MPRI 2-27-1 November 25th, 2015

MPRI 2-27-1 Exam

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

1 Multiple Context-Free Grammars

Multiple Context-Free Grammars are a mildly context-sensitive formalism defined by Seki,
Matsumura, Fuji, and Kasami in 1991. The purpose of this section is to instantiate the
‘parsing as intersection’ framework in their case.

Exercise 1 (Multiple Context-Free Grammars). Let X be an infinite countable set of
variables. A multiple context-free grammar (MCFG) of rank m and degree d is a tuple
G = (N,%, P,S) where N is a finite alphabet of nonterminals A" with positive ranks
0 < r <m, ¥ a finite alphabet of terminals, S € N is the start symbol with rank 1, and
P is a finite set of productions p of form

A oy, any) = B (@, i)y BU (21, T,)- (p)
where 0 < k < d is the degree of the production, A, BYI), . ,B,(:’“) are nonterminals
in N, 211, ..., %, are distinct variables from X, and a4, ..., a,, are linear strings o over
YW {z11,..., Tk}, 1€ strings where each variable x; ; occurs exactly once. Note that if

k = 0, this entails a; € X* for all 1 < 5 <.

An MCFGC G defines a deduction system over judgements of form Fg A" (wy, ..., w,)
where A" is a nonterminal from N and wy, . .., w, are finite strings over 3. This deduction
system has a rule

"g BYl)(’le, ce ,wlm) ce |_g B,(f’“)(wkjl, e 7w1€’rk) (l—)
Fg Ao (ayo, ..., ap0) g
for every [p|in P and strings wy 1, ..., wey, in X*, where o is the substitution x; ; — w; ;.

The language of a nonterminal A is the set of r-tuples of strings defined by
ef *\T r
Lg(A) = {(wn,....w;) € (57) | Fg A (wr, .. wn)}
The language generated by G is accordingly the language of its start symbol S™):

L(G) ¥ {we o | kg SD(w)} .

MPRI 2-27-1 November 25th, 2015

Example 1 (Copy Language). The MCFG Gopy = ({SWV, AP} {a, b}, P, S) with produc-
tions

generates the language L(Geopy) = {ww | w € {a,b}*}.

[1] 1. Give a MCFG for the language Leyoss & {a™b"c"d™ | n,m > 0}.

Solution: This language of cross-serial dependencies—which should remind you of
the Swiss-German example of Shieber—is generated by the productions

SW(@,y) = A®P(x,y)
AP (az, cy) :— AP)
AP (zb, yd) :— AP (z,y)

AP (g g) -

[2] 2. Show that any context-free language is generated by an MCFG of rank 1.

Solution: Given a CFG G = (N, X, P, S), we define the MCFG G’ = (N, %, P',S)
with a production

AW (wox1uy « + - Up_1TRUE) — Bil)(a:l), . 7B,(cl)(xk).
in P’ for each production A — ugBiuy - - - up_1 Brug in P, where uyg, . .., uy are strings
in ¥* and By,..., B, are nonterminals in V.

Exercise 2 (Emptiness of MCFGs). The first main ingredient in the ‘parsing as inter-
section’ framework is to prove that the emptiness problem is decidable for MCFGs. In
order to consider complexity questions, we define the size of a MCFG G = (N, %, P, S) by
summing k + > "% (Ja| + 1) over all the productions @ in P.

[3] 1. Show that there exists a linear-time algorithm that inputs an MCFG G and returns
whether L(G) = 0.

MPRI 2-27-1 November 25th, 2015

Solution: We reduce in linear time the emptiness problem for MCFGs to that for
CFGs, the latter problem being decidable in linear time (it is a variant of HornSAT).

The key argument is that, according to (F¢)), F¢ AT (w1, . .. ,wo,,) holds for some

strings wo 1, ..., Wwo,, in X* if and only if there exists a production [p in P and the
1 < i < k judgements kg B9 (w;1,...,w;,) hold for some strings w;,...,w;,.
in »*.

We construct accordingly the CFG G’ = (N, X, P, S) with a production A — B; - - - By
for each production [p| in P. Then by the previous observation, Lg(A) = 0 iff
Lg (A) = 0 for all nonterminals A. This is clearly a linear-time reduction.

Exercise 3 (Intersection with a Regular Language). The second ingredient of the ‘parsing
as intersection’ framework is to show that the class of languages generated by MCFGs is
closed under intersection with regular languages.

[2] 1. As a preliminary, show that for any MCFG, one can construct in linear time an equiva-
lent MCFG where the productions [p|in P with & > 0 enforce o;; € X, i.e. no terminal
symbol appears in such productions, and each a; is of form y; - -y, for yi,...,yn,
variables taken among 1 1,..., 2k,

Solution: Consider some productionin P with k > 0 and some a; = w;0y1Uj1* * * Ujn;—1Yn; Ujn,
with yi,...,y,, variables among w1 1,...,Zgy, and wujo, ..., uj,; strings in 2*. We

introduce a fresh nonterminal C’](IE) and variable z;, for each such u;, and define

def .
04; = 2j0Y1%4,1 " ** Zjn;—1Yn; Zjn,; T0T €ach such ;. We then replace H with

A0, o0t) = BYY (@11, B1gy)s e, BY @k, - - Zhmy), O (210), - - -, OO (Zroynng)-

7o 7 TT0Nrg

and for all 1 < j <rpand 0 < ¢ < n,
1

This transformation results in an increase in size by < »7%%,(|aj| + 1) + k for each
production [p in P, hence a linear increase overall.

[5] 2. Show that, given an MCFG G = (N, X, P, S) and a nondeterministic finite automaton
A=(Q,%,0,I,F), we can compute an MCFG G’ such that L(G") = L(G) N L(.A) and
|g/| c O(|Q| . |Q|mmax(k+1,2))‘

. . A () (r)
Hint: Use nonterminals A" , , such that Fg A) ,
Q1,97 5+-->qrq, s q1,91 -

if g AT (wy, ..., w,) and g, “H/A q; for all 1 <j <.

! (wy, ..., w,) if and only

1]

MPRI 2-27-1 November 25th, 2015

Solution: We can assume without loss of generality that G is in the form of the
previous question. We define two types of productions in P’

1. for each production of form
AT (uy, . uy,) =

in P, we create a production in P’

/1(T0)

UQy « o vy Upy) i—
41,975+, qro,%o(05 2 7"0)

for every q1,q1,. ..., q,, in Q such that g; e q; for each 1 < j < 7. This
requires to quantify over 2ry < 2m states for each production in P with & = 0.

2. for each production of form @ with k& > 0 and each a; of form y; -+ y;n;, we
create a production in P’

(ro) ()
Aq1»q,17“"q’"0’q4"0 (0417 ce ,Oéro) . Bl’qlvlﬁqll,l"“’anﬂi,rl (113'171, ce 733'17“)7
(k)
el X R (Thty ooy Thory)-
for all choices of states qo, qg, - - -, Gro, @y Q1,15 - - - » Gy, SUch that, for every 1 <
J S To,

o if yj1 =z, forsome 1 <i<kand1l</¢<r;, then ¢; = g,
o if yj,, = for some 1 <i < kand 1 < /¢ <y, then ¢ = ¢;,, and

o for every 1 < j < n; — 1, if y; ;11 = ;0 and yj41 42 = zyp for some
1<, <k, 1<{<r;and ¢</{¢ <ry, thenq , = g

We need to pick 22?;0 r; states for each such @ in P, but among those 2rg
are equal to some states in {q1 1, ... ,q,’”k}, and exactly half of the remaining

2 Zle r; — 21y states are unconstrained. Hence, we only need to quantify over
SF o7 < (k + 1)m states for each H with k& > 0.

3. Deduce an algorithm for the membership problem, which given an MCFG G = (N, X, P, S)
and a string w in X*, returns whether w € L(G).

Solution: As usual in the ‘parsing as intersection’ framework, given w, build A,
with language {w} and |w| states, then use the previous question to construct G’ for
the language L(G") = L(G)N{w} and the previous exercise to test whether L(G") = 0,
which occurs if and only if w & L(G).

MPRI 2-27-1

November 25th, 2015

2 Covert Movements in Second-Order ACGs

In the exercises that follow, one only considers 2nd-order ACGs. This allows one not
to bother about linearity constraints, and to work in the setting of the simply-typed \-

calculus.

Exercise 4. One considers the three following signatures:

(XaBs) PIERRE :
MAISON :

UNE :

ACHETER :

VEUX :

NP

N

N — QNP
QNP — VP
VP — NP — S

(Xs.rorMm) / Pierre/ : string
/maison/ : string

June/ : string

/acheter/ : string

Jveuz/ : string

where, as usual, string is defined to be 0 — o for some atomic type o.

(EL-FORM> p:
house :

buy :

want :

ind

ind — prop

ind — ind — prop
ind — prop — prop

One then defines two IIlOI‘phiSIIlS (ACSYNT : EABS — ES—FORM; and £SEM : EABS —

YLrorm) as follows:

(»CSYNT) NP
N

QNP

VP

S

PIERRE :

MAISON
UNE
ACHETER
VEUX

= string
= string
= string
= string
= string

/ Pierre/

:= /maison/

= Ax. June/ +x

:= \x. /acheter/ + x
= \vy.y + Jveur/ + x

where, as usual, the concatenation operator (+) is defined as functional composition.

MPRI 2-27-1

November 25th, 2015

(Lsem) NP := (ind — prop) — prop
N :=ind — prop
QNP := (ind — prop) — prop
VP := ind — prop
S := prop
PIERRE := Az.xp
MAISON := house
UNE := Azy. 3z. (x2) A (y 2)
ACHETER := Azy.x (Az.buyy z)

VEUX := Azy.y (A\z. want z (z 2))

2 1. Check that £SEM is such that the interpretation it gives to ACHETER is consistent with
g
the interpretation it gives to the types.

Solution: We have that ACHETER is of type QNP — VP. Then, we have that :
Lsgm(QNP — VP) = ((ind — prop) — prop) — ind — prop (1)
We then compute the principal typing of the interpretation of ACHETER:
Azy. x (Az.buyyz) : ((ind — prop) — a) — ind — « (2)

Finally, we check that is an instance of (2.

[1] 2. Give a term, say t, such that:
Lsynt(t) = /Pierre/ + [veuz/ + /acheter/ + [une/ + /maison/

Then, compute Lsgp(t).

Solution:
t = VEUX (ACHETER (UNE MAISON)) PIERRE

Lseym(t) = want p (3z. (house z) A (buy p 2))

Exercise 5. One extends X aps with the following constants (and types):

TRACE : XNP
X-ACHETER : XNP — XVP
X-VEUX : XVP — NP — XS
QR : QNP — XS5 — S

MPRI 2-27-1 November 25th, 2015

Accordingly, one extends Lsynt as follows:

XNP := string — string
XVP := string — string
XS = string — string

TRACE := A\z.7T
X-ACHETER := Azy. /acheter/ + (xy)
X-VEUX = \zyz.y + /veuzr/ + (x z)

QR = A\zy.yx
[1] 1. Compute the interpretation of the following term (according to the above extension of
ﬁSYNT)Z
QR (UNE MAISON) (X-VEUX (X-ACHETER TRACE) PIERRE) (tre)
Solution:

Lsynt(te) = /Pierre/ + Jveuz/ + acheter/ + [une/ + /maison/

Exercise 6. One also extends Lsgy as follows:

XNP :=ind — (ind — prop) — prop
XVP :=ind — ind — prop
XS :=ind — prop
TRACE = \zy.y T
X-ACHETER := Awzxy. w x (A\z. buyy z)
X-VEUX (= - --
QR = ...

[3] 1. Complete the above extension (i.e., provide the interpretations of X-VEUX and QR) in
such a way that Lsgm(tie) yields a de re interpretation.

Solution: Let:

X-VEUX = \wzy.z (A\z. want z (wy z))
QR = A\ry. Ty

Then:
Lsem(te) = 3z. (house z) A (want p (buy p 2))

	Multiple Context-Free Grammars
	Covert Movements in Second-Order ACGs

