MPRI 2-27-1 Exam

Duration: 3 hours

Written documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand *tree insertion grammars*, a restriction of tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the more convenient (and cleaner) framework of context-free tree grammars, and study the corresponding formalism of *single-sided* linear monadic context-free tree grammars (recall that tree adjoining grammars are roughly equivalent to linear monadic context-free tree grammars). To further simplify matters, we shall work with *right* grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:

- N_0 is a *nullary nonterminal* alphabet consisting of symbols of rank 0,
- N_R is a right nonterminal alphabet consisting of symbols of rank 1, and
- \mathcal{F} is a ranked *terminal* alphabet.

We use A_0, B_0, \ldots to denote elements of N_0, A_R, B_R, \ldots for elements of N_R , and $f^{(k)}, \ldots$ for elements of \mathcal{F}_k the sub-alphabet of \mathcal{F} with symbols of rank k. Let us define $N \stackrel{\text{def}}{=} N_0 \uplus N_R$ and $V \stackrel{\text{def}}{=} N \uplus \mathcal{F}$; then e, e_1, \ldots denote trees in T(V) and t, t_1, \ldots terminal trees in $T(\mathcal{F})$.

The set of **right contexts** $C_R(V)$ is made of contexts C where \Box is the rightmost leaf. In other words, \Box is a right context in $C_R(V)$, and if $X^{(k)}$ is a symbol of arity k > 0 in V, C is a right context in $C_R(V)$, and e_1, \ldots, e_{k-1} are trees in T(V) then $X^{(k)}(e_1, \ldots, e_{k-1}, C)$ is also a right context in $C_R(V)$.

Definition 2 (Right Linear Monadic CFTGs). A right linear monadic context-free tree grammar is a tuple $\mathcal{G} = \langle N_0, N_R, \mathcal{F}, S_0, R \rangle$ where N_0 , N_R , and \mathcal{F} are as above, $S_0 \in N_0$ is the *axiom*, and R is a finite set of rules of form:

- $A_0 \to e$ with $A_0 \in N_0$ and $e \in T(V)$, or
- $A_R(y) \to C[y]$ with $A_R \in N_R$ and $C \in \mathcal{C}_R(V)$; y is called the *parameter* of the rule.

The tree language of \mathcal{G} is

$$L(\mathcal{G}) \stackrel{\text{def}}{=} \{ t \in T(\mathcal{F}) \mid S_0 \stackrel{R^*}{\Rightarrow} t \} .$$

Exercise 1 (Yields and Branches). Given a tree language $L \subseteq T(\mathcal{F})$, let Yield $(L) \stackrel{\text{def}}{=} \bigcup_{t \in L} \text{Yield}(t)$ and define inductively

$$\operatorname{Yield}(a^{(0)}) \stackrel{\text{def}}{=} a \qquad \operatorname{Yield}(f^{(k)}(t_1, \dots, t_k) \stackrel{\text{def}}{=} \operatorname{Yield}(t_1) \cdots \operatorname{Yield}(t_k) .$$

Hence $\operatorname{Yield}(t) \in \mathcal{F}_0^*$ is a word over \mathcal{F}_0 , and $\operatorname{Yield}(L) \subseteq \mathcal{F}_0^*$ is a word language over \mathcal{F}_0 .

[1] 1. What is the word language $\text{Yield}(L(\mathcal{G}))$ of the CFTG with rules

$$S_0 \to A_R(c^{(0)})$$

$$A_R(y) \to f^{(2)}(a^{(0)}, A_R(f^{(2)}(a^{(0)}, y)))$$

$$A_R(y) \to f^{(2)}(b^{(0)}, A_R(f^{(2)}(b^{(0)}, y)))$$

$$A_R(y) \to y$$

where $N_0 \stackrel{\text{def}}{=} \{S_0\}, N_R \stackrel{\text{def}}{=} \{A_R\}$, and $\mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}\}$?

Solution: This is the language of even-length palindromes over $\{a, b\}$ suffixed with a c: Yield $(L(\mathcal{G})) = \{ww^R c \mid w \in \{a, b\}^*\}$ where \cdot^R denotes the mirror operation on words.

[2] 2. Show that there exists a right linear monadic CFTG \mathcal{G} such that $L(\mathcal{G})$ is not a regular tree language.

Hint: Recall that, if $L \subseteq T(\mathcal{F})$ is a regular tree language, then its set of branches Branches(L) is a regular word language over \mathcal{F} . We define Branches(L) $\subseteq \mathcal{F}^*$ by Branches(L) $\stackrel{\text{def}}{=} \bigcup_{t \in L} \text{Branches}(t)$ and in turn

Branches
$$(a^{(0)}) \stackrel{\text{def}}{=} \{a\}$$
 Branches $(f^{(k)}(t_1, \dots, t_k)) \stackrel{\text{def}}{=} \bigcup_{1 \le j \le k} \{f\} \cdot \text{Branches}(t_j)$.

Solution: Consider the right linear monadic CFTG with rules

$$S_{0} \to A_{R}(c^{(0)})$$

$$A_{R}(y) \to f^{(2)}(a^{(0)}, A_{R}(f^{(2)}(a^{(0)}, y)))$$

$$A_{R}(y) \to g^{(2)}(a^{(0)}, A_{R}(g^{(2)}(a^{(0)}, y)))$$

$$A_{R}(y) \to y$$

 $\langle 0 \rangle$

where $N_0 \stackrel{\text{def}}{=} \{S_0\}, N_R \stackrel{\text{def}}{=} \{A_R\}$, and $\mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, g^{(2)}, a^{(0)}, c^{(0)}\}$.

Its yield language is uninteresting, but

Branches(
$$L(\mathcal{G})$$
) \cap { f, g }* \cdot { c } = { $ww^R c \mid w \in$ { f, g }*}

is not a regular word language, hence $\operatorname{Branches}(L(\mathcal{G}))$ itself is not a regular word language either (since $\{f, g\}^* \cdot \{c\}$ is regular and regular languages are closed under intersection), and thus $L(\mathcal{G})$ is not a regular tree language.

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted below. Note that its sole auxiliary tree β_1 is of the form $C[VP_*^{na}]$ where C is a right context; this grammar is actually a *right* tree insertion grammar.

[1] 1. Provide an equivalent right linear monadic CFTG.

Solution: It suffices to apply the translation from TAGs to linear monadic CFTG from Section 5.1.3 of the lecture notes:

$$\begin{split} S \downarrow &\to \mathcal{S}^{(2)} \left(NP \downarrow, \overline{VP} (VP^{(2)} (VBZ^{(1)} (likes^{(0)}), NP \downarrow)) \right) \\ NP \downarrow &\to \mathcal{NP}^{(1)} (\mathcal{NNP}^{(1)} (Bill^{(0)})) \\ NP \downarrow &\to \mathcal{NP}^{(1)} (\mathcal{NNS}^{(1)} (mushrooms^{(0)})) \\ \overline{VP}(y) &\to \overline{VP} (VP^{(2)} (\mathcal{RB}^{(1)} (really^{(0)}), y)) \\ \overline{VP}(y) &\to y , \end{split}$$

with $N_0 \stackrel{\text{def}}{=} \{S \downarrow, NP \downarrow\}, N_R \stackrel{\text{def}}{=} \{\overline{VP}\}, \text{ and } \mathcal{F} \stackrel{\text{def}}{=} \{S^{(2)}, VP^{(2)}, VBZ^{(1)}, likes^{(0)}, NP^{(1)}, NNP^{(1)}, Bill^{(0)}, NNS^{(1)}, mushrooms^{(0)}, RB^{(1)}, really^{(0)}\}.$

[1] 2. Complete the TIG or your CFTG (in a linguistically informed manner) in order to also generate the sentence 'Bill likes black mushrooms.'

Solution: It's quicker to modify the right TIG with an additional auxiliary tree $\beta_2 \stackrel{\text{def}}{=} \text{NP}^{(2)}(\text{JJ}^{(1)}(black^{(0)}), \text{NP}^{na}_*)$. Modifying the CFTG involves introducing new right nonterminals \overline{NP} in several places.

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right linear monadic CFTGs can generate non-regular tree languages, their expressive power is just as limited as that of finite tree automata when it comes to word languages.

[3] 1. Show for any context-free language L, there is a right linear monadic context-free tree grammar \mathcal{G}' with $L \setminus \{\varepsilon\} = \text{Yield}(L(\mathcal{G}'))$.

Solution: This can be argued from well-known theorems: if L is context-free, then $L \setminus \{\varepsilon\}$ is the yield $\operatorname{Yield}(L(\mathcal{A}))$ of some finite tree automaton \mathcal{A} (c.f. Definition 3.6 of the lecture notes, where ε is also handled), which in turn is a right linear monadic CFTG with $N_0 \stackrel{\text{def}}{=} Q$, $N_R \stackrel{\text{def}}{=} \emptyset$ and the same set of rules. Alternatively, we can re-prove it from scratch:

Without loss of generality, we can assume we are given a CFG $\mathcal{G} = \langle N, \Sigma, P, S \rangle$ in Chomsky normal form with $L \setminus \{\varepsilon\} = L(\mathcal{G})$: the productions in P are of the form $A \to BD$ or $A \to a$ with $A, B, D \in N$ and $a \in \Sigma$. We define the CFTG $\mathcal{G}' = \langle N, \emptyset, \mathcal{F}, S, R \rangle$ with $\mathcal{F} \stackrel{\text{def}}{=} \Sigma \uplus \{f^{(2)}\}$ where the symbols in Σ are nullary, and the set of rules

$$R \stackrel{\text{def}}{=} \{A \to f^{(2)}(B, D) \mid A \to BD \in P\}$$
$$\cup \{A \to a^{(0)} \mid A \to a \in P\}.$$

Let us show that $L(\mathcal{G}) \subseteq \text{Yield}(L(\mathcal{G}'))$: we prove by induction over n that, for all $A \in N$ and $w \in \Sigma^*$, if $A \Rightarrow^* w$ in \mathcal{G} , then there exists $t \in T(\mathcal{F})$ such that $A \stackrel{R^*}{\Rightarrow} t$ in \mathcal{G}' and Yield(t) = w. This will show that, for any $w \in L(\mathcal{G})$, there exists $t \in L(\mathcal{G}')$ with Yield(t) = w.

base case for n = 1: then $A \Rightarrow a = w \in \Sigma$, and $t = a^0$ fits;

induction step for n > 1: then we have a derivation $A \Rightarrow BD \Rightarrow^{n-1} w$ for a production $A \to BD \in P$. Thus $B \Rightarrow^{n_1} w_1$ and $D \Rightarrow^{n_2} w_2$ with $n_1 + n_2 = n - 1$ and $w_1w_2 = w$. By induction hypothesis on $n_1, n_2 < n$, there exist $t_1, t_2 \in T(\mathcal{F})$ such that $B \stackrel{R^*}{\Rightarrow} t_1, D \stackrel{R^*}{\Rightarrow} t_2$, Yield $(t_1) = w_1$, and Yield $(t_2) = w_2$. Therefore, $t \stackrel{\text{def}}{=} f^{(2)}(t_1, t_2)$ fits since $A \stackrel{R}{\Rightarrow} f^{(2)}(B, D) \stackrel{R^*}{\Rightarrow} f^{(2)}(t_1, D) \stackrel{R^*}{\Rightarrow} f^{(2)}(t_1, t_2) = t$ and Yield $(t) = \text{Yield}(t_1) \cdot \text{Yield}(t_2) = w_1w_2 = w.$ Conversely, let us show that $L(\mathcal{G}) \supseteq \text{Yield}(L(\mathcal{G}'))$: we prove by induction over n that, for all $A \in N$ and $t \in T(\mathcal{F})$, if $A \stackrel{\mathbb{R}^n}{\Rightarrow} t$ in \mathcal{G}' , then $A \Rightarrow \text{Yield}(t)$ in \mathcal{G} . This will show that, for any $t \in L(\mathcal{G}')$, $\text{Yield}(t) \in L(\mathcal{G})$.

base case for n = 1: then $A \stackrel{R}{\Rightarrow} a^{(0)} = t$, and $A \Rightarrow a$ holds in \mathcal{G} .

induction step for n > 1: then $A \stackrel{R}{\Rightarrow} f^{(2)}(B,D) \stackrel{R}{\Rightarrow}^{n-1} t$ for a production $A \rightarrow BD \in P$. Thus $t = f^{(2)}(t_1, t_2)$ such that $B \stackrel{R}{\Rightarrow}^{n_1} t_1, D \stackrel{R}{\Rightarrow}^{n_2} t_2$, and $n_1 + n_2 = n - 1$. By induction hypothesis, $B \Rightarrow^* \text{Yield}(t_1)$ and $D \Rightarrow^* \text{Yield}(t_2)$ in \mathcal{G} . Hence $A \Rightarrow BD \Rightarrow^* \text{Yield}(t_1) \text{Yield}(t_2) = \text{Yield}(t)$.

[1] 2. Let us extend Yield(·) to terminal contexts $c \in \mathcal{C}(\mathcal{F}) \subseteq T(\mathcal{F} \uplus \{\Box\})$ by Yield(\Box) $\stackrel{\text{def}}{=} \varepsilon$. Show that, for all terminal right contexts $c \in \mathcal{C}_R(\mathcal{F})$ and all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$,

$$\operatorname{Yield}(c[t]) = \operatorname{Yield}(c) \cdot \operatorname{Yield}(t)$$
.

Solution: We proceed by induction over terminal right contexts:

for the base case $c = \Box$: then c[t] = t and thus Yield(c[t]) = Yield(t) = Yield(c) Yield(t);

for the induction step $c = f^{(k)}(t_1, \ldots, t_{k-1}, c')$ for some k > 0, $f^{(k)} \in \mathcal{F}_k$, $c' \in \mathcal{C}_R(\mathcal{F})$, and $t_1, \ldots, t_{k-1} \in T(\mathcal{F})$: by induction hypothesis, for all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$, Yield(c'[t]) = Yield(c')Yield(t). Thus for all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$,

$$\begin{aligned} \operatorname{Yield}(c[t]) &= \operatorname{Yield}(f^{(k)}(t_1, \dots, t_{k-1}, c'[t])) \\ &= \operatorname{Yield}(t_1) \cdots \operatorname{Yield}(t_{k-1}) \operatorname{Yield}(c'[t]) \\ &= \operatorname{Yield}(t_1) \cdots \operatorname{Yield}(t_{k-1}) \operatorname{Yield}(c') \operatorname{Yield}(t) \\ &= \operatorname{Yield}(c) \cdot \operatorname{Yield}(t) . \end{aligned}$$

[5] 3. Show the converse: for any right linear monadic CFTG, Yield($L(\mathcal{G})$) is a context-free word language over \mathcal{F}_0 .

Hint: You might use the fact that \mathcal{G} is linear to restrict your attention to IO derivations: by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G}) = L_{IO}(\mathcal{G})$.

Solution: Let $\mathcal{G} = \langle N_0, N_R, \mathcal{F}, S_0, R \rangle$ be a right linear monadic CFTG. We let E denote the set of subtrees and subcontexts appearing inside right-hand-sides of rules in R: formally,

$$E \stackrel{\text{def}}{=} \text{Sub}(\{e \in T(V) \mid A_0 \to e \in R\} \cup \{C \in \mathcal{C}_R(V) \mid A_R(y) \to C[y] \in R\})$$

where for any $S \subseteq \mathcal{C}_R(V) \cup T(V)$

$$\operatorname{Sub}(S) \stackrel{\text{def}}{=} \{ e \in \mathcal{C}_R(V) \cup T(V) \mid \exists C \in \mathcal{C}_R(V) . C[e] \in S \} .$$

We define $\mathcal{G}' \stackrel{\text{def}}{=} \langle N', \mathcal{F}_0, [S_0], P \rangle$ a word context-free grammar with nonterminals $N' \stackrel{\text{def}}{=} \{[e] \mid e \in E\} \cup \{[S_0]\}$ and with productions:

$$P \stackrel{\text{def}}{=} \{ [a^{(0)}] \to a \mid a^{(0)} \in \mathcal{F}_0 \cap E \} \\ \cup \{ [\Box] \to \varepsilon \} \\ \cup \{ [f^{(k)}(e_1, \dots, e_k)] \to [e_1] \cdots [e_k] \mid k > 0, f^{(k)}(e_1, \dots, e_k) \in E, e_1 \in T(V) \cup \mathcal{C}_R(V), \\ e_2, \dots, e_k \in T(V) \} \\ \cup \{ [A_0] \to [e] \mid A_0 \to e \in R \} \\ \cup \{ [A_R(e)] \to [C][e] \mid A_R(e) \in E, A_R(y) \to C[y] \in R, e \in T(V) \cup \mathcal{C}_R(V) \} .$$

Let us show that $\operatorname{Yield}(L(\mathcal{G})) \supseteq L(\mathcal{G}')$. We prove for this by induction over n that, for all $e \in \mathcal{C}_R(\mathcal{F}) \cap E$ (resp. $e \in T(V) \cap E$ or $e = S_0$), if $[e] \Rightarrow^n w$ in \mathcal{G}' , then there exists $t \in \mathcal{C}_R(\mathcal{F})$ (resp. $t \in T(\mathcal{F})$) such that $e \stackrel{R^*}{\Rightarrow} t$ and $\operatorname{Yield}(t) = w$. Then, by setting $e = S_0$, the statement follows.

base case n = 1 for $e = a^{(0)}$: then w = a, and $t \stackrel{\text{def}}{=} a^{(0)}$ fits.

base case n = 1 for $e = \Box$: then $w = \varepsilon$, and $c' \stackrel{\text{def}}{=} \Box$ fits.

- induction step n > 0 for $e = f^{(k)}(e_1, \ldots, e_k)$: if $[e] = [f^{(k)}(e_1, \ldots, e_k)] \Rightarrow [e_1] \cdots [e_k] \Rightarrow^{n-1} w$, then for all $1 \le j \le k$, $[e_j] \Rightarrow^{n_j} w_j$ with $n_1 + \cdots + n_k = n-1$ and $w_1 \cdots w_k = w$. By induction hypothesis on $n_j < n$, there exists $t_j \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$ with $e_j \stackrel{R}{\Rightarrow}^{\star} t_j$ for each $1 \le j \le k$. Therefore, $t \stackrel{\text{def}}{=} f^{(k)}(t_1, \ldots, t_k)$ fits.
- **induction step** n > 0 **for** $e = A_0$: then $[e] = [A_0] \Rightarrow [e'] \Rightarrow^{n-1} w$ for some $A_0 \rightarrow e$ in R. By induction hypothesis, there exists $t' \in C_R(\mathcal{F}) \cup T(\mathcal{F})$ with $e' \stackrel{R^*}{\Rightarrow} t'$ and $\operatorname{Yield}(t') = w$, hence $t \stackrel{\text{def}}{=} t'$ fits.
- induction step n > 0 for $e = A_R(e')$: if $[e] = [A_R(e')] \Rightarrow [C][e'] \Rightarrow^{n-1} w$ for some $A_R(y) \to C[y] \in R$, then $[C] \Rightarrow^{n_1} w_1$ and $[e'] \Rightarrow^{n_2} w_2$ for some $n_1 + n_2 = n 1$ and $w_1w_2 = w$. By induction hypothesis, there exist $c_1 \in C_R(\mathcal{F})$ and $t_2 \in C_R(\mathcal{F}) \cup T(\mathcal{F})$ such that $C \stackrel{R^*}{\Rightarrow} c_1$, Yield $(c_1) = w_1$, $e' \stackrel{R^*}{\Rightarrow} t_2$, and Yield $(t_2) = w_2$. Thus letting $t \stackrel{\text{def}}{=} c_1[t_2]$ fits: $A_0(e') \stackrel{R}{\Rightarrow} C[e'] \stackrel{R^*}{\Rightarrow} C[t_2] \stackrel{R^*}{\Rightarrow} c_1[t_2]$ and Yield $(c_1[t_2]) = \text{Yield}(c_1)$ Yield $(t_2) = w_1w_2 = w$ by Question 2 above.

Conversely, let us show that $\operatorname{Yield}(L(\mathcal{G})) \subseteq L(\mathcal{G}')$. We prove for this by induction over $(e, n) \in (E \cup S_0) \times \mathbb{N}$ ordered lexicographically (with *n* being most significant) that, if $e \in \mathcal{C}_R(V) \cap E$ (resp. $T(V) \cap E$ or $e = S_0$) and for all $t \in \mathcal{C}_R(\mathcal{F})$ (resp. $T(\mathcal{F})$), if $e \stackrel{R}{\Rightarrow}^n t$ using IO derivations in \mathcal{G} , then $[e] \Rightarrow^* \operatorname{Yield}(t)$ in \mathcal{G}' .

case $e = a^{(0)}$ and n = 0: then $[e] = [a^{(0)}] \Rightarrow a = \text{Yield}(e)$ in \mathcal{G}' .

case
$$e = \Box$$
 and $n = 0$: then $[e] = [\Box] \Rightarrow \varepsilon = \text{Yield}(e)$ in \mathcal{G}' .

case $e = f^{(k)}(e_1, \ldots, e_k)$ **and** $n \ge 0$: then $e \stackrel{\mathbb{R}}{\Rightarrow}^n t$ using IO derivations implies $e_j \stackrel{\mathbb{R}}{\Rightarrow}^{n_j} t_j$ for $1 \le j \le k$ with $n = n_1 + \cdots + n_k$ and $t = f^{(k)}(t_1, \ldots, t_j)$. Using the induction hypothesis on (e_j, n_j) shows $[e_j] \Rightarrow^*$ Yield (t_j) in \mathcal{G}' , hence $[e] \Rightarrow [e_1] \cdots [e_k] \Rightarrow^*$ Yield $(t_1) \cdots$ Yield $(t_k) =$ Yield(t).

case $e = A_0$ **and** n > 0: then $e = A_0 \stackrel{R}{\Rightarrow} e' \stackrel{R}{\Rightarrow}^{n-1} t$ using rule $A_0 \to e'$ in R. As $e' \in E$, we can apply the induction hypothesis on (e', n-1) to show $[e'] \Rightarrow^*$ Yield(t) in \mathcal{G}' , and using the production $[A_0] \to [e']$ we get $[e] = [A_0] \Rightarrow^*$ Yield(t).

case $e = A_R(e')$ and n > 0: then $e = A_R(e') \stackrel{R}{\Rightarrow}^{n_1} A_R(c_1) \stackrel{R}{\Rightarrow} C[c_1] \stackrel{R}{\Rightarrow}^{n_2} c_2[c_1] = t$ since we are using IO derivations, with $n_1 + n_2 = n - 1$ and $A_R(y) \to C[y] \in R$. As $e' \in E$ and $e' \stackrel{R}{\Rightarrow}^{n_1} c_1$, by induction hypothesis on (e', n_1) , $[e'] \Rightarrow^*$ Yield (c_1) in \mathcal{G}' . Similarly, $C \in E$ and $C \stackrel{R}{\Rightarrow}^{n_2} c_2$, and by induction hypothesis on (C, n_2) , $[C] \Rightarrow^*$ Yield (c_2) in \mathcal{G}' . Finally, $[A_R(e')] \to [C][e']$ is a production of P, hence $[e] = [A_R(e')] \Rightarrow [C][e'] \Rightarrow^*$ Yield (c_2) Yield $(c_1) =$ Yield $(c_2[c_1]) =$ Yield(t) by Question 2 above.

[1] 4. Show that, the word membership problem for right linear monadic CFTG can be solved in polynomial time (this problem is, given $w \in \mathcal{F}_0^*$ and \mathcal{G} a right linear monadic CFTG, whether $w \in \text{Yield}(L(\mathcal{G}))$).

Solution: It suffices to observe that the previous construction results in a CFG \mathcal{G}' of quadratic size in $|\mathcal{G}|$, on which we can apply the $O(|\mathcal{G}'| \cdot |w|^3)$ algorithm seen in class (c.f. Lemma 3.8 in the lecture notes, where the word automaton for $\{w\}$ has $|\mathcal{Q}| = |w| + 1$ states).

Alternatively, by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G}) = L_{IO}(\mathcal{G})$ since \mathcal{G} is linear, and we could apply Proposition 5.14 and Proposition 5.15 of the lecture notes to obtain an algorithm running in $O(|\mathcal{G}| \cdot |Q|^{M+D+1})$, hence in $O(|\mathcal{G}| \cdot |w|^{2M+4})$ since D = 1 by constructing a tree automaton with $|Q| = O(|w|^2)$ states with Yield $(L(\mathcal{A})) = \{w\}$. This is not polynomial yet, but with an additional 'binarisation' step one can get $M \leq 2$, for a final complexity in $O(|\mathcal{G}| \cdot |w|^8)$, but this is suboptimal.

2 Scope ambiguities and covert moves in ACGs

Exercise 4. One considers the two following signatures:

$$\begin{split} & (\Sigma_{\text{ABS}}) \quad \text{TRACE} : NP_{NP} \\ & \text{MOVE} : NP_{NP} \rightarrow (NP \rightarrow S) \rightarrow S_{NP} \\ & \text{MAN} : N \\ & \text{HELP} : N \\ & \text{EVERY} : N \rightarrow S_{NP} \rightarrow S \\ & \text{SOME} : N \rightarrow S_{NP} \rightarrow S \\ & \text{NEEDS} : NP \rightarrow NP \rightarrow S \\ \end{split} \\ & (\Sigma_{\text{S-FORM}}) \quad \begin{array}{l} /man/: string \\ /help/: string \\ /every/: string \\ /some/: string \\ /needs/: string \\ \end{array}$$

where, as usual, string is defined to be $o \rightarrow o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{SYNT} : \Sigma_{ABS} \to \Sigma_{S-FORM})$ as follows:

$$\begin{aligned} (\mathcal{L}_{\text{SYNT}}) & N &:= string \\ & NP &:= string \\ & S &:= string \\ & NP_{NP} &:= string \rightarrow string \\ & S_{NP} &:= string \rightarrow string \\ & \text{TRACE} &:= \lambda x. x \\ & \text{MOVE} &:= \lambda xyz. y \, (x \, z) \\ & \text{MAN} &:= /man/ \\ & \text{HELP} &:= /help/ \\ & \text{EVERY} &:= \lambda xy. y \, (/every/ + x) \\ & \text{SOME} &:= \lambda xy. y \, (/some/ + x) \\ & \text{NEEDS} &:= \lambda xy. y + /needs/ + x \end{aligned}$$

where, as usual, the concatenation operator (+) is defined as functional composition.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$\mathcal{L}_{\text{SYNT}}(t_0) = \mathcal{L}_{\text{SYNT}}(t_1) = /every / + /man / + /needs / + /some / + /help /$$

Solution:

```
t_0 = \text{every man} \left( \text{move trace} \left( \lambda x. \text{ some help} \left( \text{move trace} \left( \lambda y. \text{ needs } y \, x \right) \right) \right) \right)
```

 $t_1 = \text{some help} (\text{move trace} (\lambda y. \text{ every man} (\text{move trace} (\lambda x. \text{needs} y x))))$

Exercise 5. One considers a third signature :

 $\begin{array}{ll} (\Sigma_{\text{L-FORM}}) & \textbf{man}: \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{help}: \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{needs}: \mathsf{ind} \to \mathsf{ind} \to \mathsf{prop} \end{array}$

where the intended intuitive interpretation of the binary relation **needs** is that (**needs** a b) means that b is needed by a.

One then defines a morphism $(\mathcal{L}_{\text{SEM}} : \Sigma_{\text{ABS}} \to \Sigma_{\text{L-FORM}})$ as follows:

```
 \begin{aligned} (\mathcal{L}_{\text{SEM}}) & N := \text{ind} \to \text{prop} \\ & NP := \cdots \\ & S := \text{prop} \\ & NP_{NP} := \text{ind} \to \text{ind} \\ & S_{NP} := \text{ind} \to \text{prop} \\ & \text{TRACE} := \cdots \\ & \text{MOVE} := \cdots \\ & \text{MOVE} := \cdots \\ & \text{MAN} := \text{man} \\ & \text{HELP} := \text{help} \\ & \text{EVERY} := \lambda xy. \, \forall z. \, (x \, z) \to (y \, z) \\ & \text{SOME} := \lambda xy. \, \exists z. \, (x \, z) \land (y \, z) \\ & \text{NEEDS} := \cdots \end{aligned}
```

[2] 1. Complete the above semantic interpretation (i.e., provide interpretations for NP, TRACE, MOVE, and NEEDS) in such a way that $\mathcal{L}_{\text{SEM}}(t_0)$ and $\mathcal{L}_{\text{SEM}}(t_1)$ yield two different plausible semantic interpretations of the sentence every man needs some help.

Solution:

NP := indTRACE := $\lambda x. x$ MOVE := $\lambda xyz. y (x z)$ NEEDS := $\lambda xy. \text{ needs } y x$ Then:

$$\mathcal{L}_{\text{SEM}}(t_0) = \forall x. \, (\mathbf{man} \, x) \to (\exists y. \, (\mathbf{help} \, y) \land (\mathbf{need} \, x \, y))$$
$$\mathcal{L}_{\text{SEM}}(t_1) = \exists y. \, (\mathbf{help} \, y) \land (\forall x. \, (\mathbf{man} \, x) \to (\mathbf{need} \, x \, y))$$

Exercise 6. One extends Σ_{ABS} , Σ_{S-FORM} , \mathcal{L}_{SYNT} , and \mathcal{L}_{SEM} , respectively, as follows:

 $\begin{array}{ll} (\Sigma_{\text{ABS}}) & \text{POSSIBLY} : \ S \to S \\ (\Sigma_{\text{S-FORM}}) & /possibly / : string \\ (\mathcal{L}_{\text{SYNT}}) & \text{POSSIBLY} := \lambda x. \ x + /possibly / \\ (\mathcal{L}_{\text{SEM}}) & \text{POSSIBLY} := \lambda x. \diamondsuit x \end{array}$

[2] 1. How many terms u are there such that:

$$\mathcal{L}_{\text{SYNT}}(u) = /every / + /man / + /needs / + /some / + /help / + /possibly /$$

Solution: There are six such terms:

$$\begin{split} &u_0 = \text{POSSIBLY} \left(\text{EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ NEEDS } y \, x \right) \right) \right) \right) \\ &u_1 = \text{EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ POSSIBLY} \left(\text{SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ NEEDS } y \, x \right) \right) \right) \right) \\ &u_2 = \text{EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ POSSIBLY} \left(\text{NEEDS } y \, x \right) \right) \right) \right) \\ &u_3 = \text{POSSIBLY} \left(\text{SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ NEEDS } y \, x \right) \right) \right) \right) \\ &u_4 = \text{SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ POSSIBLY} \left(\text{EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ NEEDS } y \, x \right) \right) \right) \right) \\ &u_5 = \text{SOME HELP} \left(\text{MOVE TRACE} \left(\lambda y. \text{ EVERY MAN} \left(\text{MOVE TRACE} \left(\lambda x. \text{ NEEDS } y \, x \right) \right) \right)) \end{split}$$

[2] 2. Give three such terms together with their semantic interpretations.

Solution:

$$\mathcal{L}_{\text{SEM}}(u_0) = \Diamond (\forall x. (\operatorname{man} x) \to (\exists y. (\operatorname{help} y) \land (\operatorname{need} x y)))$$
$$\mathcal{L}_{\text{SEM}}(u_1) = \forall x. (\operatorname{man} x) \to \Diamond (\exists y. (\operatorname{help} y) \land (\operatorname{need} x y))$$
$$\mathcal{L}_{\text{SEM}}(u_2) = \forall x. (\operatorname{man} x) \to (\exists y. (\operatorname{help} y) \land \Diamond (\operatorname{need} x y))$$
$$\mathcal{L}_{\text{SEM}}(u_3) = \Diamond (\exists y. (\operatorname{help} y) \land (\forall x. (\operatorname{man} x) \to (\operatorname{need} x y)))$$
$$\mathcal{L}_{\text{SEM}}(u_4) = \exists y. (\operatorname{help} y) \land \Diamond (\forall x. (\operatorname{man} x) \to (\operatorname{need} x y))$$
$$\mathcal{L}_{\text{SEM}}(u_5) = \exists y. (\operatorname{help} y) \land (\forall x. (\operatorname{man} x) \to \Diamond (\operatorname{need} x y))$$