Formal Languages

I. Give a finite state automaton that accepts the language specified by the following regular expression:

$$(a + (b \cdot c))^*$$

II. Consider the following automaton:

II.A. Remember that $Cl_{\epsilon}(q)$, the ϵ -closure of a state q, is inductively defined as follows :

- 1. $q \in Cl_{\epsilon}(q);$
- 2. if $p \in Cl_{\epsilon}(q)$ and $s \in \delta(p, \epsilon)$ then $s \in Cl_{\epsilon}(q)$.

Compute the ϵ -closures of the six states of the above automaton.

II.B. Eliminate the ϵ -transitions from the above automaton.

III. Let $P = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ be the pushdown automaton such that:

- $Q = \{q_0, q_1\}$;
- $\Sigma = \{a, b\}$;
- $\Gamma = \{Z_0, Z_1\}$;
- $F = \{q_1\}$;
- $\begin{aligned} \bullet \quad & \delta(q_0, a, Z_0) = \{(q_0, Z_1 Z_0)\} \qquad \delta(q_0, a, Z_1) = \{(q_0, Z_1 Z_1)\} \\ & \delta(q_0, b, Z_1) = \{(q_1, Z_1)\} \qquad \delta(q_1, a, Z_1) = \{(q_1, \epsilon)\} \\ & \delta(q_1, \epsilon, Z_0) = \{(q_1, \epsilon)\} \qquad \delta(_, _, _) = \varnothing \quad \text{(in all the other cases)}. \end{aligned}$

III.A. Give a context-free grammar that generates the language recognized by P according to the empty-stack criterion.

Hint: it is sufficient to consider only the following non-terminal symbols: $[q_0Z_0q_1]$, $[q_1Z_0q_1]$, $[q_0Z_1q_1]$, $[q_1Z_1q_1]$.

III.B. What is the language recognized by P?

IV. Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar. Define a context-free grammar G_k such that $L(G_k) = (L(G))^*$.