Analysis & Design of Lightweight Authenticated Encryption Schemes supervised by Marine Minier

Paul Huynh | November, 26 2020 | virtual defense

Part I Alice, Bob & the IoT

Meet Alice.

it's me, **Bob!**

Meet Bob.

Alice wants to send Bob a message...

...but the channel is not secure.

They need encryption.

Encryption is parameterized by a key K_{E} .

The story of Alice & Bob

Private-key cryptography $K_D = K_E = K$ *K* is a shared secret

Public-key cryptography $K_D \neq K_E$ K_E is public

Private-key cryptography $K_D = K_E = K$ *K* is a shared secret

Public-key cryptography $K_D \neq K_E$ K_E is public

Private-key cryptography $K_D = K_E = K$ *K* is a shared secret

Block ciphers -Stream ciphers

Block Ciphers

A block cipher with block size n and key size k is a family of 2^k permutations of n bits $(E_K)_{K \in \mathbb{F}_2^k}$, indexed by a key $K \in \mathbb{F}_2^n$.

Combined with a mode of operation describing how $(E_K)_{K \in \mathbb{F}_2^k}$ can be used for encrypting messages of any length.

$$c = E_K(m) =$$

F is the same keyed permutation of \mathbb{F}_2^n

- simple analysis
- cost-effective implementation

 $= \mathsf{F}_{k_{r-1}} \circ \ldots \circ \mathsf{F}_{k_0}(m)$

F is the same keyed permutation of \mathbb{F}_2^n

- simple analysis
- cost-effective implementation

 $c = E_K(m) = \mathsf{F}_{k_{r-1}} \circ \ldots \circ \mathsf{F}_{k_0}(m)$

Feistel Networks

Feistel Networks

Substitution-Permutation Networks

Feistel Networks

Block Cipher Cryptographic System Feistel, 1974

- State split into two halves: $y_1 = x_0$ $y_0 = x_1 \oplus F_k(x_0)$
- Invertible even if the **Feistel function** F is not.
- Decryption is the same up to the permutation of the two halves → Reduced code size / circuitry
- Variants Generalized Feistel Networks [Zheng, Matsumoto & Imai, 89][Nyberg, 96] Extended Generalized Feistel Networks [Berger, Minier & Thomas, 14]

Substitution-Permutation Networks (SPN)

- 1. Nonlinear layer S for confusion
- 2. Linear layer L for diffusion

Substitution-Permutation Networks (SPN)

- 1. Small substitution-based permutations S for confusion
- 2. Linear layer L for diffusion

7 / 56

Substitution-Permutation Networks (SPN)

- 1. Small substitution-based permutations S for confusion
- 2. Linear layer L for diffusion
- e.g. AES [Daemen, Rijmen 98] [FIPS PUB 197]

7 / 56

But...

New applications/concepts

Internet of Things (IoT)

e.g. healthcare monitoring systems, automated management of supply chain, public transportation, driving assistance systems, smart home appliances

New constraints

Hardware: area, latency, throughput, power/energy consumption etc. Software: execution time, latency, memory (ROM/RAM) requirements

"Alexa, what is lightweight cryptography?"

8 / 56

But...

New applications/concepts

Internet of Things (IoT)

e.g. healthcare monitoring systems, automated management of supply chain, public transportation, driving assistance systems, smart home appliances

New constraints

Hardware: area, latency, throughput, power/energy consumption etc. Software: execution time, latency, memory (ROM/RAM) requirements

"Alexa, what is lightweight cryptography?"

Need for cryptographic solutions tailored to constrained devices.

56

New Dedicated Designs

- Smaller parameters block sizes = 64 or 80 bits key length = 80, 96, 112 bits
- Many iterations of simple round functions, simple operations e.g. binary diffusion layer, 4-/3-bit S-Boxes, bit permutations
- Simplified key schedules

Many proposals e.g. Present, Skinny, Simon, Speck

New Dedicated Designs

- Smaller parameters block sizes = 64 or 80 bits key length = 80, 96, 112 bits
- Many iterations of simple round functions, simple operations e.g. binary diffusion layer, 4-/3-bit S-Boxes, bit permutations
- Simplified key schedules

Many proposals e.g. Present, Skinny, Simon, Speck

Which one should we use ?

NIST's standardization process

National Institute of Standards and Technology

- US standardization authority
- AES (1997-2000) SHA-3 (2007-2012) Post-quantum cryptography (since 2017)

NIST's standardization process

March 2017

August 2018

April 2019

August 2019

NISTIR 8114, Report on Lightweight Cryptography Announcement of an open process to create a portfolio of lightweight cryptographic standards.

Call for algorithms. Deadline for packages submissions: March 27, 2019.

Round 1 57 submissions received, 56 selected

Round 2 32 candidates remaining

Contributions

1. Lilliput-AE: a New Lightweight Tweakable Block cipher for AEAD Alexandre Adomnicai, Thierry P. Berger, Christophe Clavier, Julien Francq, Paul Huynh, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud and Gaël Thomas [NIST LWC proposal]

2. Cryptanalysis Results on Spook

Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo Perrin and André Schrottenloher [CRYPTO 2020]

3. Skinny with Scalpel: Comparing Tools for Differential Cryptanalysis Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier, Victor Mollimard and Charles Prud'homme [ePrint] 2020/1402]

4. On the Feistel Counterpart of the Boomerang Connectivity Table Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal and Marine Minier [ToSC 2020]

5. Non-Triangular Self-Synchronizing Stream Ciphers Julien Francq, Loïc Besson, Paul Huynh, Philippe Guillot, Gilles Millerioux and Marine Minier [TC - minor revision]

In this presentation

1. Lilliput-AE: a New Lightweight Tweakable Block cipher for AEAD Alexandre Adomnicai, Thierry P. Berger, Christophe Clavier, Julien Francq, Paul Huynh, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud and Gaël Thomas [NIST LWC proposal]

2. Cryptanalysis Results on Spook

2020]

3. Skinny with Scalpel: Comparing Tools for Differential Cryptanalysis Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier, Victor Mollimard and Charles Prud'homme [ePrint] 2020/1402]

4. On the Feistel Counterpart of the Boomerang Connectivity Table Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal and Marine Minier [ToSC 2020]

5. Non-Triangular Self-Synchronizing Stream Ciphers Julien Francq, Loïc Besson, Paul Huynh, Philippe Guillot, Gilles Millerioux and Marine Minier [TC - minor revision]

Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo Perrin and André Schrottenloher [CRYPTO

Differential cryptanalysis [Biham-Shamir 90]

For a random permutation π of \mathbb{F}_2^n , for any nonzero δ_i and δ_o $\Pr[\pi(x \bigoplus \delta_i) \bigoplus \pi(x) = \delta_0] = \frac{1}{2^n - 1}$

Exploit a **biais** in the distribution of output differences to build **differential distinguishers**.

- $(\delta_i \longrightarrow_E \delta_o)$ is a differential.
- *E* is weak if there exists a differential ($\delta_i \longrightarrow_E \delta_o$) of high probability *p*. \rightarrow round-key bits recovery in $\mathcal{O}(1/p)$

•
$$(\delta_i = \delta_0 \to \delta_1 \to \cdots \to \delta_r = \delta_o)$$
 is a differ

rential trail on r rounds.

Part II Cryptanalysis Results on Spook

Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier Standaert, Balazs Udvarhelyi and Friedrich Wiemer

- 2nd round candidate to the NIST LWC standardization process
- Ο implementations
- Authenticated Encryption (AEAD) scheme
 - the Sponge One-Pass (S1P) mode of operation
 - the Clyde-128 tweakable block cipher
 - the Shadow permutation (512- or 384-bit state)

Designed to achieve resistance against side-channel analysis and low-energy

Summary of the results

Practical distinguishers: Ο

- Shadow-512: 6 steps out of 6
- Shadow-384: 5 steps out of 6

• **Practical forgeries** with 4-step Shadow for the S1P mode of operation (nonce misuse scenario)

Description of Shadow

A Shadow bundle

-		
-		
•		
•		

128 bits

 $\ell = 32$

A Shadow state

Shadow-512

Shadow-384

A Shadow encryption step

4-bit LFSR-generated constants added to column *i* of bundle *i* 6 steps to complete encryption

AC(2i+1)

56

The D-layer

D is the only diffusion layer between the m bundles

• Shadow-384: • Shadow-512:

$$D(a, b, c, d) = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \qquad D(a, b, c) = 0$$

Exploit the similarity between the functions applied in parallel on each bundle.

A Shadow step

S-box

L-box

AC(2*i*) S-box

D-box

AC(2i+1)

24 / 56

permutation D operating on the full state.

Seen as an SPN, using four 128-bit Super S-boxes σ_i interleaved with a linear

permutation D operating on the full state.

Truncated differential distinguisher:

- **'0'**: no difference
- **'*': undetermined difference**

Seen as an SPN, using four 128-bit Super S-boxes σ_i interleaved with a linear

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

Initial state

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

S-Box layer

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

4	

•	
•	

•	
•	

L-Box layer

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

AC(2*i*)

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

S-Box layer

- $S(y^{3}+c)$ $S(y^{2}+c)$ $S(y^{1}+c)$ $S(y^{0}+c)$

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

$$|S(y^{3}+c)|$$

 $|S(y^{2}+c)|$
 $|S(y^{1}+c)|$

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

AC(2*i*+1)

- $S(y^{3}+c)$ $S(y^{2}+c)$ $S(y^{1}+c)$ $S(y^{0}+c)$

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

AC(2*i*+1)

- S(y³+c) **S(y²+c)**
 - $S(y^1+c)$
 - S(y⁰+c)

S(y³)+c' S(y²)+c' $S(y^{1})+c'$ $S(y^{0})+c'$

• • •

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

$$S(y^{3}+c) = S(y^{3})+c'$$

 $S(y^{2}+c) = S(y^{2})+c'$
 $S(y^{1}+c) = S(y^{1})+c'$
 $S(y^{0}+c) = S(y^{0})+c'$

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

probabilities of preserving an i-identical state at step s

S	0	1	2	3	4
<i>i</i> =4	0	0	2 -12	2 ⁻⁸	0

$$S(y^{3}+c) = S(y^{3})+c'$$

 $S(y^{2}+c) = S(y^{2})+c'$
 $S(y^{1}+c) = S(y^{1})+c'$
 $S(y^{0}+c) = S(y^{0})+c'$

We call *i*-identical an internal state of Shadow in which *i* bundles are equal.

S	0	1	2	3	4
<i>i</i> =4	0	0	2 -12	2 ⁻⁸	0
<i>i</i> =3	0	0	2-9	2-6	0
<i>i</i> =2	0	0	2-6	2-4	0

probabilities of preserving an i-identical state at step s

Distinguisher

Distinguisher on 6 steps of Shadow-512

- ^o $x \oplus x' = (*, *, *, 0)$ and shadow(x) \oplus shadow(x') = D(0, 0, 0, *)
- Generic cost 2⁻⁶⁴ vs 2^{-16.245} here

Distinguisher on 6 steps of Shadow-512

٠ ٠

p=1

step 0

step 1

step 2

Distinguisher on 6 steps of Shadow-512

p=2-7.245

p=1

step 2

step 3

step 4

step 5

Some details

• Constructing a pair for **step 2**:

$$\sigma_0(x) + \sigma_0(x + \alpha) = \beta$$

$$\sigma_1(x + \epsilon) + \sigma_1(x + \epsilon + \alpha) = \beta$$

$$\sigma_2(x + \epsilon') + \sigma_2(x + \epsilon' + \alpha) = \beta$$

and **3-identical state at the end of step 2**

- Impact of the constant additions limited to the S-boxes with indices in $\{0, 1, 2, 3\}$
- Bits with indices **22** and **23** in each of the 4 input words of a Super S-box have **no influence** on the output bits with indices in $\{0, 1, 2, 3\}$

$$\nabla = \{a \times e_{22} + b \times e_{23}, a \in \mathbb{F}_2^4, b \in \mathbb{F}_2^4\}$$

For all $\alpha \in \nabla$, all steps and all bundle index *i*, $\sigma_i(x) + \sigma_i(x + \alpha) = (*, *, \dots, *, 0, 0, 0, 0)$

Some details

- Step 3: probability of a 3-identical state = 2-9
- ° Step 4: difference of the form $(0,0,0,\delta)$ at the end of the step

Let (y, y, y, w) and (y', y', y', w) denote two messages after the application of S and L of step 4 then:

$$S(y^{'2}) \bigoplus S(y^{'2} \bigoplus c) = S(y^2) \bigoplus S(y^2 \bigoplus c)$$

$$S(y^{'1}) \bigoplus S(y^{'1} \bigoplus c) = S(y^1) \bigoplus S(y^1 \bigoplus c)$$

$$S(y^{'0}) \bigoplus S(y^{'0} \bigoplus c) = S(y^0) \bigoplus S(y^0 \bigoplus c)$$

with c = 0x5, probability of **2**-2.415 for each equality

• Step 5 has probability 1

Total probability: $(2^{-2.415})^3 \times 2^{-9} = 2^{-16.245}$

Extension to 7 steps

No extra cost.

The Shadow-384 case

$D(a, b, c) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Forgery

Forgery S1P mode in our attack setting

rate: bundle 0, 1 capacity: bundle 2, 3, not visible

Forgery S1P mode in our attack setting

- "Aggressive parameters" (reduced version for cryptanalysis target): $\pi = 8$ rounds of Shadow-512
- Shifted version (step 2 to step 5) 0
- → Tag
- Same nonce used 3 times (nonce misuse 0 scenario) to build collisions:

2 different plaintexts that yield the **same** tag

Probability of success of 2-24.83 0

→ Tag

→ Tag

p=2^{-24.83}

•

•

: ▼

→ Tag

→ Tag

Collision on the capacity part

Collision on the rate part can be found using 3 queries

Collision on the capacity part

→ Tag

Collision on the rate part can be found using 3 queries

Collision on the capacity part

→ Tag

Conclusion on Spook

- Summary of our work:
 - **Practical distinguishers** of the full 6-step version of Shadow-512 and Shadow-384 (shifted) • **Practical forgeries** with 4-step Shadow for the S1P mode of operation (nonce misuse)
 - scenario)
- After our results, the authors proposed **Spook v2** [ToSC special Issue]:
 - D matrix replaced with an efficient MDS matrix
 - modification of the round constants of Shadow for more efficiency
- New criterion for choosing round constants: prevent more than invariant subspaces attacks 0

Part III Boomerang Attacks: the Feistel Case

The Boomerang Attack Wagner, FSE 1999

Variant of differential cryptanalysis that considers quartets of messages.

- 1. Pick M_0 at random, ask for its ciphertext C_0
- 2. Ask for C_1 , the ciphertext of $M_1 = M_0 \oplus \alpha$
- 3. Compute $C_2 = C_0 \oplus \delta, C_3 = C_1 \oplus \delta$
- 4. Ask for their decryption (M_2, M_3)
- 5. Check if $M_2 \oplus M_3 = \alpha$

The Boomerang Attack Wagner, FSE 1999

Rewrite
$$E = E_1 \circ E_0$$

Find good differentials: $\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$ $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$

Expected probability of p^2q^2 if the two characteristics are "independant".

Incompatibilities are discovered.

The Return of the Cryptographic Boomerang Murphy, IEEE Transactions on Information Theory 2011

The problems come from interactions at the junction of the two trails.

The sandwich attack

A Practical-time Related-key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony Dunkelman, Keller & Shamir, CRYPTO 2010

$E = E_1 \circ E_m \circ E_0$

 E_m is 1 round (**boomerang switch**) Expected probability of p^2q^2r

The sandwich attack

A Practical-time Related-key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony Dunkelman, Keller & Shamir, CRYPTO 2010

How to compute r?

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $E_m^{-1}(E_m(X) \oplus \gamma) \oplus$

$$\Theta E_m^{-1}(E_m(X \oplus \beta) \oplus \gamma) = \beta$$

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $E_m^{-1}(E_m(X) \oplus \gamma) \oplus E_m^{-1}(E_m(X \oplus \beta) \oplus \gamma) = \beta$

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $S^{-1}(S(x) \oplus \nabla_o) \oplus$

$$S^{-1}(S(x \oplus \Delta_i) \oplus \nabla_o) = \Delta_i$$

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $BCT(\Delta_i, \nabla_o) = \#\{x \mid S^{-1}(S(x))\}$

$$\bigoplus \nabla_o) \bigoplus S^{-1}(S(x \bigoplus \Delta_i) \bigoplus \nabla_o) = \Delta_i\}$$

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

Probability over 1 round of SPN Probability over each S-box

Easily gives incompatibility, Ladder switch

New criteria for the choice of S-boxes

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $\mathsf{BCT}(\Delta_i, \nabla_o) = \#\{x \mid S^{-1}(S(x) \oplus \nabla_o) \oplus S^{-1}(S(x \oplus \Delta_i) \oplus \nabla_o) = \Delta_i\}$

What about Feistel ciphers ?

The FBCT: the Feistel case

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
2	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
3	16	16	0	0	0	0	0	0	8	8	0	0	8	8	0	0
4	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
5	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
6	16	8	0	2	0	0	0	2	4	4	0	2	4	4	0	2
7	16	8	0	2	0	0	0	2	4	4	2	0	4	4	2	0
8	16	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2
9	16	0	8	0	4	4	4	4	0	0	2	2	0	0	2	2
a	16	0	8	0	4	4	4	4	2	2	0	0	2	2	0	0
b	16	0	16	0	8	8	8	8	0	0	0	0	0	0	0	0
С	16	0	0	2	2	2	2	0	2	2	2	0	0	0	0	2
d	16	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2
е	16	0	0	2	2	2	2	0	2	2	0	2	0	0	2	0
f	16	0	0	2	2	2	2	0	0	0	0	2	2	2	2	0

 $\mathsf{FBCT}(\Delta_i, \nabla_o) = \#\{x \mid S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0\}$

This work

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	16	0	0	0	0	0	0	0	0	8	8	0	0	0	0
2	16	0	16	0	0	0	0	0	0	0	0	8	0	0	0	0
3	16	0	0	16	8	8	8	8	0	0	0	0	0	0	0	0
4	16	0	0	8	16	0	0	8	0	0	0	0	0	0	0	0
5	16	0	0	8	0	16	8	0	0	0	0	0	0	0	0	0
6	16	0	0	8	0	8	16	0	0	0	0	0	0	0	0	0
7	16	0	0	8	8	0	0	16	0	0	0	0	0	0	0	0
8	16	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0
9	16	0	8	0	0	0	0	0	0	16	0	8	0	0	0	0
a	16	8	0	0	0	0	0	0	0	0	16	8	0	0	0	0
b	16	8	8	0	0	0	0	0	0	8	8	16	0	0	0	0
С	16	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0
d	16	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0
е	16	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0
f	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16

The Feistel counterpart of the BCT

The Feistel counterpart of the BCT

The FBCT

The FBCT

The FBCT

The FBCT (left part)

The left part of the difference comes for free.

()

We want that $R' \oplus R'' = \beta^R$

 $R' \oplus R'' = [F(L \oplus \gamma^R) \oplus F(L) \oplus F(L \oplus \gamma^R \oplus \beta^L) \oplus F(L \oplus \beta^L)] \oplus \beta^R$

 $F(L \oplus \gamma^R) \oplus F(L) \oplus F(L \oplus \gamma^R \oplus \beta^L) \oplus F(L \oplus \beta^L) = 0$

 $F(L \oplus \gamma^R) \oplus F(L) \oplus F(L \oplus \gamma^R \oplus \beta^L) \oplus F(L \oplus \beta^L) = 0$

- $F(L \oplus \gamma^R) \oplus F(L) \oplus F(L \oplus \gamma^R \oplus \beta^L) \oplus F(L \oplus \beta^L) = 0$ $S(x \oplus \nabla_o^R) \oplus S(x) \oplus S(x \oplus \nabla_o^R \oplus \Delta_i^L) \oplus S(x \oplus \Delta_i^L) = 0$
 - second derivative canceling out

Some properties of the FBCT

Symmetry: FBCT(Δ_i, ∇_o) = FBCT(∇_o, Δ_i) **Diagonal:** FBCT(Δ_i, Δ_i) = 2^n Multiplicity: FBCT(Δ_i, ∇_o) $\equiv 0 \pmod{4}$ Equalities: FBCT(Δ_i, ∇_o) = FBCT($\Delta_i, \Delta_i \oplus \nabla_o$)

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	16	0	0	0	0	0	0	0	0	8	8	0	0	0	0
2	16	0	16	0	0	0	0	0	0	0	0	8	0	0	0	0
3	16	0	0	16	8	8	8	8	0	0	0	0	0	0	0	0
4	16	0	0	8	16	0	0	8	0	0	0	0	0	0	0	0
5	16	0	0	8	0	16	8	0	0	0	0	0	0	0	0	0
6	16	0	0	8	0	8	16	0	0	0	0	0	0	0	0	0
7	16	0	0	8	8	0	0	16	0	0	0	0	0	0	0	0
8	16	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0
9	16	0	8	0	0	0	0	0	0	16	0	8	0	0	0	0
a	16	8	0	0	0	0	0	0	0	0	16	8	0	0	0	0
b	16	8	8	0	0	0	0	0	0	8	8	16	0	0	0	0
С	16	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0
d	16	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0
е	16	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0
f	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16

 $\mathsf{FBCT}(\Delta_i, \nabla_o) = \#\{x \mid S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0\}$

Properties of the FBCT

Theorem

e.g. S = [1, 3, 6, 5, 2, 4, 7, 0]

DDT

S is APN if and only if its FBCT verifies $FBCT(\Delta_i, \nabla_o) = 0 \forall 1 \le \Delta_i \ne \nabla_o \le 2^n - 1$

8 8 8 8 8 8 8 8 2 2 0 0 8 0 2 2 0 0 2 2 2 2 2 8 2 2 2 2 8 0 2 8 2 \mathbf{O} 2 2 8 ()2 2 0 2 2 8 8 2 0 0 2

BCT

Comparing the BCT and the FBCT

Boomerang uniformity for the **SPN** case: $\max_{\Delta_i \neq 0, \nabla_o \neq 0} BCT(\Delta_i, \nabla_o)$

Boomerang uniformity

Affine equival

Extended-affine ed

CCZ equivale

Inversion (if S is

S-box behavior can be different regarding boomerang switches when used in an SPN vs in a Feistel

Boomerang uniformity for the **Feistel** case: $\max_{\Delta_i \neq 0, \nabla_o \neq 0, \Delta_i \neq \nabla_o} \mathsf{FBCT}(\Delta_i, \nabla_o)$

preserved under	BCT	FBCT
lence		
quivalence	×	
ence	×	×
s invertible)		×

Switches over more rounds

1-round switch

FBCT, counterpart of the **BCT** from

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

 $\mathsf{FBCT}(\Delta_i, \nabla_o) = \#\{x \in \mathbb{F}_2^n \mid S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0\}$

 $2^{-tn} \times \text{FBCT}(\Delta_i, \delta, \nabla_o)$

Switches over more rounds

1-round switch

FBCT, counterpart of the BCT from

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

2-round switch

BDT from¹ rounds.

$$2^{-2tn} \times \sum_{0 \le \delta, \alpha < 2^n} \text{FBDT}$$

¹ also studied in Boomerang Connectivity Table Revisited. Application to SKINNY and AES Song, Qin & Hu, *ToSC 2019*

- FBDT, counterpart of the
- Boomerang switch in multiple
 - Wang & Peyrin, *ToSC 2019*

 $\mathsf{FBDT}(\Delta_i, \delta, \nabla_o) = \#\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0, \}$ $S(x) \oplus S(x \oplus \Delta_i) = \delta$

 $\Gamma(\Delta_i, \delta, \nabla'_o) \times \text{FBDT}(\nabla_o, \alpha, \Delta'_i)$

Switches over more rounds

1-	ro	und	SW	vitch

FBCT, counterpart of the BCT from

Boomerang Connectivity Table: a New Cryptanalysis Tool Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

2-round switch

BDT from rounds.

 $\mathsf{FBET}(\Delta_i, \delta, \nabla_o, \alpha) = \#\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0, \}$ $S(x) \oplus S(x \oplus \Delta_i) = \delta$, $S(x \oplus \Delta_i) \oplus S(x \oplus \Delta_i \oplus \nabla_\alpha) = \alpha$

3 rounds and more...

- FBDT, counterpart of the FBET
- Boomerang switch in multiple
 - Wang & Peyrin, *ToSC 2019*

 $\mathsf{FBET}(\Delta_i, \delta, \nabla_o, \alpha) \times \mathsf{FBET}\Delta'_i, \delta', \nabla'_o, \alpha') \times \mathsf{FBET}(\Delta''_i, \delta'', \nabla''_o, \alpha'')$

Conclusion on the FBCT

- Introduction of the **FBCT**, a new tool that: 0
 - easily evaluates the probability of a 1-round boomerang switch
 - gives a new criterion when choosing an S-box for a Feistel cipher
- Proposal of a generic formula for a switch over many rounds: Ο
 - evaluation is computationally expensive if E_m covers many rounds with many active S-boxes
 - might be preferable to experimentally evaluate it

Conclusion & Perspectives

General Conclusion

- both design and analysis aspects.
- Many design strategies.
- Third-party analysis is instrumental.

• This thesis explored several aspects of lightweight cryptography, from

• Finding the right balance between performance/cost & security is hard.

Such analysis can be improved using automated tools (MILP/CP).

New Directions

• How small can we go ?

Can we automate everything ?

Bibliography

The Boomerang Attack Wagner, FSE 1999

A Practical-time Related-key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony Dunkelman, Keller & Shamir,

CRYPTO 2010

Boomerang Connectivity Table: a New Cryptanalysis Tool

Cid, Huang, Peyrin, Sasaki & Song, EUROCRYPT 2018

Boomerang Connectivity Table Revisited. Application to SKINNY and AES Song, Qin & Hu, ToSC 2019

Spook: Sponge-Based Leakage-Resistant Authenticated Encryption with a Masked Tweakable Block Cipher Bellizia, Berti, Bronchain, Cassiers, Duval, Guo, Leander, Leurent, Levi, Momin, Pereira, Peters, Standaert, Udvarhelyi & Wiemer, *ToSC 2020*

Appendix Overview of other contributions + additional details

Lilliput-AE

Recommended Parameters

Two Authenticated Encryption modes:

- Lilliput-I, nonce-respecting mode OCB3 [Krovetz & Rogaway, 11]
- Lilliput-II, nonce-misuse resistant mode SCT-2 [Peyrin & Seurin, 16]

Name	k	t	n	au
Lilliput-I-128	128	192	128	120
Lilliput-I-192	192	192	128	120
Lilliput-I-256	256	192	128	120
Lilliput-II-128	128	128	128	120
Lilliput-II-192	192	128	128	120
Lilliput-II-256	256	128	128	120

Lilliput-I: Nonce-respecting Mode

Handling of Associated Data.

Message processing.

Lilliput-II: Nonce-misuse Resistant Mode

Handling of Associated Data.

Message Processing for Encryption.

Message Processing for Authentication.

The Lilliput-TBC Tweakable Block Cipher

Based on Lilliput [Berger, Francq, Minier & Thomas, 15]

Name

Lilliput-TBC-I-128

Lilliput-TBC-I-192

Lilliput-TBC-I-256

Lilliput-TBC-II-128

Lilliput-TBC-II-192

Lilliput-TBC-II-256

k	t	nb rounds
128	192	32
192	192	36
256	192	42
128	128	32
192	128	36
256	128	42

Lilliput-TBC Encryption Process

Decryption analogous to encryption (inverted block permutation layer and reverted subkeys order)

Lilliput-TBC Round Function

Based on Lilliput [Berger, Francq, Minier & Thomas, 15]

Liliput-TBC S-Box

- Differential uniformity $\delta = 8$
- Linearity L = 64
- Algebraic degree deg = 6
- No fixed point

	_															
	00	01	02	03	04	05	06	07	08	09	0 A	0B	0C	0D	0E	0F
00	20	00	B2	85	3B	35	A6	A4	30	E4	6A	2C	FF	59	E2	0E
10	F8	1E	7A	80	15	BD	3E	B1	E8	F3	A2	C2	DA	51	2A	10
20	21	01	23	78	5C	24	27	B5	37	C7	2B	1F	AE	0A	77	5F
30	6F	09	9D	81	04	5A	29	DC	39	9C	05	57	97	74	79	17
40	44	C6	E6	E9	DD	41	F2	8A	54	CA	6E	4A	E1	AD	B6	88
50	1C	98	7E	CE	63	49	ЗA	5D	0C	EF	F6	34	56	25	2E	De
60	67	75	55	76	B8	D2	61	D9	71	8B	CD	0B	72	6C	31	4E
70	69	FD	7B	6D	60	3C	2F	62	3F	22	73	13	C9	82	7F	53
80	32	12	A0	7C	02	87	84	86	93	4E	68	46	8D	C3	DB	E
90	9B	B7	89	92	A7	BE	3D	D8	EA	50	91	F1	33	38	E0	AS
A 0	A3	83	A1	1B	CF	06	95	07	9E	ED	B9	F5	4C	C0	F4	2D
B 0	16	FA	B4	03	26	B3	90	4F	AB	65	FC	FE	14	F7	E3	94
C0	EE	AC	8C	1A	DE	СВ	28	40	7D	C8	C4	48	6B	DF	A5	52
D0	E5	FB	D7	64	F9	F0	D3	5E	66	96	8F	1D	45	36	CC	C5
E0	4D	9F	BF	0F	D1	08	EB	43	42	19	E7	99	A8	8E	58	C1
F0	9A	D4	18	47	AA	AF	BC	5B	D5	11	D0	B0	70	BB	0D	B

Tweakey Schedule: Parameters

- almost the same way
- and the tweak T divided into p = (t + k)/64 lanes that we denote TK_i^i

Name	k	t	p	nb rounds
Lilliput-TBC-I-128	128	192	5	32
Lilliput-TBC-I-192	192	192	6	36
Lilliput-TBC-I-256	256	192	7	42
Lilliput-TBC-II-128	128	128	4	32
Lilliput-TBC-II-192	192	128	5	36
Lilliput-TBC-II-256	256	128	6	42

• An adapted version of the TWEAKEY framework: the key and the tweak inputs are handled

• The tweakey schedule produces the 64-bit subtweakeys RTK⁰ to RTK⁻¹ from the master key K

Lilliput-TBC Tweakey Schedule

TWEAKEY framework [Jean, Nikolić & Peyrin, 2014]

Lilliput-TBC Tweakey Schedule

 $\alpha_0, \dots, \alpha_{p-1}$ produced by word-ring-LFSRs to improve software and hardware performances

Design Rationale

Based on Lilliput, a well studied block cipher without any known weaknesses

- Underlying EGFN structure chosen for its good diffusion properties
 - differential cryptanalysis

number of cancellations on r+1 subtweakeys is at most (p-1)

Permutation layer chosen to maximize the resistance against linear/

Tweakey schedule based on the TWEAKEY construction ensuring that the

Design Rationale: the S-Box

- Chosen for its good cryptographic properties (resistance against linear/differential cryptanalysis, high algebraic degree, etc.)
- Built from 4-bit S-boxes
- Chosen for its low cost in terms of hardware implementation and of threshold implementation

	00	01	02	03	04	05	06	07	08	09	0 A	0B	0C	0D	0E	0F
00	20	00	B2	85	3B	35	A6	A4	30	E4	6A	2C	FF	59	E2	0E
10	F8	1E	7A	80	15	BD	3E	B1	E8	F3	A2	C2	DA	51	2A	10
20	21	01	23	78	5C	24	27	B5	37	C7	2B	1F	AE	0A	77	5F
30	6F	09	9D	81	04	5A	29	DC	39	9C	05	57	97	74	79	17
40	44	C6	E6	E9	DD	41	F2	8A	54	CA	6E	4A	E1	AD	B6	88
50	1C	98	7E	CE	63	49	ЗA	5D	0C	EF	F6	34	56	25	2E	D6
60	67	75	55	76	B8	D2	61	D9	71	8B	CD	0B	72	6C	31	4B
70	69	FD	7B	6D	60	3C	2F	62	3F	22	73	13	C9	82	7F	53
80	32	12	A0	7C	02	87	84	86	93	4E	68	46	8D	C3	DB	EC
90	9B	B7	89	92	A7	BE	3D	D8	EA	50	91	F1	33	38	E0	A9
A 0	A3	83	A1	1B	CF	06	95	07	9E	ED	B9	F5	4C	C0	F4	2D
B0	16	FA	B4	03	26	B3	90	4F	AB	65	FC	FE	14	F7	E3	94
C0	EE	AC	8C	1A	DE	CB	28	40	7D	C8	C4	48	6B	DF	A5	52
D0	E5	FB	D7	64	F9	F0	D3	5E	66	96	8F	1D	45	36	CC	C5
E0	4D	9F	BF	0F	D1	08	EB	43	42	19	E7	99	A8	8E	58	C1
F0	9A	D4	18	47	AA	AF	BC	5B	D5	11	D0	B0	70	BB	0D	BA

Design Rationale: the S-Box

- Chosen for its good cryptographic properties (resistance against linear/differential cryptanalysis, high algebraic degree, etc.)
- Built from 4-bit S-boxes
 - Based on a 3-round Feistel scheme with two APN functions and a 4-bit S-box in the middle round
- Chosen for its low cost in terms of hardware implementation and of threshold implementation

Design Rationale: the S-Box

- Chosen for its good cryptographic properties (resistance against linear/differential cryptanalysis, high algebraic degree, etc.)
- Built from 4-bit S-boxes
 - Based on a 3-round Feistel scheme with two APN functions and a 4-bit S-box in the middle round
- Chosen for its low cost in terms of hardware implementation and of threshold implementation
 - number of TI shares limited by using quadratic bijections $S = F \circ G$, with affine functions A_1 , A_2 such that $F = A_1 \circ Q \circ A_2$

 $S_4^2 = Q \circ P \circ Q$ 081f4c792b36e5d

Security Analysis

		STKM			RTMK				Security Morgin
	Diff.	Lin.	Struct.	Diff.	Lin.	RTKB	Struct.	(r)	(in rounds)
Lilliput-TBC-I-128	21	24	18	27	24	28	23	32	4
Lilliput-TBC-I-192	25	31	18	32	31	32	24	36	4
Lilliput-TBC-I-256	32	38	18	40	38	36	25	42	2
Lilliput-TBC-II-128	21	24	18	26	24	26	22	32	6
Lilliput-TBC-II-192	25	31	18	31	31	30	23	36	5
Lilliput-TBC-II-256	32	38	18	39	38	34	24	42	3

Security Evaluation summary ("paranoid" case). STKM means "Single Tweakey Model", RTKM means "Related Tweakey Model" and RTKB means "Related Tweakey Boomerang attack".

17

56

Software Implementations (1/4)

	Version	CFLAGS	Code size (B)	RAM (B)	Execution time (cycles)
ACORN-128	8bitfast	-03	3700	263	287991
Ascon-128	ref	-03	6140	268	191049
Ascon-128a	ref	-03	6832	300	163320
Lilliput-I-128	ref	-03	8188	563	174332
Lilliput-I-192	ref	-03	8318	611	225200
Lilliput-I-256	ref	-03	8466	675	298223
Lilliput-II-128	ref	-03	7500	544	178436
Lilliput-II-192	ref	-03	7478	592	260600
Lilliput-II-256	ref	-03	7600	656	349372
ACORN-128	8bitfast	-0s	2850	240	335934
Ascon-128	ref	-0s	4322	323	254913
Ascon-128a	ref	-0s	4340	339	216080
Lilliput-I-128	ref	-0s	3252	523	221161
Lilliput-I-192	ref	-0s	3394	571	278344
Lilliput-I-256	ref	-0s	3564	637	362194
Lilliput-II-128	ref	-0s	3252	493	259277
Lilliput-II-192	ref	-0s	3360	541	328421
Lilliput-II-256	ref	-0s	3492	605	429541

Performance results on AVR ATmega128.

Software Implementations (2/4)

	Version	CFLAGS	Code size (B)	RAM (B)	Execution time (cycles)
ACORN-128	8bitfast	-03	3276	274	391983
Ascon-128	ref	-03	8358	290	544075
Ascon-128a	ref	-03	8620	306	457998
Lilliput-I-128	ref	-03	8300	624	153294
Lilliput-I-192	ref	-03	8494	672	199212
Lilliput-I-256	ref	-03	8720	738	268425
Lilliput-II-128	ref	-03	6336	592	172179
Lilliput-II-192	ref	-03	6406	644	227943
Lilliput-II-256	ref	-03	6600	708	307751
ACORN-128	8bitfast	-0s	2326	218	381698
Ascon-128	ref	-0s	3686	372	567110
Ascon-128a	ref	-0s	3672	382	475176
Lilliput-I-128	ref	-0s	2582	546	263997
Lilliput-I-192	ref	-0s	2712	594	333411
Lilliput-I-256	ref	-0s	2874	660	436140
Lilliput-II-128	ref	-0s	2574	514	299282
Lilliput-II-192	ref	-0s	2660	564	384122
Lilliput-II-256	ref	-0s	2790	628	506170

73 / 56

Software Implementations (3/4)

	Version	CFLAGS	Code size (B)	RAM (B)	Execution time (cycles)
ACORN-128	8bitfast	-03	2568	472	158059
Ascon-128	ref	-03	4080	600	32350
Ascon-128a	ref	-03	4424	608	27683
Lilliput-I-128	ref	-03	6400	748	104988
Lilliput-I-192	ref	-03	6484	796	132691
Lilliput-I-256	ref	-03	6580	860	175955
Lilliput-II-128	ref	-03	5336	724	114004
Lilliput-II-192	ref	-03	5220	772	157405
Lilliput-II-256	ref	-03	5304	836	206440
ACORN-128	8bitfast	-0s	1584	320	166370
Ascon-128	ref	-0s	1426	472	49636
Ascon-128a	ref	-0s	1408	480	41113
Lilliput-I-128	ref	-0s	1800	584	197463
Lilliput-I-192	ref	-0s	1874	632	238539
Lilliput-I-256	ref	-0s	1958	696	289026
Lilliput-II-128	ref	-0s	1854	552	212443
Lilliput-II-192	ref	-0s	1908	600	318290
Lilliput-II-256	ref	-0s	1980	664	340500

Performance results on ARM Cortex-M3.

Software Implementations (4/4)

	Version	CFLAGS	Code size (B)	RAM (B)	Execution time (cycles)
ACORN-128	8bitfast	-03	3592	2048	19795
Ascon-128	ref	-03	2236	2048	6929
Ascon-128a	ref	-03	2102	2048	6538
Lilliput-I-128	ref	-03	8578	2048	12248
Lilliput-I-192	ref	-03	8756	2056	15313
Lilliput-I-256	ref	-03	8979	2064	19688
Lilliput-II-128	ref	-03	7421	2048	13584
Lilliput-II-192	ref	-03	7583	2056	17350
Lilliput-II-256	ref	-03	7761	2064	22556
ACORN-128	8bitfast	-0s	2409	2048	31612
Ascon-128	ref	-0s	1486	2048	3900
Ascon-128a	ref	-0s	1466	2048	3587
Lilliput-I-128	ref	-0s	2872	2048	19182
Lilliput-I-192	ref	-0s	3009	2056	22483
Lilliput-I-256	ref	-0s	3142	2064	28780
Lilliput-II-128	ref	-0s	2850	2048	21905
Lilliput-II-192	ref	-0s	2932	2056	27267
Lilliput-II-256	ref	-0s	3060	2064	33567

Performance results on PC.

75 / 56

Hardware Implementations: Estimations

Nb. Lanes	Registers	Round Function	Tweakey Schedule	Total	Relative Perf.
4	384	8 SBoxes + 29 x 8 XORs	176 XORs	4057 GEs	1
5	448	8 SBoxes + 29 x 8 XORs	200 XORs	4230 GEs	1.04
6	512	8 SBoxes + 29 x 8 XORs	256 XORs	4721 GEs	1.16
7	576	8 SBoxes + 29 x 8 XORs	354 XORs	4983 GEs	1.22

Differential Cryptanalysis of Skinny

Skinny [Beirle et al. 2016]

- AES-like lightweight tweakeable block cipher
- State size n = 64 / 128 bits
- Tweakey size = n / 2n / 3n
- From 32 to 56 rounds

Related-Key Differential Analysis

Differences between plaintexts and keys

E is weak if there exists a differential $\exists \delta_X, \delta_K$, and δ_Y such that $\Pr[\delta Y | \delta X, \delta K] \gg 2^{-|K|}$.

Related-Key Analysis of Skinny

Goal: find δ_X , δ_{K_0} , and δ_Y that maximizes $\Pr[\delta Y | \delta X, \delta K_0]$

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB

Step 2: Concretize booleans to differential bytes

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

. . .

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

. . .

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

. . .

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

 ΔMX

Step 1: Abstract differential bytes $\delta B = B \bigoplus B'$ to booleans ΔB For each differential byte δB : $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ otherwise Minimize number of active S-Boxes ($\Delta SX = 1$)

Step 2: Concretize booleans to differential bytes

 ΔX

 ΔSX

 ΔRX

Step 1: Abstract differential bytes $\delta B = B \oplus B'$ to booleans ΔB

Step 2: Concretize booleans to differential bytes If $\Delta B = 0$ then set δB to 0; otherwise search for $\delta B \in [1, 2^n]$ If not possible: byte-inconsistent solution If possible: byte-consistent solution

Maximize the probability $\Pr[\delta SX_r | \delta X, \delta K_0]$

 ΔRX

Tools Used

Step 1: Integer Linear Programming (ILP) Constraint Programming (CP) Satisfiability Modulo Theory (SMT/SAT) Ad-hoc Method

 ΔSX

Step 2: CP

 ΔX

 ΔRX

 ΔMX

...

Tools Used

Step 1: Integer Linear Programming (ILP) Constraint Programming (CP) Satisfiability Modulo Theory (SMT/SAT) Ad-hoc Method

Step 2: CP

Attack models: SK, TK1, TK2 and TK3 for both 64-bit and 128-bit versions

Main Results

- Solutions output in reasonable time for **TK1** and **TK2**.
- First use of CP solver for Step1. Much faster previously used MILP approach.
- New results regarding the probability of the best differential trails for both the TK1 and TK2
 - Best differential related-tweakey characteristics up to 14 rounds for TK1 model and up to 12 rounds for the **TK2** model of SKINNY-128
 - No differential characteristic with probability higher than 2⁻¹²⁸ for 15 rounds in the **TK1**

• First Ad-hoc algorithm for Step1 handling all SKINNY models including TK3

Main Results: Skinny-64

	Nb Rounds	Objstep1	Nb sol. Step 1	Step 2 time	Best Pr
SK	7	26	2	1 s	2-52
SK	8	36	17	1 s	< 2-64
TK1	10	23	1	1 s	2-46
TK1	11	32	2	1s	2-64
TK2	13	25 → 27	10	1s	2-55
TK2	14	31	1	1 s	< 2-64
TK3	15	24 → 26	46	2s	2-54
TK3	16	27 → 31	87	4s	2-64
TK3	17	31	2	1 s	< 2-64

Main Results: Skinny-128

	Nb Rounds	Objstep1	Nb sol. Step 1	Step 2 time	Best Pr
SK	9	41 → 43	52	16s	2-86
SK	10	46 → 48	48	11s	2-96
SK	11	51 → 52	15	4s	2-104
SK	12	55 → 56	11	6s	2 -112
SK	13	58 → 61	18	2m27s	2 -123
SK	14	61 → 63	6	21s	< 2-128
TK1	8	13 → 16	14	4s	2-33
TK1	9	16 → 20	6	3s	2-41
TK1	10	23 → 27	6	4s	2-55
TK1	11	32 → 36	531	37s	2-74
TK1	12	38 → 46	186 482	213m	2-93
TK1	13	41 → 53	2 385 482	2 days	2 -106.2
TK1	14	45 → 59	11 518 612	20 days	2-120
TK1	15	49 → 63	7 542 053	25 days	< 2-128

Main Results: Skinny-128

	Nb Rounds	Objstep1	Nb sol. Step 1	Step 2 time	Best Pr
TK2	9	9 → 10	7	3s	2-20
TK2	10	12 → 17	132	11s	2-34.4
TK2	11	16 → 25	4 203	6m	2 -51.4
TK2	12	21 → 35	1 922 762	512m	2-70.4
TK2	13	25 → 44	_	not solved	> 2-89.7
TK2	14	31 → 5 4	_	not solved	> 2-108.4
TK2	15	35 → 56	_	not solved	> 2-113.2
TK2	16	40 → 63	_	not solved	> 2-127.6
TK2	17	43 → 63	_	not solved	-
TK2	18	47 → 63	62 681 709	not solved	_
TK2	19	52 → 63	772 163	280m	< 2-128

Forgery on Spook: Some More Details

Forgery **Attack Outline**

Forgery **Attack Outline**

- 1. Query 1: encrypt a two-block (4 bundles) message (0,0)(0,0) to recover the 2-bundle rate value after Initialize (x_1, y_1) (C₀).
- 2. Generate two pairs of rate bundles $(x'_1, y'_1), (x''_1, y''_1)$ that satisfy the truncated trail with probability *p*.
- 3. Query 2 and 3: get the difference after π .
 - Encrypt $(x_1 \oplus x'_1, y_1 \oplus y'_1), (0,0)$ to obtain the value of the rate after π on (x'_1, y'_1, a, b) , denoted by (c'_2, c'_3) (C₁).
 - Encrypt $(x_1 \oplus x_1'', y_1 \oplus y_1''), (0,0)$ to obtain the value of the rate after π on (x''_1, y''_1, a, b) , denoted by (c''_2, c''_3) (C₁).
- 4. Cancel out the difference after π .
 - $(x_1 \oplus x'_1, y_1 \oplus y'_1), (c'_2, c'_3)$ and $(x_1 \oplus x''_1, y_1 \oplus y''_1), (c''_2, c''_3)$ yield the same internal state before Finalize with probability $p \simeq 2^{-24.83}$.

90/56

FBCT: 2 Rounds and More

- **Boomerang Switch in Multiple Rounds** Wang & Peyrin, ToSC 2019
- Boomerang Connectivity Table Revisited. Application to SKINNY and AES Song, Qin & Hu, ToSC 2019

 $BDT(\beta, \beta', \gamma'') = \#\{x \mid S^{-1}(S(x) \oplus \gamma'') \oplus S^{-1}(S(x \oplus \beta) \oplus \gamma'') = \beta,\$ $S(x) \oplus S(x \oplus \beta) = \beta'$

 $BDT'(\gamma, \gamma', \beta'') = \#\{x \mid S(S^{-1}(x) \oplus \beta'') \oplus S(S^{-1}(x \oplus \gamma) \oplus \beta'') = \gamma,\$ $S^{-1}(x) \oplus S^{-1}(x \oplus \gamma) = \gamma'\}$

 $FBDT(\Delta_i, \delta, \nabla_o) = \#\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0\}$

and $S(x) \oplus S(x \oplus \Delta_i) = \delta$

 $FBDT(\Delta_{i}, \delta, \nabla_{o}) = \#\{x \in \mathbb{F}_{2}^{n} | S(x) \oplus S(x \oplus \Delta_{i}) \oplus S(x \oplus \nabla_{o}) \oplus S(x \oplus \Delta_{i} \oplus \nabla_{o}) = 0$ and $S(x) \oplus S(x \oplus \Delta_i) = \delta$

 $(
abla_o^L,
abla_o^R)$

 $FBDT(\Delta_{i}, \delta, \nabla_{o}) = \#\{x \in \mathbb{F}_{2}^{n} | S(x) \oplus S(x \oplus \Delta_{i}) \oplus S(x \oplus \nabla_{o}) \oplus S(x \oplus \Delta_{i} \oplus \nabla_{o}) = 0$ and $S(x) \oplus S(x \oplus \Delta_i) = \delta$

 $2^{-2tn} \times \sum FBDT(\Delta_i, \delta, \nabla'_o) \times FBDT(\nabla_o, \alpha, \Delta'_i)$

Switches over 3 rounds and more...

FBET table:

 (∇_o^L, ∇_o^R)

 $#\{x \in \mathbb{F}_2^n | S(x) \oplus S(x \oplus \Delta_i) \oplus S(x \oplus \nabla_o) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = 0,\$ $S(x) \oplus S(x \oplus \Delta_i) = \delta,$ $S(x \oplus \Delta_i) \oplus S(x \oplus \Delta_i \oplus \nabla_o) = \alpha$

