvement.		The	essential	movement	of	the	lungs	which	needed	to	be	accurately	
reproduced	was	that	of	expansion	and	contraction	during	the	respiration	cycle.	
	
To	achieve	this	firstly	the	lung	was	separated	out	into	zones	which	have	different	motions	
during	the	cycle	with	the	mass	spring	model	implemented	between	these	regions.		The	
regions	correspond	to	the	following:	

1. The	fixed	region	which	moves	very	little	during	the	respiration	cycle,	centred	around	
the	hili.	

2. Next	there	is	the	base	which	largely	mimics	the	motion	of	the	diaphragm,	following	it	
closely	to	a	point,	having	a	sinusoidal	motion	applied	to	it.	

3. The	surfaces	which	oppose	the	ribs	which	again	largely	mimic	the	motion	of	the	rib-
cage,	following	them	closely	during	the	respiration	cycle	as	their	volume	is	
dependent	on	this	motion.			This	was	achieved	using	the	RibRotTransform	node	to	
rotate	the	lung	coordinates.		3	zones	on	the	concave	surface	of	the	lung	were	
created.	

i. Upper	zone	following	rib	1	rotation	
ii. Middle	zone	following	rib	3	rotation	
iii. Lower	zone	following	rib	5	rotation	
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Figure	19.		Fixed	region	around	the	left	hilium	and	the		 	 	Figure	20.	The	moving	upper,	middle	and	lower	zones	on	both	lungs	

moving	base	

	
Again	a	new	DeformableShape	node	had	to	be	created.		Its	fields	and	functions	are	as	
follows:	
	
DeformableShapeLung	 Fields	for:	

• fixed	vertices		
• base	vertices	
• upper	zone	vertices	for	routing	
• middle	zone	vertices	for	routing	
• lower	zone	vertices	for	routing	
• upper	zone	vertices	once	rotated	
• middle	zone	vertices	once	rotated	
• lower	zone	vertices	once	rotated	

Functions:	
• order	the	moving	points	in	the	same	way	as	the	

original	coordinates	for	graphics	rendering	
	
	
3.2.1.4. Liver	 	
	
The	liver	being	a	viscous	organ	with	a	rigid	capsule	was	left	as	a	chainmail	as	a	mass-spring	
model	would	offer	little	improvement	over	the	chainmail.	
	
	
	
	
	
	
	

Fixed	
region
n	
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3.2.1.5. Skin	
	
The	skin	has	had	the	mass	spring	model	applied	to	it.		Again	regions	to	be	rotated	have	been	
delimited.	
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4. Results	
	
In	this	section	only	those	improvements	which	have	been	implemented	will	be	discussed.		
The	results	have	been	obtained	as	above	on	a	dual	core	2.1	GHz	machine	with	3	GB	of	RAM	
and	a	256	megabyte	ATI	Radeon	HD	2600	graphics	card.		The	operating	system	was	the	32	
bit	Windows	Vista	Service	Pack	1.	
	
4.1. Mass-Spring	Implementation	
	
The	actual	dynamic	mass-spring	implementation	has	worked	out	well	with	initial	testing	
producing	a	very	realistic	spring	behaviour	on	single	triangles	and	composite	structures.		The	
relaxation	algorithm	seemed	to	offer	little	benefit	for	the	computational	cost	that	was	going	
to	be	required	for	all	the	vertices	in	the	final	model.	
	
The	dynamic	mass	spring	system	is	tuneable	with	3	variables	that	can	be	altered	on	each	
organ,	namely	the	spring	coefficient,	damping	constant	and	its’	mass.		The	most	
aesthetically	and	realistic	values	have	been	selected	at	present	but	these	offer	a	research	
opportunity	to	determine	optimum	values.	
	
	
4.2. Diaphragm	
	
The	diaphragm	has	been	created	as	essentially	a	central	tendon	being	moved	in	the	
required	manner,	with	the	mass	springs	between	the	anchored	points	and	the	moving	
central	tendon.			
	
To	maintain	an	acceptable	speed	of	animation	whilst	maintaining	a	satisfactory	visual	
representation,	the	diaphragm	mesh	was	simplified	using	the	quadratic	edge	collapse	
decimation	algorithm	in	Meshlab.		This	reduced	the	number	of	vertices	to	50%	of	the	
original.	
	
Once	implemented,	simple	trial	and	error	were	used	to	select	the	best	values	for	the	mass	
spring	variables: 
	
Variable	 Spring	Coefficient	 Damping	Constant	 Mass	
Value	 0.9	 0.9	 6	

Table	2	Spring	coefficient,	damping	constant	and	mass	of	diaphragm	

	
At	present	there	has	been	no	rotation	of	the	central	tendon	with	flattening	out	during	the	
respiratory	cycle,	this	could	be	done	by	updating	the	moving	positions	during	the	respiration	
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cycle	but	time	simply	would	not	allow	this.		Time	was	simply	not	available	to	implement	this	
improvement.	
	
One	criticism	is	that	there	is	marked	collision	between	the	diaphragm	and	the	lung	bases	
and	between	the	diaphragm	and	the	costal	cartilages	anteriorally.		
	
Another	criticism	is	that	the	diaphragm	does	not	rotate	with	the	rib-cage	expansion	and	so	
is	floating	unattached	laterally	and	anteriorally	as	there	is	no	sternal	attachment	anteriorally	
that	would	have	added	increased	realism	and	possibly	reduced	the	collisions.		This	being	
said,	the	movement	is	relatively	realistic	at	low	respiratory	rates	and	the	softer	movement	is	
definitely	an	improvement.			The	perceived	level	of	tension	provided	by	the	chainmail	does	
lend	itself	more	to	a	feeling	of	a	muscle	than	the	rather	cloth-like	mass-spring	motion.	
	
Other	issues	are	that	the	polygonization	of	the	mass-spring	does	detract	from	the	
smoothness	of	the	model	and	the	diaphragm	does	tend	to	reach	its	minimum	energy	
configuration	with	it	losing	shape	at	the	edges	faster,	hence	resulting	in	collisions	with	the	
liver	as	the	animation	progresses.	

	
	

4.3. Thoracic	Wall	
	
Ribs:	
	
As	mentioned	this	work	was	largely	complete	during	the	previous	project	but	required	some	
alteration	and	correction	of	the	rotation	angles	which	seemed	rather	unrealistic	and	
especially	with	the	movement	of	the	11th	rib	and	absence	of	the	12th	ribs	bilaterally.		This	
has	since	been	corrected	and	looks	more	natural,	added	to	by	the	moving	costal	cartilages.	
	
Costal	Cartilages:	
	
The	values	of	the	mass	spring	parameter	for	the	costal	cartilages	are: 

	
Variable	 Spring	Coefficient	 Damping	Constant	 Mass	
Value	 0.9	 10	 15	

Table	3.	Spring	coefficient,	damping	constant	and	mass	of	costal	cartilages	(if	different)	

	
The	movement	of	the	costal	cartilages	seems	rather	realistic	at	low	respiration	rates	when	
the	displacement	of	the	rib	tips	is	less	but	when	there	is	greater	rotation,	it	seems	rather	
sluggish	and	difficult	to	update	smoothly.		This	is	likely	the	result	of	the	way	X3D	and	indeed	
H3D	routes	the	values	between	the	different	shape	nodes,	as	they	will	be	one	frame	behind	
and	so	an	error	will	always	be	there-	minimising	this	is	the	only	way	to	improve	this.	
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The	goal	of	representing	them	as	flexible	cartilaginous	structures	has	however	been	
achieved	and	adds	to	the	understanding	of	how	the	rib-cage	dimensions	change.		There	are	
however	collisions	between	the	rib	tips	that	are	unfortunately	unavoidable	without	a	
collision	detection	algorithm	in	place.	
	
Initially	a	basic	algorithm	that	simply	outputted	a	single	point	at	the	end	of	each	rib	was	
used	with	fairly	poor	results.		This	has	been	improved	by	using	a	matching	algorithm	where	
all	the	rib	tip	vertices	are	utilised.		The	frame	needs	improvement	to	output	the	whole	rib	
tip	and	ensure	that	each	point	on	the	cartilage	is	updated	to	attach	to	the	same	point	every	
frame.	
	
	Again	the	collisions	with	the	diaphragm	could	be	minimized	by	rotating	the	diaphragm	
anchor	points	with	the	costal	cartilages	
		
	
4.4. Lungs	
	
The	values	of	the	mass	spring	parameter	for	the	lungs	are:		
	
Variable	 Spring	Coefficient	 Damping	Constant	 Mass	
Value	 0.01	 5	 8	

Table	4	Spring	coefficient,	damping	constant	and	mass	of	lungs	

	
The	goal	of	representing	the	lungs	as	flexible,	fragile	structures	has	been	achieved	and	I	
believe	this	adds	to	understanding	how	the	lungs	contract	and	expand.		
	
The	movement	of	the	lungs	again	seems	rather	realistic	at	low	respiration	rates	with	low	rib	
rotation	angles.		Above	a	rate	of	20-25	breaths/	minute	there	are	marked	collisions	with	the	
ribs	over	the	mass	spring	regions	due	to	the	regions	further	away	from	the	determined	
anchor	points	having	to	wait	for	updating	in	the	next	frame.			At	higher	respiration	rates	the	
updating	issue	again	affects	the	visualisation	with	more	frequent	collisions	between	the	ribs	
and	the	lung	margins.	
	
The	base	as	has	been	noted	earlier	collides	with	the	diaphragm	and	this	can	only	be	totally	
removed	by	collision	detection.	
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4.5. Controls	
	
The	updated	controls	have	been	implemented	with	new	sliders	for	manipulating	the	
transparency	of	the	bone	and	cartilaginous	structures	and	another	for	the	transparency	of	
the	diaphragm.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5. Discussion	
	
It	should	not	be	overlooked	that	this	has	been	a	rather	complicated	project	drawing	on	a	lot	
of	areas,	including	anatomy,	physiology,	physical	modelling	and	interactive	3D	graphics.		It	
has	thus	been	rather	challenging	for	a	novice	with	little	programming	experience.		The	main	
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question	to	ask	is	whether	I	have	achieved	what	I	set	out	to	at	the	beginning-	a	step-wise	
improvement	in	the	original	simulation	using	a	more	suitable	physical	model.	
	
	
5.1. H3D	Node	Implementation	
	
The	creation	of	organ	specific	deformable	shapes	is	necessary	because	they	are	very	
different	with	widely	different	behaviours	that	could	not	easily	be	modelled	using	a	“one-
size	fits	all”	approach.		By	having	them	inherit	from	the	DeformableShapeNew	this	has	
obviously	reduced	the	need	for	changing	code	in	multiple	places.		This	will	allow	further	
organs	to	be	implemented	in	a	similar	manner.	
	
The	RibRotTransform	is	a	simpler	version	of	the	RotTransform	node	as	it	performs	simpler	
operations	on	routed	“touch”	points,	reducing	the	number	of	operations	and	to	be	honest	
resulting	in	a	more	realistic	deformation.	
	
One	problem	that	has	been	encountered	is	that	X3D	and	the	Meshlab	software	does	not	
allow	delimitation	of	the	actual	coordinate	indicies	of	the	vertices	to	be	moved	or	anchored	
in	an	easy	manner.		This	has	required	a	point	matching	algorithm	to	find	the	position	of	a	
vertex	in	a	list	and	then	save	this	for	future	use.		This	is	rather	crude	and	could	have	been	
open	to	error	if	several	vertices	initially	started	at	the	position.	
	
A	better	software	program	would	have	been	one	in	which	all	the	indicies	could	have	been	
delimited	before	therefore	saving	computational	time	and	memory	usage	as	there	would	
have	been	no	need	to	create	multiple	reference	arrays	for	all	the	coordinates.	
	
	
	
	
	
	
	
	
	
	
5.2. Mass	Spring	Model	

	
The	mass	spring	model	has	been	correctly	implemented.		Relaxation	did	not	seem	to	add	
much	so	has	been	omitted.	
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As	mentioned	earlier,	a	dynamic	rather	than	a	quasi-static	mass	spring	model	has	been	
implemented.			This	has	implications	for	the	final	model,	in	terms	of	oscillation	and	stability	
but	as	can	be	seen	from	the	model	these	have	not	proved	too	troublesome	and	certainly	
not	affected	the	workings	of	the	model	significantly.		Also	it	is	not	a	massive	task	to	
implement	the	quasi-static	mass	spring	on	the	current	system,	although	its	behaviours	will	
obviously	be	different	
	
	
5.3. Applicability	of	the	dynamic	mass	spring	model	to	the	various	organs:	

	
5.3.1. Lungs:	
	
The	mass	spring	model	looks	pretty	realistic	once	the	pre-determined	points	have	been	
inserted	and	the	mass-springs	are	there	to	model	the	lung	segments	between	the	fixed	
rotating	regions.			
	
The	mass	spring	model	however	has	certainly	added	to	the	realism	of	the	lung	model.		It	has	
also	taken	away	the	ugly	anchor	points	which	could	only	have	worked	if	there	were	far	more	
of	them	in	the	chainmail	model.		
	
The	fixed	rotating	lung	segments	which	have	no	physical	deformation	applied	to	them	are	
obviously	not	ideal.		An	improvement	could	be	made	by	adding	a	small	deformation	to	the	
rotated	segments	but	this	would	introduce	a	far	greater	level	of	complexity.	
	
Another	manner	in	which	this	could	be	improved	is	to	use	more	but	smaller	segments	to	
rotate	with	possibly	all	of	the	first	6	ribs,	resulting	in	smaller	regions	of	contiguous	springs	
which	would	have	less	issue	updating	than	the	larger	mass	spring	regions	at	present.		
	
Collision	detection	with	the	ribs	would	and	the	diaphragm	would	also	prevent	many	of	the	
problems	noted	earlier	when	the	lung	bases	overlap	the	diaphragm	and	the	concave	lung	
surfaces	collide	with	the	ribs,	especially	at	the	higher	respiratory	rates.	
	
	
	
	
5.3.2. Costal	cartilages:	

	
Again	the	mass	spring	model	looks	quite	realistic.		The	costal	cartilages	have	been	
appropriately	modelled	as	flexible,	elastic	structures	and	so	the	mass	spring	model	seems	a	
perfect	fit.	
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Gaps	do	unfortunately	open	up	between	the	rib	tips	and	the	moving	ends	of	the	costal	
cartilages	especially	at	the	lower	ribs	but	these	are	pretty	much	unavoidable	due	to	the	way	
X3D	updates	with	the	cartilages	receiving	the	previous	frame’s	value.	
	
Another	issue	with	the	costal	cartilages	is	the	waveform	motion	at	the	ends	articulating	with	
the	ribs.		This	is	because	the	articulating	regions	had	to	be	selected	away	from	the	ends	of	
the	cartilage.		Changing	this	to	the	ends	themselves	results	in	increasing	gaps	appearing	
which	are	less	visually	satisfactory	than	the	waveform	motion.	
	
There	are	again	collisions	between	the	cartilages	and	the	rib	tips	and	between	the	right	
composite	cartilage	and	the	diaphragm.	
	
	
5.3.3. Diaphragm:	
	
Possibly	the	least	satisfactory	organ	modelled	by	the	mass	springs.		It	looks	a	little	cloth	like	
at	the	edges	with	the	mass	springs	updating.		The	best	visualised	values	for	spring	
coefficient,	damping	constant	and	mass	has	been	selected	but	this	could	probably	be	
optimised	further.	
	
The	dynamic	mass	spring	model	seems	to	oscillate	more	in	the	diaphragm	than	anywhere	
else	due	to	the	energy	involved	with	large	areas	of	springs.		This	could	be	improved	by	
simplifying	the	number	of	springs	in	the	system,	possibly	having	a	spring	only	every	2nd	or	3rd	
vertex.	
	
Another	issue	is	the	collisions	with	the	lung	bases,	the	costal	cartilages	and	the	liver,	again	
collision	detection	would	assist.	
	
	
	
	

6. Future	Work	
	
	
6.1. Testing	and	Medical	Student	Appraisal	

	
As	mentioned	earlier	in	section	2.1	any	simulation	requires	validation	and	this	is	the	next	
logical	step	for	the	implemented	respiration	simulation	model.		It	is	a	shame	that	time	
frame	did	not	allow	this	with	the	early	delays	and	problems	getting	the	dynamic	mass	spring	
model	implemented	as	it	could	have	provided	valuable	information	about	improvements	
and	which	of	the	following	areas	should	be	tackled	first.	
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6.2. Organ	Improvements	
	
Initial	work	could	be	to	improve	the	motion	of	the	central	tendon	region	of	the	diaphragm	
with	a	flattening	and	rotation	as	has	been	explained	earlier.		Also	a	rotation	of	the	anterior	
anchor	points	with	the	sternum	would	reduce	collisions	with	the	costal	cartilages	and	the	
ribs.		The	liver	motion	would	be	improved	if	this	was	to	be	implemented	by	applying	this	
same	motion	and	flattening	to	its	upper	surface.	
	
As	mentioned	above,	the	lungs	could	be	altered	with	more	moving	segments	with	smaller	
regions	of	contiguous	mass	springs,	possibly	resulting	in	fewer	collisions.	
	
	
6.3. Collision	Detection	

	
This	seems	necessary	to	implement	both	on	my	simulation	and	on	Mathieu’s	previous	
model.		This	would	however	require	more	computing	power	as	complex	bounding	boxes	
would	have	to	be	created	with	an	implementation	of	how	any	collisions	should	be	passed	
onto	the	colliding	objects.			This	would	be	a	significant	step	up	and	would	likely	require	
optimization	as	H3D	and	the	simulation	already	seem	to	be	pushing	the	limits	of	what	is	
feasible	on	the	laptop	I	have	at	present.		

	
	
	
	
	
	
6.4. Quasi-Static	Mass-Spring	Model	Implementation	

	
It	would	obviously	be	wise	to	implement	a	quasi-static	mass	spring	model	and	see	if	this	
were	to	introduce	any	improvement	in	the	motion	of	the	diaphragm,	lungs	and	costal	
cartilages.		The	pre-determined	points	would	still	have	to	be	kept	as	this	would	look	for	the	
configuration	where	the	internal	and	external	forces	cancel	out,	so	movement	would	only	
be	in	terms	of	what	has	been	discussed	above.	
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7. Conclusions	
	

The	project	has	had	to	have	its	aims	altered	from	the	initial	specification	of	modelling	liver	
motion	due	to	respiration	and	investigating	the	various	boundary	to	producing	an	
anatomically	and	physiologically	realistic	simulation	of	the	key	organs	during	the	respiratory	
cycle.	
	
It	has	obviously	drawn	on	a	lot	of	very	diverse	areas	and	has	been	a	difficult	project	to	
implement,	not	made	easier	by	the	initial	delay	due	to	software	and	hardware	problems	and	
the	time	it	took	to	familiarise	myself	with	X3D	and	H3D.	
	
I	believe	it	has	been	a	useful	project	which	builds	on	and	extends	the	work	done	at	the	
Department	of	Biosugery	and	Surgical	Technology	at	Imperial	College	by	implementing	a	
dynamic	mass	spring	system	under	H3D	that	is	suitable	for	representing	several	of	the	key	
organ	involved	once	pre-determined	motion	has	been	applied	to	regions	at	both	ends	of	the	
springs.			
	
The	project	has	shown	that	it	is	possible	to	produce	an	increasingly	realistic	simulation	
under	H3D	that	will	be	useful	for	medical	student	teaching	and	may	in	future	be	developed	
further	with	increasing	benefits.	
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