Logics

- I. Decide whether the following formulas are valid or not (justify your answer).
 - 1. $(A \land \neg B) \lor (A \to B)$
 - 2. $(A \lor B) \to (A \to B)$

II. Consider a first-order language without functional symbol, and whose only relational symbols are R and Q. Give a counter-model to the following formula.

$$((\exists x.R[x]) \land (\exists x.Q[x])) \to (\exists x.(R[x] \land Q[x]))$$

III. Consider the linear implicative fragment of the propositional calculus. The formulas of this fragment are inductively defined as follows:

- i. Every propositional variable a is a formula.
- ii. If α and β are formulas then $(\alpha \rightarrow \beta)$ is a formula.

The notion of derivability is then defined by means of the following sequentcalculus:

 $a \vdash a$ (where a is a propositional variable)

$$\frac{\Gamma \vdash \alpha \quad \Delta, \beta \vdash \gamma}{\Gamma, \Delta, (\alpha \to \beta) \vdash \gamma} \qquad \qquad \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash (\alpha \to \beta)}$$

where Γ and Δ denote multisets of formulas, and " Γ,Δ " denotes the union of these multisets.

Establish the following property:

If $\Gamma \vdash \alpha$ and $\Delta, \alpha \vdash \beta$ then $\Gamma, \Delta \vdash \beta$.

Hint: proceed by induction on the derivation of $\Gamma \vdash \alpha$, using an auxiliary induction on the derivation of $\Delta, \alpha \vdash \beta$ when needed.