Logics

I. Decide whether the following formula is valid or not (justify your answer).

$$(((a \to b) \to a) \land (a \to c)) \to c$$

II. Prove that the following formula is derivable.

$$\neg(\alpha \lor \beta) \to (\neg \alpha \land \neg \beta)$$

III. Consider a first-order language without functional symbol, and whose only relational symbol is R. Then, consider the formula ϕ , which is defined as follows:

$$\phi = \phi_0 \to (\phi_1 \to \phi_2)$$

where:
$$\phi_0 = \forall x. (\exists y. R(x, y))$$

$$\phi_1 = \forall x. (\forall y. (\forall z. R(x, y) \to (R(y, z) \to R(x, z))))$$

$$\phi_2 = \exists x. R(x, x)$$

Define a model $\mathcal{M} = \langle D, I \rangle$ as follows:

$$D = \mathbb{N}$$
$$I(R) = \{(m, n) \in \mathbb{N} \times \mathbb{N} \,|\, m < n\}$$

Show that \mathscr{M} is a counter-model of ϕ .

IV. Let \mathscr{F} be a ranked alphabet of function symbols, and let \mathscr{X} be an alphabet of variables. The set of terms \mathscr{T} , built over \mathscr{F} and \mathscr{X} , is inductively defined as follows:

- 1. If $x \in \mathscr{X}$, then $x \in \mathscr{T}$;
- 2. If $c \in \mathscr{F}$ is of arity 0, then $c \in \mathscr{T}$;
- 3. If $f \in \mathscr{F}$ is of arity n, and $t_1, \ldots, t_n \in \mathscr{T}$, then $f(t_1, \ldots, t_n) \in \mathscr{T}$.

Let $\mathscr{M} = \langle D, I \rangle$ be a model, and $\rho : D^{\mathscr{X}}$ be a valuation. The interpretation of a term t is inductively defined as follows:

- 1. $\llbracket x \rrbracket \rho = \rho(x)$, for $x \in \mathscr{X}$;
- 2. $\llbracket c \rrbracket \rho = I(c)$, for $c \in \mathscr{F}$ of arity 0;
- 3. $\llbracket f(t_1,\ldots,t_n) \rrbracket \rho = I(f)(\llbracket t_1 \rrbracket \rho,\ldots,\llbracket t_n \rrbracket \rho)$, for $f \in \mathscr{F}$ of arity n.

Let $\rho \in D^{\mathscr{X}}$ be a valuation, and let $a \in D$ and $x \in \mathscr{X}$. The valuation $\rho[x:=a]$ is defined as follows:

$$\rho[x:=a](y) = \begin{cases} a & \text{if } x = y \\ \rho(y) & \text{if } x \neq y \end{cases}$$

Finally, let t and u be terms, and x be a variable. The substitution of x by u in t, in notation t[u/x], is inductively defined as follows:

- 1. x[u/x] = u;
- 2. y[u/x] = y, for $y \in \mathscr{X}$ and $y \neq x$;
- 3. c[u/x] = c, for $c \in \mathscr{F}$ of arity 0;
- 4. $f(t_1,\ldots,t_n)[u/x] = f(t_1[u/x],\ldots,t_n[u/x])$, for $f \in \mathscr{F}$ of arity n.

Let x be a variable, u be a term, and ρ be a valuation. Show that for every term t:

$$\llbracket t[u/x] \rrbracket \rho = \llbracket t \rrbracket \rho[x := \llbracket u \rrbracket \rho]$$

Hint: proceed by induction on the structure of t.