
MPRI 2-27-1 November 23rd, 2016

MPRI 2-27-1 Exam

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand tree insertion grammars, a restriction of
tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the
more convenient (and cleaner) framework of context-free tree grammars, and study the
corresponding formalism of single-sided linear monadic context-free tree grammars (recall
that tree adjoining grammars are roughly equivalent to linear monadic context-free tree
grammars). To further simplify matters, we shall work with right grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:

• N0 is a nullary nonterminal alphabet consisting of symbols of rank 0,

• NR is a right nonterminal alphabet consisting of symbols of rank 1, and

• F is a ranked terminal alphabet.

We use A0, B0, . . . to denote elements of N0, AR, BR, . . . for elements of NR, and f (k), . . .

for elements of Fk the sub-alphabet of F with symbols of rank k. Let us defineN
def
= N0]NR

and V
def
= N] F ; then e, e1, . . . denote trees in T (V) and t, t1, . . . terminal trees in T (F).

The set of right contexts CR(V) is made of contexts C where 2 is the rightmost leaf.
In other words, 2 is a right context in CR(V), and if X(k) is a symbol of arity k > 0 in V ,
C is a right context in CR(V), and e1, . . . , ek−1 are trees in T (V) then X(k)(e1, . . . , ek−1, C)
is also a right context in CR(V).

Definition 2 (Right Linear Monadic CFTGs). A right linear monadic context-free
tree grammar is a tuple G = 〈N0, NR,F , S0, R〉 where N0, NR, and F are as above,
S0 ∈ N0 is the axiom, and R is a finite set of rules of form:

• A0 → e with A0 ∈ N0 and e ∈ T (V), or

• AR(y)→ C[y] with AR ∈ NR and C ∈ CR(V); y is called the parameter of the rule.

MPRI 2-27-1 November 23rd, 2016

The tree language of G is

L(G)
def
= {t ∈ T (F) | S0

R
=⇒

?

t} .

Exercise 1 (Yields and Branches). Given a tree language L ⊆ T (F), let Yield(L)
def
=⋃

t∈L Yield(t) and define inductively

Yield(a(0))
def
= a Yield(f (k)(t1, . . . , tk)

def
= Yield(t1) · · ·Yield(tk) .

Hence Yield(t) ∈ F∗0 is a word over F0, and Yield(L) ⊆ F∗0 is a word language over F0.

1.[1] What is the word language Yield(L(G)) of the CFTG with rules

S0 → AR(c(0))

AR(y)→ f (2)
(
a(0), AR(f (2)(a(0), y))

)
AR(y)→ f (2)

(
b(0), AR(f (2)(b(0), y))

)
AR(y)→ y

where N0
def
= {S0}, NR

def
= {AR}, and F def

= {f (2), a(0), b(0), c(0)}?

Solution: This is the language of even-length palindromes over {a, b} suffixed with
a c: Yield(L(G)) = {wwRc | w ∈ {a, b}∗} where ·R denotes the mirror operation on
words.

2.[2] Show that there exists a right linear monadic CFTG G such that L(G) is not a regular
tree language.

Hint: Recall that, if L ⊆ T (F) is a regular tree language, then its set of branches
Branches(L) is a regular word language over F . We define Branches(L) ⊆ F∗ by

Branches(L)
def
=
⋃

t∈L Branches(t) and in turn

Branches(a(0))
def
= {a} Branches(f (k)(t1, . . . , tk))

def
=

⋃
1≤j≤k

{f} · Branches(tj) .

Solution: Consider the right linear monadic CFTG with rules

S0 → AR(c(0))

AR(y)→ f (2)
(
a(0), AR(f (2)(a(0), y))

)
AR(y)→ g(2)

(
a(0), AR(g(2)(a(0), y))

)
AR(y)→ y

MPRI 2-27-1 November 23rd, 2016

where N0
def
= {S0}, NR

def
= {AR}, and F def

= {f (2), g(2), a(0), c(0)}.
Its yield language is uninteresting, but

Branches(L(G)) ∩ {f, g}∗ · {c} = {wwRc | w ∈ {f, g}∗}

is not a regular word language, hence Branches(L(G)) itself is not a regular word
language either (since {f, g}∗ · {c} is regular and regular languages are closed under
intersection), and thus L(G) is not a regular tree language.

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted
below. Note that its sole auxiliary tree β1 is of the form C[VPna

∗] where C is a right
context; this grammar is actually a right tree insertion grammar.

S

NP↓ VP

VBZ

likes

NP↓

NP

NNP

Bill

NP

NNS

mushrooms

VP

RB

really

VPna
∗

(α1) (α2) (α3) (β1)

1.[1] Provide an equivalent right linear monadic CFTG.

Solution: It suffices to apply the translation from TAGs to linear monadic CFTG
from Section 5.1.3 of the lecture notes:

S↓ → S(2)
(
NP↓,VP(VP(2)(VBZ(1)(likes(0)),NP↓))

)
NP↓ → NP(1)(NNP(1)(Bill(0)))

NP↓ → NP(1)(NNS(1)(mushrooms(0)))

VP(y)→ VP(VP(2)(RB(1)(really(0)), y))

VP(y)→ y ,

with N0
def
= {S↓,NP↓}, NR

def
= {VP}, and F def

= {S(2),VP(2),VBZ(1), likes(0),NP(1),
NNP(1),Bill(0),NNS(1),mushrooms(0),RB(1), really(0)}.

2.[1] Complete the TIG or your CFTG (in a linguistically informed manner) in order to also
generate the sentence ‘Bill likes black mushrooms.’

MPRI 2-27-1 November 23rd, 2016

Solution: It’s quicker to modify the right TIG with an additional auxiliary tree

β2
def
= NP(2)(JJ(1)(black(0)),NPna

∗). Modifying the CFTG involves introducing new
right nonterminals NP in several places.

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right
linear monadic CFTGs can generate non-regular tree languages, their expressive power is
just as limited as that of finite tree automata when it comes to word languages.

1.[3] Show for any context-free language L, there is a right linear monadic context-free tree
grammar G ′ with L \ {ε} = Yield(L(G ′)).

Solution: This can be argued from well-known theorems: if L is context-free, then
L \ {ε} is the yield Yield(L(A)) of some finite tree automaton A (c.f. Definition 3.6
of the lecture notes, where ε is also handled), which in turn is a right linear monadic

CFTG with N0
def
= Q, NR

def
= ∅ and the same set of rules. Alternatively, we can

re-prove it from scratch:

Without loss of generality, we can assume we are given a CFG G = 〈N,Σ, P, S〉
in Chomsky normal form with L \ {ε} = L(G): the productions in P are of the
form A → BD or A → a with A,B,D ∈ N and a ∈ Σ. We define the CFTG

G ′ = 〈N, ∅,F , S, R〉 with F def
= Σ]{f (2)} where the symbols in Σ are nullary, and the

set of rules

R
def
= {A→ f (2)(B,D) | A→ BD ∈ P}
∪ {A→ a(0) | A→ a ∈ P} .

Let us show that L(G) ⊆ Yield(L(G ′)): we prove by induction over n that, for all

A ∈ N and w ∈ Σ∗, if A⇒? w in G, then there exists t ∈ T (F) such that A
R
=⇒

?

t in
G ′ and Yield(t) = w. This will show that, for any w ∈ L(G), there exists t ∈ L(G ′)
with Yield(t) = w.

base case for n = 1: then A⇒ a = w ∈ Σ, and t = a0 fits;

induction step for n > 1: then we have a derivation A ⇒ BD ⇒n−1 w for a pro-
duction A → BD ∈ P . Thus B ⇒n1 w1 and D ⇒n2 w2 with n1 + n2 = n − 1
and w1w2 = w. By induction hypothesis on n1, n2 < n, there exist t1, t2 ∈ T (F)

such that B
R
=⇒

?

t1, D
R
=⇒

?

t2, Yield(t1) = w1, and Yield(t2) = w2. Therefore,

t
def
= f (2)(t1, t2) fits since A

R
=⇒ f (2)(B,D)

R
=⇒

?

f (2)(t1, D)
R
=⇒

?

f (2)(t1, t2) = t and
Yield(t) = Yield(t1) · Yield(t2) = w1w2 = w.

MPRI 2-27-1 November 23rd, 2016

Conversely, let us show that L(G) ⊇ Yield(L(G ′)): we prove by induction over n that,

for all A ∈ N and t ∈ T (F), if A
R
=⇒

n

t in G ′, then A⇒ Yield(t) in G. This will show
that, for any t ∈ L(G ′), Yield(t) ∈ L(G).

base case for n = 1: then A
R
=⇒ a(0) = t, and A⇒ a holds in G.

induction step for n > 1: then A
R
=⇒ f (2)(B,D)

R
=⇒

n−1
t for a production A →

BD ∈ P . Thus t = f (2)(t1, t2) such that B
R
=⇒

n1

t1, D
R
=⇒

n2

t2, and n1 + n2 =
n − 1. By induction hypothesis, B ⇒? Yield(t1) and D ⇒? Yield(t2) in G.
Hence A⇒ BD ⇒? Yield(t1)Yield(t2) = Yield(t).

2.[1] Let us extend Yield(·) to terminal contexts c ∈ C(F) ⊆ T (F] {2}) by Yield(2)
def
= ε.

Show that, for all terminal right contexts c ∈ CR(F) and all t ∈ CR(F) ∪ T (F),

Yield(c[t]) = Yield(c) · Yield(t) .

Solution: We proceed by induction over terminal right contexts:

for the base case c = 2: then c[t] = t and thus Yield(c[t]) = Yield(t) = Yield(c)Yield(t);

for the induction step c = f (k)(t1, . . . , tk−1, c
′) for some k > 0, f (k) ∈ Fk, c′ ∈

CR(F), and t1, . . . , tk−1 ∈ T (F): by induction hypothesis, for all t ∈ CR(F) ∪
T (F), Yield(c′[t]) = Yield(c′)Yield(t). Thus for all t ∈ CR(F) ∪ T (F),

Yield(c[t]) = Yield(f (k)(t1, . . . , tk−1, c
′[t]))

= Yield(t1) · · ·Yield(tk−1)Yield(c′[t])

= Yield(t1) · · ·Yield(tk−1)Yield(c′)Yield(t)

= Yield(c) · Yield(t) .

3.[5] Show the converse: for any right linear monadic CFTG, Yield(L(G)) is a context-free
word language over F0.

Hint: You might use the fact that G is linear to restrict your attention to IO derivations:
by Theorem 5.9 and Proposition 5.13 of the lecture notes, L(G) = LIO(G).

Solution: Let G = 〈N0, NR,F , S0, R〉 be a right linear monadic CFTG. We let E
denote the set of subtrees and subcontexts appearing inside right-hand-sides of rules
in R: formally,

E
def
= Sub({e ∈ T (V) | A0 → e ∈ R} ∪ {C ∈ CR(V) | AR(y)→ C[y] ∈ R})

MPRI 2-27-1 November 23rd, 2016

where for any S ⊆ CR(V) ∪ T (V)

Sub(S)
def
= {e ∈ CR(V) ∪ T (V) | ∃C ∈ CR(V).C[e] ∈ S} .

We define G ′ def
= 〈N ′,F0, [S0], P 〉 a word context-free grammar with nonterminals

N ′
def
= {[e] | e ∈ E} ∪ {[S0]} and with productions:

P
def
= {[a(0)]→ a | a(0) ∈ F0 ∩ E}
∪ {[2]→ ε}
∪ {[f (k)(e1, . . . , ek)]→ [e1] · · · [ek] | k > 0, f (k)(e1, . . . , ek) ∈ E, e1 ∈ T (V) ∪ CR(V),

e2, . . . , ek ∈ T (V)}
∪ {[A0]→ [e] | A0 → e ∈ R}
∪ {[AR(e)]→ [C][e] | AR(e) ∈ E,AR(y)→ C[y] ∈ R, e ∈ T (V) ∪ CR(V)} .

Let us show that Yield(L(G)) ⊇ L(G ′). We prove for this by induction over n that,
for all e ∈ CR(F) ∩ E (resp. e ∈ T (V) ∩ E or e = S0), if [e] ⇒n w in G ′, then there

exists t ∈ CR(F) (resp. t ∈ T (F)) such that e
R
=⇒

?

t and Yield(t) = w. Then, by
setting e = S0, the statement follows.

base case n = 1 for e = a(0): then w = a, and t
def
= a(0) fits.

base case n = 1 for e = 2: then w = ε, and c′
def
= 2 fits.

induction step n > 0 for e = f (k)(e1, . . . , ek): if [e] = [f (k)(e1, . . . , ek)]⇒ [e1] · · · [ek]⇒n−1

w, then for all 1 ≤ j ≤ k, [ej]⇒nj wj with n1+· · ·+nk = n−1 and w1 · · ·wk = w.

By induction hypothesis on nj < n, there exists tj ∈ CR(F)∪T (F) with ej
R
=⇒

?

tj

for each 1 ≤ j ≤ k. Therefore, t
def
= f (k)(t1, . . . , tk) fits.

induction step n > 0 for e = A0: then [e] = [A0] ⇒ [e′] ⇒n−1 w for some A0 → e

in R. By induction hypothesis, there exists t′ ∈ CR(F) ∪ T (F) with e′
R
=⇒

?

t′

and Yield(t′) = w, hence t
def
= t′ fits.

induction step n > 0 for e = AR(e′): if [e] = [AR(e′)] ⇒ [C][e′] ⇒n−1 w for some
AR(y) → C[y] ∈ R, then [C] ⇒n1 w1 and [e′] ⇒n2 w2 for some n1 + n2 =
n − 1 and w1w2 = w. By induction hypothesis, there exist c1 ∈ CR(F)

and t2 ∈ CR(F) ∪ T (F) such that C
R
=⇒

?

c1, Yield(c1) = w1, e
′ R

=⇒
?

t2, and

Yield(t2) = w2. Thus letting t
def
= c1[t2] fits: A0(e

′)
R
=⇒ C[e′]

R
=⇒

?

C[t2]
R
=⇒

?

c1[t2]
and Yield(c1[t2]) = Yield(c1)Yield(t2) = w1w2 = w by Question 2 above.

MPRI 2-27-1 November 23rd, 2016

Conversely, let us show that Yield(L(G)) ⊆ L(G ′). We prove for this by induction
over (e, n) ∈ (E ∪ S0) × N ordered lexicographically (with n being most significant)
that, if e ∈ CR(V)∩E (resp. T (V)∩E or e = S0) and for all t ∈ CR(F) (resp. T (F)),

if e
R
=⇒

n

t using IO derivations in G, then [e]⇒? Yield(t) in G ′.

case e = a(0) and n = 0: then [e] = [a(0)]⇒ a = Yield(e) in G ′.

case e = 2 and n = 0: then [e] = [2]⇒ ε = Yield(e) in G ′.

case e = f (k)(e1, . . . , ek) and n ≥ 0: then e
R
=⇒

n

t using IO derivations implies ej
R
=⇒

nj

tj for 1 ≤ j ≤ k with n = n1 + · · · + nk and t = f (k)(t1, . . . , tj). Using the
induction hypothesis on (ej, nj) shows [ej] ⇒? Yield(tj) in G ′, hence [e] ⇒
[e1] · · · [ek]⇒? Yield(t1) · · ·Yield(tk) = Yield(t).

case e = A0 and n > 0: then e = A0
R
=⇒ e′

R
=⇒

n−1
t using rule A0 → e′ in R. As e′ ∈

E, we can apply the induction hypothesis on (e′, n− 1) to show [e′]⇒∗ Yield(t)
in G ′, and using the production [A0]→ [e′] we get [e] = [A0]⇒∗ Yield(t).

case e = AR(e′) and n > 0: then e = AR(e′)
R
=⇒

n1

AR(c1)
R
=⇒ C[c1]

R
=⇒

n2

c2[c1] = t
since we are using IO derivations, with n1 +n2 = n− 1 and AR(y)→ C[y] ∈ R.

As e′ ∈ E and e′
R
=⇒

n1

c1, by induction hypothesis on (e′, n1), [e′] ⇒∗ Yield(c1)

in G ′. Similarly, C ∈ E and C
R
=⇒

n2

c2, and by induction hypothesis on (C, n2),
[C] ⇒? Yield(c2) in G ′. Finally, [AR(e′)] → [C][e′] is a production of P , hence
[e] = [AR(e′)] ⇒ [C][e′] ⇒? Yield(c2)Yield(c1) = Yield(c2[c1]) = Yield(t) by
Question 2 above.

4.[1] Show that, the word membership problem for right linear monadic CFTG can be
solved in polynomial time (this problem is, given w ∈ F∗0 and G a right linear monadic
CFTG, whether w ∈ Yield(L(G))).

Solution: It suffices to observe that the previous construction results in a CFG G ′
of quadratic size in |G|, on which we can apply the O(|G ′| · |w|3) algorithm seen in
class (c.f. Lemma 3.8 in the lecture notes, where the word automaton for {w} has
|Q| = |w|+ 1 states).

Alternatively, by Theorem 5.9 and Proposition 5.13 of the lecture notes, L(G) =
LIO(G) since G is linear, and we could apply Proposition 5.14 and Proposition 5.15
of the lecture notes to obtain an algorithm running in O(|G| · |Q|M+D+1), hence in
O(|G| · |w|2M+4) since D = 1 by constructing a tree automaton with |Q| = O(|w|2)
states with Yield(L(A)) = {w}. This is not polynomial yet, but with an additional
‘binarisation’ step one can get M ≤ 2, for a final complexity in O(|G| · |w|8), but this
is suboptimal.

MPRI 2-27-1 November 23rd, 2016

2 Scope ambiguities and covert moves in ACGs

Exercise 4. One considers the two following signatures:

(ΣABS) trace : NPNP

move : NPNP → (NP → S)→ SNP

man : N
help : N

every : N → SNP → S
some : N → SNP → S
needs : NP → NP → S

(ΣS-FORM) /man/ : string
/help/ : string
/every/ : string
/some/ : string
/needs/ : string

where, as usual, string is defined to be o→ o for some atomic type o.

One then defines a morphism (LSYNT : ΣABS → ΣS-FORM) as follows:

(LSYNT) N := string
NP := string
S := string

NPNP := string → string
SNP := string → string

trace := λx. x
move := λxyz. y (x z)
man := /man/
help := /help/

every := λxy. y (/every/+ x)
some := λxy. y (/some/+ x)
needs := λxy. y + /needs/+ x

where, as usual, the concatenation operator (+) is defined as functional composition.

1.[1] Give two different terms, say t0 and t1, such that:

LSYNT(t0) = LSYNT(t1) = /every/+ /man/+ /needs/+ /some/+ /help/

MPRI 2-27-1 November 23rd, 2016

Solution:

t0 = everyman (movetrace (λx. somehelp (movetrace (λy.needs y x))))

t1 = somehelp (movetrace (λy.everyman (movetrace (λx.needs y x))))

Exercise 5. One considers a third signature :

(ΣL-FORM) man : ind→ prop
help : ind→ prop

needs : ind→ ind→ prop

where the intended intuitive interpretation of the binary relation needs is that (needs a b)
means that b is needed by a.

One then defines a morphism (LSEM : ΣABS → ΣL-FORM) as follows:

(LSEM) N := ind→ prop
NP := · · ·
S := prop

NPNP := ind→ ind
SNP := ind→ prop

trace := · · ·
move := · · ·
man := man
help := help

every := λxy.∀z. (x z)→ (y z)
some := λxy.∃z. (x z) ∧ (y z)
needs := · · ·

1.[2] Complete the above semantic interpretation (i.e., provide interpretations for NP , trace,
move, and needs) in such a way that LSEM(t0) and LSEM(t1) yield two different plau-
sible semantic interpretations of the sentence every man needs some help.

Solution:

NP := ind
trace := λx. x
move := λxyz. y (x z)
needs := λxy.needs y x

MPRI 2-27-1 November 23rd, 2016

Then:

LSEM(t0) = ∀x. (manx)→ (∃y. (help y) ∧ (needx y))

LSEM(t1) = ∃y. (help y) ∧ (∀x. (manx)→ (needx y))

Exercise 6. One extends ΣABS, ΣS-FORM, LSYNT, and LSEM, respectively, as follows:

(ΣABS) possibly : S → S

(ΣS-FORM) /possibly/ : string

(LSYNT) possibly := λx. x+ /possibly/

(LSEM) possibly := λx.♦x

1.[2] How many terms u are there such that:

LSYNT(u) = /every/+ /man/+ /needs/+ /some/+ /help/+ /possibly/

Solution: There are six such terms:

u0 = possibly (everyman (movetrace (λx. somehelp (movetrace (λy.needs y x)))))

u1 = everyman (movetrace (λx.possibly (somehelp (movetrace (λy.needs y x)))))

u2 = everyman (movetrace (λx. somehelp (movetrace (λy.possibly (needs y x)))))

u3 = possibly (somehelp (movetrace (λy.everyman (movetrace (λx.needs y x)))))

u4 = somehelp (movetrace (λy.possibly (everyman (movetrace (λx.needs y x)))))

u5 = somehelp (movetrace (λy.everyman (movetrace (λx.possibly (needs y x)))))

2.[2] Give three such terms together with their semantic interpretations.

Solution:

LSEM(u0) = ♦(∀x. (manx)→ (∃y. (help y) ∧ (needx y)))

LSEM(u1) = ∀x. (manx)→ ♦(∃y. (help y) ∧ (needx y))

LSEM(u2) = ∀x. (manx)→ (∃y. (help y) ∧ ♦(needx y))

LSEM(u3) = ♦(∃y. (help y) ∧ (∀x. (manx)→ (needx y)))

LSEM(u4) = ∃y. (help y) ∧ ♦(∀x. (manx)→ (needx y))

LSEM(u5) = ∃y. (help y) ∧ (∀x. (manx)→ ♦(needx y))

	Right Linear Monadic CFTGs
	Scope ambiguities and covert moves in ACGs

