MPRI 2-27-1 Exam

Duration: 3 hours Written documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand tree insertion grammars, a restriction of tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the more convenient (and cleaner) framework of context-free tree grammars, and study the corresponding formalism of single-sided linear monadic context-free tree grammars (recall that tree adjoining grammars are roughly equivalent to linear monadic context-free tree grammars). To further simplify matters, we shall work with *right* grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:

- N_0 is a nullary nonterminal alphabet consisting of symbols of rank 0,
- N_R is a *right nonterminal* alphabet consisting of symbols of rank 1, and
- $\mathcal F$ is a ranked *terminal* alphabet.

We use A_0, B_0, \ldots to denote elements of N_0, A_R, B_R, \ldots for elements of N_R , and $f^{(k)}, \ldots$ for elements of \mathcal{F}_k the sub-alphabet of $\mathcal F$ with symbols of rank k . Let us define $N\stackrel{\rm def}{=}N_0\uplus N_R$ and $V \stackrel{\text{def}}{=} N \oplus \mathcal{F}$; then e, e_1, \ldots denote trees in $T(V)$ and t, t_1, \ldots terminal trees in $T(\mathcal{F})$.

The set of **right contexts** $\mathcal{C}_R(V)$ is made of contexts C where \Box is the rightmost leaf. In other words, \Box is a right context in $\mathcal{C}_R(V)$, and if $X^{(k)}$ is a symbol of arity $k > 0$ in V, C is a right context in $\mathcal{C}_R(V)$, and e_1, \ldots, e_{k-1} are trees in $T(V)$ then $X^{(k)}(e_1, \ldots, e_{k-1}, C)$ is also a right context in $\mathcal{C}_R(V)$.

Definition 2 (Right Linear Monadic CFTGs). A right linear monadic context-free tree grammar is a tuple $G = \langle N_0, N_R, \mathcal{F}, S_0, R \rangle$ where N_0, N_R , and \mathcal{F} are as above, $S_0 \in N_0$ is the *axiom*, and R is a finite set of rules of form:

- $A_0 \to e$ with $A_0 \in N_0$ and $e \in T(V)$, or
- $A_R(y) \to C[y]$ with $A_R \in N_R$ and $C \in C_R(V)$; y is called the parameter of the rule.

The tree language of $\mathcal G$ is

$$
L(G) \stackrel{\text{def}}{=} \{t \in T(\mathcal{F}) \mid S_0 \stackrel{R}{\Rightarrow}^{\star} t\}.
$$

Exercise 1 (Yields and Branches). Given a tree language $L \subseteq T(\mathcal{F})$, let Yield $(L) \stackrel{\text{def}}{=}$ $\bigcup_{t\in L}$ Yield(t) and define inductively

$$
\text{Yield}(a^{(0)}) \stackrel{\text{def}}{=} a \qquad \text{Yield}(f^{(k)}(t_1,\ldots,t_k) \stackrel{\text{def}}{=} \text{Yield}(t_1)\cdots \text{Yield}(t_k) .
$$

Hence Yield $(t) \in \mathcal{F}_0^*$ is a word over \mathcal{F}_0 , and Yield $(L) \subseteq \mathcal{F}_0^*$ is a word language over \mathcal{F}_0 .

[1] 1. What is the word language Yield $(L(\mathcal{G}))$ of the CFTG with rules

$$
S_0 \to A_R(c^{(0)})
$$

\n
$$
A_R(y) \to f^{(2)}(a^{(0)}, A_R(f^{(2)}(a^{(0)}, y)))
$$

\n
$$
A_R(y) \to f^{(2)}(b^{(0)}, A_R(f^{(2)}(b^{(0)}, y)))
$$

\n
$$
A_R(y) \to y
$$

where $N_0 \stackrel{\text{def}}{=} \{S_0\}, N_R \stackrel{\text{def}}{=} \{A_R\}, \text{ and } \mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}\}$?

Solution: This is the language of even-length palindromes over $\{a, b\}$ suffixed with a c: Yield $(L(G)) = \{ww^Rc \mid w \in \{a,b\}^*\}$ where \cdot^R denotes the mirror operation on words.

[2] 2. Show that there exists a right linear monadic CFTG $\mathcal G$ such that $L(\mathcal G)$ is not a regular tree language.

Hint: Recall that, if $L \subseteq T(\mathcal{F})$ is a regular tree language, then its set of branches Branches(L) is a regular word language over F. We define Branches(L) \subseteq F^{*} by Branches(L) $\stackrel{\text{def}}{=} \bigcup_{t \in L}$ Branches(t) and in turn

Branches
$$
(a^{(0)}) \stackrel{\text{def}}{=} \{a\}
$$
 Branches $(f^{(k)}(t_1, ..., t_k)) \stackrel{\text{def}}{=} \bigcup_{1 \leq j \leq k} \{f\} \cdot Branches(t_j)$.

Solution: Consider the right linear monadic CFTG with rules

$$
S_0 \to A_R(c^{(0)})
$$

\n
$$
A_R(y) \to f^{(2)}(a^{(0)}, A_R(f^{(2)}(a^{(0)}, y)))
$$

\n
$$
A_R(y) \to g^{(2)}(a^{(0)}, A_R(g^{(2)}(a^{(0)}, y)))
$$

\n
$$
A_R(y) \to y
$$

where $N_0 \stackrel{\text{def}}{=} \{S_0\}, N_R \stackrel{\text{def}}{=} \{A_R\}, \text{ and } \mathcal{F} \stackrel{\text{def}}{=} \{f^{(2)}, g^{(2)}, a^{(0)}, c^{(0)}\}.$

Its yield language is uninteresting, but

Branches
$$
(L(G)) \cap \{f, g\}^* \cdot \{c\} = \{ww^Rc \mid w \in \{f, g\}^*\}
$$

is not a regular word language, hence Branches $(L(\mathcal{G}))$ itself is not a regular word language either (since $\{f, g\}^* \cdot \{c\}$ is regular and regular languages are closed under intersection), and thus $L(G)$ is not a regular tree language.

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted below. Note that its sole auxiliary tree β_1 is of the form $C[\mathrm{VP}_*^{\mathrm{na}}]$ where C is a right context; this grammar is actually a right tree insertion grammar.

[1] 1. Provide an equivalent right linear monadic CFTG.

Solution: It suffices to apply the translation from TAGs to linear monadic CFTG from Section 5.1.3 of the lecture notes:

$$
S\downarrow \to S^{(2)}(NP\downarrow, \overline{VP}(VP^{(2)}(VBZ^{(1)}(likes^{(0)}), NP\downarrow)))
$$

\n
$$
NP\downarrow \to NP^{(1)}(NNP^{(1)}(Bill^{(0)}))
$$

\n
$$
NP\downarrow \to NP^{(1)}(NNS^{(1)}(mushrooms^{(0)}))
$$

\n
$$
\overline{VP}(y) \to \overline{VP}(VP^{(2)}(RB^{(1)}(really^{(0)}), y))
$$

\n
$$
\overline{VP}(y) \to y,
$$

with $N_0 \stackrel{\text{def}}{=} \{S\downarrow, NP\downarrow\}, N_R \stackrel{\text{def}}{=} \{\overline{VP}\}, \text{ and } \mathcal{F} \stackrel{\text{def}}{=} \{S^{(2)}, VP^{(2)}, VBZ^{(1)}, likes^{(0)}, NP^{(1)},\$ $\text{NNP}^{(1)}, \text{Bill}^{(0)}, \text{NNS}^{(1)}, \text{mushrooms}^{(0)}, \text{RB}^{(1)}, \text{really}^{(0)}\}.$

[1] 2. Complete the TIG or your CFTG (in a linguistically informed manner) in order to also generate the sentence 'Bill likes black mushrooms.'

Solution: It's quicker to modify the right TIG with an additional auxiliary tree $\beta_2 \stackrel{\text{def}}{=} NP^{(2)}(JJ^{(1)}(black^{(0)}), NP^{na}_*)$. Modifying the CFTG involves introducing new right nonterminals NP in several places.

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right linear monadic CFTGs can generate non-regular tree languages, their expressive power is just as limited as that of finite tree automata when it comes to word languages.

 $[3]$ 1. Show for any context-free language L, there is a right linear monadic context-free tree grammar \mathcal{G}' with $L \setminus \{\varepsilon\} = \text{Yield}(L(\mathcal{G}')).$

Solution: This can be argued from well-known theorems: if L is context-free, then $L \setminus \{\varepsilon\}$ is the yield Yield $(L(\mathcal{A}))$ of some finite tree automaton A (c.f. Definition 3.6) of the lecture notes, where ε is also handled), which in turn is a right linear monadic CFTG with $N_0 \stackrel{\text{def}}{=} Q$, $N_R \stackrel{\text{def}}{=} \emptyset$ and the same set of rules. Alternatively, we can re-prove it from scratch:

Without loss of generality, we can assume we are given a CFG $\mathcal{G} = \langle N, \Sigma, P, S \rangle$ in Chomsky normal form with $L \setminus \{\varepsilon\} = L(\mathcal{G})$: the productions in P are of the form $A \to BD$ or $A \to a$ with $A, B, D \in N$ and $a \in \Sigma$. We define the CFTG $\mathcal{G}' = \langle N, \emptyset, \mathcal{F}, S, R \rangle$ with $\mathcal{F} \stackrel{\text{def}}{=} \Sigma \cup \{f^{(2)}\}\$ where the symbols in Σ are nullary, and the set of rules

$$
R \stackrel{\text{def}}{=} \{A \to f^{(2)}(B, D) \mid A \to BD \in P\}
$$

$$
\cup \{A \to a^{(0)} \mid A \to a \in P\}.
$$

Let us show that $L(G) \subseteq \text{Yield}(L(G'))$: we prove by induction over n that, for all $A \in N$ and $w \in \Sigma^*$, if $A \Rightarrow^* w$ in \mathcal{G} , then there exists $t \in T(\mathcal{F})$ such that $A \stackrel{R}{\Rightarrow}^* t$ in \mathcal{G}' and Yield $(t) = w$. This will show that, for any $w \in L(\mathcal{G})$, there exists $t \in L(\mathcal{G}')$ with Yield $(t) = w$.

base case for $n = 1$: then $A \Rightarrow a = w \in \Sigma$, and $t = a^0$ fits;

induction step for $n > 1$: then we have a derivation $A \Rightarrow BD \Rightarrow^{n-1} w$ for a production $A \to BD \in P$. Thus $B \Rightarrow^{n_1} w_1$ and $D \Rightarrow^{n_2} w_2$ with $n_1 + n_2 = n - 1$ and $w_1w_2 = w$. By induction hypothesis on $n_1, n_2 < n$, there exist $t_1, t_2 \in T(\mathcal{F})$ such that $B \stackrel{R}{\Rightarrow} t_1$, $D \stackrel{R}{\Rightarrow} t_2$, Yield(t_1) = w_1 , and Yield(t_2) = w_2 . Therefore, $t \stackrel{\text{def}}{=} f^{(2)}(t_1, t_2)$ fits since $A \stackrel{R}{\Rightarrow} f^{(2)}(B, D) \stackrel{R}{\Rightarrow} f^{(2)}(t_1, D) \stackrel{R}{\Rightarrow} f^{(2)}(t_1, t_2) = t$ and $Yield(t) = Yield(t_1) \cdot Yield(t_2) = w_1w_2 = w.$

Conversely, let us show that $L(G) \supseteq Yield(L(G'))$: we prove by induction over n that, for all $A \in N$ and $t \in T(\mathcal{F})$, if $A \stackrel{\overline{R}}{\Rightarrow} t$ in \mathcal{G}' , then $A \Rightarrow$ Yield(t) in \mathcal{G} . This will show that, for any $t \in L(\mathcal{G}')$, Yield $(t) \in L(\mathcal{G})$.

base case for $n = 1$: then $A \stackrel{R}{\Rightarrow} a^{(0)} = t$, and $A \Rightarrow a$ holds in \mathcal{G} .

induction step for $n > 1$: then $A \stackrel{R}{\Rightarrow} f^{(2)}(B, D) \stackrel{R}{\Rightarrow} t$ for a production $A \rightarrow$ $BD \in P$. Thus $t = f^{(2)}(t_1, t_2)$ such that $B \stackrel{R}{\Rightarrow}^{n_1} t_1$, $D \stackrel{R}{\Rightarrow}^{n_2} t_2$, and $n_1 + n_2 =$ $n-1$. By induction hypothesis, $B \Rightarrow^* Yield(t_1)$ and $D \Rightarrow^* Yield(t_2)$ in G. Hence $A \Rightarrow BD \Rightarrow^* \text{Yield}(t_1) \text{Yield}(t_2) = \text{Yield}(t)$.

[1] 2. Let us extend Yield(\cdot) to terminal contexts $c \in \mathcal{C}(\mathcal{F}) \subseteq T(\mathcal{F} \cup \{\Box\})$ by Yield $(\Box) \stackrel{\text{def}}{=} \varepsilon$. Show that, for all terminal right contexts $c \in \mathcal{C}_R(\mathcal{F})$ and all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$,

$$
Yield(c[t]) = Yield(c) \cdot Yield(t) .
$$

Solution: We proceed by induction over terminal right contexts:

for the base case $c = \Box$: then $c[t] = t$ and thus $\text{Yield}(c[t]) = \text{Yield}(t) = \text{Yield}(c)\text{Yield}(t);$

for the induction step $c = f^{(k)}(t_1, \ldots, t_{k-1}, c')$ for some $k > 0, f^{(k)} \in \mathcal{F}_k, c' \in$ $\mathcal{C}_R(\mathcal{F})$, and $t_1, \ldots, t_{k-1} \in T(\mathcal{F})$: by induction hypothesis, for all $t \in \mathcal{C}_R(\mathcal{F})$ $T(\mathcal{F})$, Yield($c'[t]$) = Yield(c')Yield(t). Thus for all $t \in \mathcal{C}_R(\mathcal{F}) \cup T(\mathcal{F})$,

$$
Yield(c[t]) = Yield(f^{(k)}(t_1, ..., t_{k-1}, c'[t]))
$$

= Yield(t₁) ··· Yield(t_{k-1})Yield(c'[t])
= Yield(t₁) ··· Yield(t_{k-1})Yield(c')Yield(t)
= Yield(c) · Yield(t).

[5] 3. Show the converse: for any right linear monadic CFTG, Yield $(L(\mathcal{G}))$ is a context-free word language over \mathcal{F}_0 .

Hint: You might use the fact that $\mathcal G$ is linear to restrict your attention to IO derivations: by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(G) = L_{IO}(G)$.

Solution: Let $\mathcal{G} = \langle N_0, N_R, \mathcal{F}, S_0, R \rangle$ be a right linear monadic CFTG. We let E denote the set of subtrees and subcontexts appearing inside right-hand-sides of rules in R : formally,

$$
E \stackrel{\text{def}}{=} \text{Sub}(\{e \in T(V) \mid A_0 \to e \in R\} \cup \{C \in \mathcal{C}_R(V) \mid A_R(y) \to C[y] \in R\})
$$

where for any $S \subseteq \mathcal{C}_R(V) \cup T(V)$

$$
Sub(S) \stackrel{\text{def}}{=} \{ e \in C_R(V) \cup T(V) \mid \exists C \in C_R(V). C[e] \in S \} .
$$

We define $\mathcal{G}' \stackrel{\text{def}}{=} \langle N', \mathcal{F}_0, [S_0], P \rangle$ a word context-free grammar with nonterminals $N' \stackrel{\text{def}}{=} \{ [e] \mid e \in E \} \cup \{ [S_0] \}$ and with productions:

$$
P \stackrel{\text{def}}{=} \{ [a^{(0)}] \to a \mid a^{(0)} \in \mathcal{F}_0 \cap E \}
$$

\n
$$
\cup \{ [\Box] \to \varepsilon \}
$$

\n
$$
\cup \{ [f^{(k)}(e_1, \dots, e_k)] \to [e_1] \cdots [e_k] \mid k > 0, f^{(k)}(e_1, \dots, e_k) \in E, e_1 \in T(V) \cup C_R(V),
$$

\n
$$
e_2, \dots, e_k \in T(V) \}
$$

\n
$$
\cup \{ [A_0] \to [e] \mid A_0 \to e \in R \}
$$

\n
$$
\cup \{ [A_R(e)] \to [C][e] \mid A_R(e) \in E, A_R(y) \to C[y] \in R, e \in T(V) \cup C_R(V) \}.
$$

Let us show that $Yield(L(G)) \supseteq L(G')$. We prove for this by induction over n that, for all $e \in \mathcal{C}_R(\mathcal{F}) \cap E$ (resp. $e \in T(V) \cap E$ or $e = S_0$), if $[e] \Rightarrow^n w$ in \mathcal{G}' , then there exists $t \in \mathcal{C}_R(\mathcal{F})$ (resp. $t \in T(\mathcal{F})$) such that $e \stackrel{R}{\Rightarrow}^t t$ and Yield $(t) = w$. Then, by setting $e = S_0$, the statement follows.

base case $n = 1$ for $e = a^{(0)}$: then $w = a$, and $t \stackrel{\text{def}}{=} a^{(0)}$ fits.

base case $n = 1$ for $e = \Box$: then $w = \varepsilon$, and $c' \stackrel{\text{def}}{=} \Box$ fits.

- $\textbf{induction step} \,\, n > 0 \,\, \textbf{for} \,\, e = f^{(k)}(e_1, \ldots, e_k) \textbf{:} \,\, \text{if} \, [e] = [f^{(k)}(e_1, \ldots, e_k)] \Rightarrow [e_1] \cdots [e_k] \Rightarrow^{n-1}$ w, then for all $1 \leq j \leq k$, $[e_j] \Rightarrow^{n_j} w_j$ with $n_1 + \cdots + n_k = n-1$ and $w_1 \cdots w_k = w$. By induction hypothesis on $n_j < n$, there exists $t_j \in C_R(\mathcal{F}) \cup T(\mathcal{F})$ with $e_j \stackrel{R}{\Rightarrow}^* t_j$ for each $1 \leq j \leq k$. Therefore, $t \stackrel{\text{def}}{=} f^{(k)}(t_1,\ldots,t_k)$ fits.
- induction step $n > 0$ for $e = A_0$: then $[e] = [A_0] \Rightarrow [e'] \Rightarrow^{n-1} w$ for some $A_0 \to e$ in R. By induction hypothesis, there exists $t' \in C_R(\mathcal{F}) \cup T(\mathcal{F})$ with $e' \stackrel{R}{\Rightarrow} t'$ and Yield $(t') = w$, hence $t \stackrel{\text{def}}{=} t'$ fits.

induction step $n > 0$ for $e = A_R(e')$: if $[e] = [A_R(e')] \Rightarrow [C][e'] \Rightarrow^{n-1} w$ for some $A_R(y) \rightarrow C[y] \in R$, then $[C] \Rightarrow^{n_1} w_1$ and $[e'] \Rightarrow^{n_2} w_2$ for some $n_1 + n_2 =$ $n-1$ and $w_1w_2 = w$. By induction hypothesis, there exist $c_1 \in C_R(\mathcal{F})$ and $t_2 \in C_R(\mathcal{F}) \cup T(\mathcal{F})$ such that $C \stackrel{R}{\Rightarrow}^* c_1$, Yield $(c_1) = w_1, e' \stackrel{R}{\Rightarrow}^* t_2$, and Yield $(t_2) = w_2$. Thus letting $t \stackrel{\text{def}}{=} c_1[t_2]$ fits: $A_0(e') \stackrel{R}{\Rightarrow} C[e'] \stackrel{R}{\Rightarrow} C[t_2] \stackrel{R}{\Rightarrow} C[t_2]$ and Yield $(c_1[t_2])$ = Yield (c_1) Yield (t_2) = $w_1w_2 = w$ by Question 2 above.

Conversely, let us show that Yield $(L(G)) \subseteq L(G')$. We prove for this by induction over $(e, n) \in (E \cup S_0) \times \mathbb{N}$ ordered lexicographically (with *n* being most significant) that, if $e \in \mathcal{C}_R(V) \cap E$ (resp. $T(V) \cap E$ or $e = S_0$) and for all $t \in \mathcal{C}_R(\mathcal{F})$ (resp. $T(\mathcal{F})$), if $e \stackrel{R}{\Rightarrow}^n t$ using IO derivations in \mathcal{G} , then $[e] \Rightarrow^* \text{Yield}(t)$ in \mathcal{G}' .

case $e = a^{(0)}$ and $n = 0$: then $[e] = [a^{(0)}] \Rightarrow a = \text{Yield}(e)$ in \mathcal{G}' .

case $e = \Box$ and $n = 0$: then $[e] = [\Box] \Rightarrow \varepsilon = \text{Yield}(e)$ in \mathcal{G}' .

case $e = f^{(k)}(e_1, \ldots, e_k)$ and $n \geq 0$: then $e \stackrel{R}{\Rightarrow} t$ using IO derivations implies $e_j \stackrel{R}{\Rightarrow}^{n_j}$ t_j for $1 \leq j \leq k$ with $n = n_1 + \cdots + n_k$ and $t = f^{(k)}(t_1, \ldots, t_j)$. Using the induction hypothesis on (e_j, n_j) shows $[e_j] \Rightarrow^* \text{Yield}(t_j)$ in \mathcal{G}' , hence $[e] \Rightarrow$ $[e_1] \cdots [e_k] \Rightarrow^* \text{Yield}(t_1) \cdots \text{Yield}(t_k) = \text{Yield}(t).$

case $e = A_0$ and $n > 0$: then $e = A_0 \stackrel{R}{\Rightarrow} e' \stackrel{R}{\Rightarrow}^{n-1} t$ using rule $A_0 \rightarrow e'$ in R. As $e' \in$ E, we can apply the induction hypothesis on $(e', n-1)$ to show $[e'] \Rightarrow^* \text{Yield}(t)$ in \mathcal{G}' , and using the production $[A_0] \to [e']$ we get $[e] = [A_0] \Rightarrow^* \text{Yield}(t)$.

case $e = A_R(e')$ and $n > 0$: then $e = A_R(e') \stackrel{R}{\Rightarrow}^{n_1} A_R(c_1) \stackrel{R}{\Rightarrow} C[c_1] \stackrel{R}{\Rightarrow}^{n_2} c_2[c_1] = t$ since we are using IO derivations, with $n_1 + n_2 = n - 1$ and $A_R(y) \to C[y] \in R$. As $e' \in E$ and $e' \stackrel{R}{\Rightarrow}^{n_1} c_1$, by induction hypothesis on (e', n_1) , $[e'] \Rightarrow^*$ Yield (c_1) in G'. Similarly, $C \in E$ and $C \stackrel{R^{n_2}}{\Rightarrow} c_2$, and by induction hypothesis on (C, n_2) , $[C] \Rightarrow^* \text{Yield}(c_2) \text{ in } \mathcal{G}'$. Finally, $[A_R(e')] \rightarrow [C][e']$ is a production of P, hence $[e] = [A_R(e')] \Rightarrow [C][e'] \Rightarrow^* \text{Yield}(c_2)\text{Yield}(c_1) = \text{Yield}(c_2[c_1]) = \text{Yield}(t)$ by Question 2 above.

[1] 4. Show that, the word membership problem for right linear monadic CFTG can be solved in polynomial time (this problem is, given $w \in \mathcal{F}_0^*$ and $\mathcal G$ a right linear monadic CFTG, whether $w \in \text{Yield}(L(\mathcal{G})))$.

Solution: It suffices to observe that the previous construction results in a CFG \mathcal{G}' of quadratic size in $|\mathcal{G}|$, on which we can apply the $O(|\mathcal{G}'| \cdot |w|^3)$ algorithm seen in class (c.f. Lemma 3.8 in the lecture notes, where the word automaton for $\{w\}$ has $|Q| = |w| + 1$ states).

Alternatively, by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G}) =$ $L_{\text{IO}}(\mathcal{G})$ since $\mathcal G$ is linear, and we could apply Proposition 5.14 and Proposition 5.15 of the lecture notes to obtain an algorithm running in $O(|\mathcal{G}| \cdot |Q|^{M+D+1})$, hence in $O(|\mathcal{G}| \cdot |w|^{2M+4})$ since $D = 1$ by constructing a tree automaton with $|Q| = O(|w|^2)$ states with Yield $(L(\mathcal{A})) = \{w\}$. This is not polynomial yet, but with an additional 'binarisation' step one can get $M \leq 2$, for a final complexity in $O(|\mathcal{G}|\cdot|w|^8)$, but this is suboptimal.

2 Scope ambiguities and covert moves in ACGs

Exercise 4. One considers the two following signatures:

 $(\Sigma_{\rm ABS})$ TRACE : NP_{NP} $\text{move}: \text{NP}_{\text{NP}} \rightarrow (\text{NP} \rightarrow \text{S}) \rightarrow \text{S}_{\text{NP}}$ $MAN: N$ ${\tt HELP}$: N EVERY : $N \rightarrow S_{NP} \rightarrow S$ SOME : $N \rightarrow S_{NP} \rightarrow S$ $NEEDS: NP \rightarrow NP \rightarrow S$ $(\Sigma_{\text{S-FORM}})$ /man/ : string /help/ : string /every/ : string /some/ : string /needs/ : string

where, as usual, *string* is defined to be $o \rightarrow o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{\text{SYNT}} : \Sigma_{\text{ABS}} \to \Sigma_{\text{S-FORM}})$ as follows:

$$
(L_{\text{SYNT}}) \qquad N := string
$$
\n
$$
NP := string
$$
\n
$$
S := string
$$
\n
$$
NP_{NP} := string \rightarrow string
$$
\n
$$
SNP := string \rightarrow string
$$
\n
$$
TRACE := \lambda x. x
$$
\n
$$
MOVE := \lambda xyz. y (x z)
$$
\n
$$
MAN := /man /
$$
\n
$$
HELP := /help /
$$
\n
$$
EVERY := \lambda xy. y (/ every / + x)
$$
\n
$$
SOME := \lambda xy. y (/ some / + x)
$$
\n
$$
NEEDS := \lambda xy. y + / needs / + x
$$

where, as usual, the concatenation operator $(+)$ is defined as functional composition.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$
\mathcal{L}_{\text{SYNT}}(t_0) = \mathcal{L}_{\text{SYNT}}(t_1) = / \text{every} / + / \text{man} / + / \text{needs} / + / \text{some} / + / \text{help} /
$$

Solution:

```
t_0 = EVERY MAN (MOVE TRACE (\lambda x. SOME HELP (MOVE TRACE (\lambda y. NEEDS y x))))
```
 $t_1 =$ SOME HELP (MOVE TRACE $(\lambda y$. EVERY MAN (MOVE TRACE $(\lambda x$. NEEDS $y(x))$))

Exercise 5. One considers a third signature :

 $(\Sigma_{\text{L-FORM}})$ man : ind \rightarrow prop $help: ind \rightarrow prop$ $\mathrm{needs}: \mathrm{ind} \to \mathrm{ind} \to \mathrm{prop}$

where the intended intuitive interpretation of the binary relation **needs** is that (**needs** a b) means that b is needed by a .

One then defines a morphism $(\mathcal{L}_{SEM} : \Sigma_{ABS} \to \Sigma_{L\text{-FORM}})$ as follows:

```
(\mathcal{L}_{\text{SEM}}) N := \text{ind} \rightarrow \text{prop}NP := \cdotsS := \textsf{prop}NP_{NP} := \text{ind} \rightarrow \text{ind}S_{NP} := \text{ind} \rightarrow \text{prop}\texttt{TRACE} := \cdotsMove := \cdotsMAN := manHELP := helpEVERY := \lambda xy. \forall z. (xz) \rightarrow (yz)SOME := \lambda xy. \exists z. (x z) \wedge (y z)NEEDS := \cdots
```
[2] 1. Complete the above semantic interpretation (i.e., provide interpretations for NP , TRACE, MOVE, and NEEDS) in such a way that $\mathcal{L}_{SEM}(t_0)$ and $\mathcal{L}_{SEM}(t_1)$ yield two different plausible semantic interpretations of the sentence every man needs some help.

Solution:

 $NP := \text{ind}$ TRACE := λx . x $\text{MOVE} := \lambda xyz. y (x z)$ $NEEDS := \lambda xy$. needs $y x$ Then:

$$
\mathcal{L}_{\text{SEM}}(t_0) = \forall x. (\mathbf{man}\, x) \rightarrow (\exists y. (\mathbf{help}\, y) \land (\mathbf{need}\, x\, y))
$$

$$
\mathcal{L}_{\text{SEM}}(t_1) = \exists y. (\mathbf{help}\, y) \land (\forall x. (\mathbf{man}\, x) \rightarrow (\mathbf{need}\, x\, y))
$$

Exercise 6. One extends Σ_{ABS} , $\Sigma_{\text{S-FORM}}$, $\mathcal{L}_{\text{SYNT}}$, and \mathcal{L}_{SEM} , respectively, as follows:

 $(\Sigma_{\rm ABS})$ possibly : $S \rightarrow S$ $(\Sigma_{\text{S-FORM}})$ /possibly/ : string $(\mathcal{L}_{\text{SYNT}})$ possibly := $\lambda x \cdot x + \text{/}\text{possibly/}$ $(\mathcal{L}_{\text{SEM}})$ possibly := $\lambda x.\Diamond x$

[2] 1. How many terms u are there such that:

$$
\mathcal{L}_{\text{SYNT}}(u) = / \text{every}/+ / \text{man}/+ / \text{needs}/+ / \text{some}/+ / \text{help}/+ / \text{possibly}/
$$

Solution: There are six such terms:

 $u_0 = \text{POSSIBLY}(\text{EVERY MAN}(\text{MOVE TRACE}(\lambda x. \text{SOME HELP}(\text{MOVE TRACE}(\lambda y. \text{NEEDS} y x))))))$ $u_1 =$ EVERY MAN (MOVE TRACE $(\lambda x.$ POSSIBLY (SOME HELP (MOVE TRACE $(\lambda y.$ NEEDS $y x))$))) u_2 = EVERY MAN (MOVE TRACE $(\lambda x.$ SOME HELP (MOVE TRACE $(\lambda y.$ POSSIBLY (NEEDS $y x$))))) u_3 = POSSIBLY (SOME HELP (MOVE TRACE (λy . EVERY MAN (MOVE TRACE (λx . NEEDS $y(x))$))) u_4 = SOME HELP (MOVE TRACE $(\lambda y.$ POSSIBLY (EVERY MAN (MOVE TRACE $(\lambda x.$ NEEDS $y x))$))) u_5 = SOME HELP (MOVE TRACE (λy . EVERY MAN (MOVE TRACE (λx . POSSIBLY (NEEDS $y(x))$)))

[2] 2. Give three such terms together with their semantic interpretations.

Solution:

$$
\mathcal{L}_{SEM}(u_0) = \diamondsuit(\forall x. (\mathbf{man}\,x) \to (\exists y. (\mathbf{help}\,y) \land (\mathbf{need}\,x\,y)))
$$

$$
\mathcal{L}_{SEM}(u_1) = \forall x. (\mathbf{man}\,x) \to \diamondsuit(\exists y. (\mathbf{help}\,y) \land (\mathbf{need}\,x\,y))
$$

$$
\mathcal{L}_{SEM}(u_2) = \forall x. (\mathbf{man}\,x) \to (\exists y. (\mathbf{help}\,y) \land \diamondsuit(\mathbf{need}\,x\,y))
$$

$$
\mathcal{L}_{SEM}(u_3) = \diamondsuit(\exists y. (\mathbf{help}\,y) \land (\forall x. (\mathbf{man}\,x) \to (\mathbf{need}\,x\,y)))
$$

$$
\mathcal{L}_{SEM}(u_4) = \exists y. (\mathbf{help}\,y) \land \diamondsuit(\forall x. (\mathbf{man}\,x) \to (\mathbf{need}\,x\,y))
$$

$$
\mathcal{L}_{SEM}(u_5) = \exists y. (\mathbf{help}\,y) \land (\forall x. (\mathbf{man}\,x) \to \diamondsuit(\mathbf{need}\,x\,y))
$$