Logics

- I. Decide whether the following formulas are valid or not (justify your answer).
 - 1. $(B \to A) \to (A \lor B)$
 - 2. $(A \land B \land \neg C) \lor ((A \land B) \to C)$

II. Give a sequent-calculus derivation of the following formula.

$$((\exists x.A[x]) \to B) \to (\forall x.A[x] \to B) \quad \text{where } x \notin FV(B)$$

III. Consider the implicative fragment of the propositional calculus, i.e., the fragment whose formulas are inductively defined as follows:

- i. Every propositional variable is a formula.
- ii. If α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula.

In this fragment, the notion of derivability is defined by means of the corresponding sequent-calculus rules:

$$\Gamma, \alpha \vdash \alpha, \Delta \qquad \qquad \frac{\Gamma \vdash \alpha, \Delta \qquad \Gamma, \beta \vdash \Delta}{\Gamma, (\alpha \to \beta) \vdash \Delta} \qquad \qquad \frac{\Gamma, \alpha \vdash \beta, \Delta}{\Gamma \vdash (\alpha \to \beta), \Delta}$$

III.A. We say that two formulas α and β are equivalent (and we write $\alpha \equiv \beta$) if and only if both $\alpha \vdash \beta$ and $\beta \vdash \alpha$ are derivable. Establish the following properties:

- 1. If $\alpha \equiv \beta$ then $(\alpha \rightarrow \gamma) \equiv (\beta \rightarrow \gamma)$.
- 2. If $\alpha \equiv \beta$ then $(\gamma \rightarrow \alpha) \equiv (\gamma \rightarrow \beta)$.

III.B. We define a context to be a formula with a "hole", i.e., a formula with one occurrence of the special symbol "•". More precisely, the notion of context is inductively defined as follows:

- i. is a context.
- ii. If \mathcal{C} is a context and α is a formula, then $(\alpha \to \mathcal{C})$ is a context.
- iii. If C is a context and α is a formula, then $(C \to \alpha)$ is a context.

Given a context \mathcal{C} and a formula α , we write $\mathcal{C}[\alpha]$ for the formula obtained by replacing • by α in \mathcal{C} . For instance, if \mathcal{C} is $((\beta \to \bullet) \to \gamma)$, then $\mathcal{C}[\alpha]$ is $((\beta \to \alpha) \to \gamma)$. Establish the following property:

For every context C, and all formulas α and β , if $\alpha \equiv \beta$ then $C[\alpha] \equiv C[\beta]$.

Hint: proceed by induction on the definition of context. Use the properties established in III.A to handle the inductive cases.

III.C. From the property established in III.B, derive the following corollary:

For every context C, and all formulas α and β such that $\alpha \equiv \beta$, if $\vdash C[\alpha]$ is derivable then $\vdash C[\beta]$ is derivable.