
MPRI 2-27-1 November 21, 2018

MPRI 2-27-1 Exam

Duration: 3 hours
Paper documents are allowed. The numbers in front of questions are indicative
of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar G = 〈N,Σ, Tα, Tβ, S〉, the trees
in LT (G) are called derived trees. We are interested here in another tree structure, called
a derivation tree, for which we propose a formalisation here. Let us assume for simplicity
that all the foot nodes of auxiliary trees have the ‘na’ null adjunction annotation.

For an elementary tree γ ∈ Tα] Tβ, we define its contents c(γ) to be a finite sequence

over the alphabet Q
def
= {qA | A ∈ N] N↓}. Formally, we enumerate for this the labels

in Q of its nodes in position order; the nodes labelled by Σ ∪Nna are ignored.

Consider for instance the TAG G1 withN
def
= {S,NP,VP}, Σ

def
= {VBZ�,NNP�,NNS�,RB�},

Tα
def
= {likes ,Bill ,mushrooms}, Tβ

def
= {possibly}, and S

def
= S, where the elementary trees

are shown below:

S

NP↓ VP

VBZ� NP↓

NP

NNP�

NP

NNS�

VP

RB� VPna
?

(likes) (Bill) (mushrooms) (possibly)

Then likes has contents c(likes) = qS, qNP↓, qVP, qNP↓, c(Bill) = qNP, c(mushrooms) = qNP,
and c(possibly) = qVP.

We now define a finite ranked alphabet F def
= Tα] Tβ] {ε(0)}. For an elementary tree

γ ∈ Tα] Tβ, its rank is r(γ)
def
= |c(γ)| the length of its contents. For the symbol ε, its

rank is r(ε)
def
= 0. For a TAG G = 〈N,Σ, Tα, Tβ, S〉, we construct a finite tree automaton

AG
def
= 〈Q,F , δ, qS↓〉 where Q and F are defined as above and

δ
def
= {(qA↓, α(r(α)), c(α)) | A↓ ∈ N↓, α ∈ Tα, rl(α) = A}
∪ {(qA, β(r(β)), c(β)) | A ∈ N, β ∈ Tβ, rl(β) = A}
∪ {(qA, ε(0)) | A ∈ N}

where ‘rl’ returns the root label of the tree.

MPRI 2-27-1 November 21, 2018

1.[1] Give the finite automaton AG1 associated with the example TAG G1.

Solution:

Q = {qS↓, qNP↓, qS, qVP, qNP} ,
F = {likes(4),Bill (1),mushrooms (1), possibly (1), ε(0)} ,
δ = {(qS↓, likes (4), qS, qNP↓, qVP, qNP↓),

(qNP↓,Bill
(1), qNP),

(qNP↓,mushrooms (1), qNP),

(qS, ε
(0)),

(qVP, possibly
(1), qVP),

(qVP, ε
(0)),

(qNP, ε
(0))}

2.[1] Modify your automaton in order to also handle the trees someone ∈ Tα and real , fake, thinks ∈
Tβ shown below, where PN �, JJ�,VB� ∈ Σ:

S

NP↓ VP

VB� Sna?

(thinks)

NP

JJ� NPna
?

(fake)

NP

JJ� NPna
?

(real)

NP

PN �

(someone)

Solution: Add someone(1), real (1), fake(1), and thinks (3) to F and the rules

(qNP↓,someone(1), qNP)

(qNP,real
(1), qNP)

(qNP,fake
(1), qNP)

(qS,thinks
(3), qS, qNP↓, qVB)

to δ.

3.[1] The intention that our finite automaton generates the derivation language LD(G)
def
=

L(AG) of G. Can you figure out what should be the derivation tree of ‘Someone possibly
thinks Bill likes mushrooms ’?

MPRI 2-27-1 November 21, 2018

Solution:

likes

thinks

ε someone

ε

possibly

ε

Bill

ε

ε mushrooms

ε

4.[2] Give a PDL node formula ϕ1 such that L(AG1) = {t ∈ T (F) | t, root |= ϕ1}.

Solution:

ϕ1
def
= ϕS↓ ∧ [↓∗]

(
likes =⇒ 〈↓; first?;ϕS?;→;ϕNP↓?;→;ϕVP?;→;ϕNP↓?〉last

thinks =⇒ 〈↓; first?;ϕS?;→;ϕNP↓?;→;ϕVP?〉last

Bill =⇒ 〈↓; first?;ϕNP?〉last

someone =⇒ 〈↓; first?;ϕNP?〉last

real =⇒ 〈↓; first?;ϕNP?〉last

fake =⇒ 〈↓; first?;ϕNP?〉last

mushrooms =⇒ 〈↓; first?;ϕNP?〉last

possibly =⇒ 〈↓; first?;ϕVP?〉last

ε =⇒ leaf
)

where

ϕS↓
def
= likes ϕNP↓

def
= Bill ∨mushrooms ∨ someone

ϕS
def
= thinks ∨ ε ϕVP

def
= possibly ∨ ε ϕNP

def
= real ∨ fake ∨ ε

1.1 Macro Tree Transducers

Let X be a countable set of variables and Y a countable set of parameters; we assume X and
Y to be disjoint. For Q a ranked alphabet with arities greater than zero, we abuse notations

and write Q(X) for the alphabet of pairs (q, x) ∈ Q × X with arity(q, x)
def
= arity(q) − 1.

This is just for convenience, and (q, x)(t1, . . . , tn) is really the term q(x, t1, . . . , tn).

Syntax. A macro tree transducer (NMTT) is a tuple M = (Q,F ,F ′,∆, I) where Q is
a finite set of states, all of arity ≥ 1, F and F ′ are finite ranked alphabets, I ⊆ Q1 is
a set of root states of arity one, and ∆ is a finite set of term rewriting rules of the form
q(f(x1, . . . , xn), y1, . . . , yp) → e where q ∈ Q1+p for some p ≥ 0, f ∈ Fn for some n ∈ N,

MPRI 2-27-1 November 21, 2018

and e ∈ T (F ′ ∪Q(Xn),Yp). Note that this imposes that any occurrence in e of a variable
x ∈ X must be as the first argument of a state q ∈ Q.

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in

T (F∪F ′∪Q) is defined by: t
IO−→ t′ if there exist a rule q(f(x1, . . . , xn), y1, . . . , yp)→ e in ∆,

a context C ∈ C(F ∪F ′ ∪Q), and two substitutions σ:X → T (F) and ρ:Y → T (F ′) such
that t = C[q(f(x1, . . . , xn), y1, . . . , yp)σρ] and t′ = C[eσρ]. In other words, in inside-out
rewriting, when applying a rewriting rule q(f(x1, . . . , xn), y1, . . . , yp) → e, the parameters
y1, . . . , yp must be mapped to trees in T (F ′), with no remaining states from Q.

Similarily to context-free tree grammars, the inside-out transduction JMKIO realised
by M is defined through inside-out rewriting semantics:

JMKIO
def
= {(t, t′) ∈ T (F)× T (F ′) | ∃q ∈ I . q(t) IO−→

∗
t′} .

Example 1. Let F def
= {a(1), $(0)} and F ′ def

= {f (3), a(1), b(1), $(0)}. Consider the NMTT

M = ({q(1), q′(3)},F ,F ′,∆, {q}) with ∆ the set of rules

q(a(x1))→ q′(x1, $, $) q′($, y1, y2)→ f(y1, y1, y2)

q′(a(x1), y1, y2)→ q′(x1, a(y1), a(y2)) q′(a(x1), y1, y2)→ q′(x1, a(y1), b(y2))

q′(a(x1), y1, y2)→ q′(x1, b(y1), a(y2)) q′(a(x1), y1, y2)→ q′(x1, b(y1), b(y2))

Then we have for instance the following derivation:

q(a(a(a($))))
IO−→ q′(a(a($)), $, $)

IO−→ q′(a($), b($), b($))

IO−→ q′($, a(b($)), b(b($)))

IO−→ f(a(b($)), a(b($)), b(b($)))

showing that (a(a(a($))), f(a(b($)), a(b($)), b(b($)))) ∈ JMK.

Exercise 2 (Monadic trees). An NMTT M is called linear and non-deleting if, in ev-
ery rule q(f(x1, . . . , xn), y1, . . . , yp) → e in ∆, the term e is linear in {x1, . . . , xn} and
{y1, . . . , yp}, i.e. each variable and each parameter occurs exactly once in the term e.

Let F ′ def
= {a(1), b(1), $(0)}. Observe that trees in T (F ′) are in bijection with contexts

in C(F ′) and words over {a, b}∗. For a context C from C(F ′), we write CR for its mirror
context, read from the leaf to the root. For instance, if C = a(b(a(a(2)))), then CR =
a(a(b(a(2)))). Formally, let n ∈ N be such that domC = {0m | m ≤ n}; then C(0n) = 2

and C(0m) ∈ {a, b} for m < n. Then CR is defined by domCR def
= domC, CR(0n)

def
= 2,

and CR(0m)
def
= CR(0n−m) for all m < n.

MPRI 2-27-1 November 21, 2018

1.[2] Give a linear and non-deleting NMTTM from F ′ to F ′ such that JMKIO = {(C[$], C[CR[$]]) |
C ∈ C(F ′)}. In terms of words over {a, b}∗, this transducer maps w to the palindrome
wwR. Is JMKIO(T (F)) a recognisable tree language?

Solution: Let M def
= (Q,F ′,F ′,∆, I) where Q

def
= {q(1)i , q(2)}, I def

= {qi}, and ∆ is the
set of rules

qi($)→ $ qi(a(x1))→ a(q(x1, a($))) qi(b(x1))→ b(q(x1, b($)))

q($, y1)→ y1 q(a(x1), y1)→ a(q(x1, a(y1))) q(b(x1), y1)→ b(q(x1, b(y1))) .

We leave the proof of correctness to the reader.

This macro tree transducer is deterministic, and complete. Because a monadic tree
language over F ′ is recognisable if and only if the corresponding word language over
{a, b} is recognisable, JMKIO(T (F)) is not a recognisable tree language. In turn, this
shows that recognisable tree languages are not closed under linear non-deleting macro
transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar
G1 from Exercise 1.

1.[3] Give a linear non-deleting NMTTM1 that maps the derivation trees of G1 to its derived
trees. Formally, we want dom(JM1KIO) = LD(G1) and JM1KIO(T (F)) = LT (G1).

Solution: We set F ′ def= N] Σ, Q
def
= {q(1)S↓ , q

(2)
S , q

(1)
NP↓, q

(2)
NP, q

(2)
VP}, I

def
= {q(1)S }, and ∆:

q
(1)
S↓ (likes(x1, x2, x3, x4))→ q

(2)
S

x1 S

q
(1)
NP↓

x2

q
(2)
VP

x3 VP

VBZ� q
(1)
NP↓

x4

MPRI 2-27-1 November 21, 2018

q
(2)
S (thinks(x1, x2, x3), y1)→ q

(2)
S

x1 S

q
(1)
NP↓

x2

q
(2)
VP

x3 VP

VB� y1

q
(2)
S (ε, y1)→ y1

q
(1)
NP↓(Bill(x1))→ q

(2)
NP

x1 NP

NNP�

q
(1)
NP↓(mushrooms(x1))→ q

(2)
NP

x1 NP

NNS�

q
(1)
NP↓(someone(x1))→ q

(2)
NP

x1 NP

PN �

q
(2)
NP(real(x1), y1)→ q

(2)
NP

x1 NP

JJ� y1

q
(2)
NP(fake(x1), y1)→ q

(2)
NP

x1 NP

JJ� y1

q
(2)
NP(ε, y1)→ y1

q
(2)
VP(possibly(x1), y1)→ q

(2)
VP

x1 VP

RB� y1

q
(2)
VP(ε, y1)→ y1

MPRI 2-27-1 November 21, 2018

Exercise 4 (Context-free tree grammar). Let M = (Q,F ,F ′,∆, I) be an NMTT and
A = (Q′,F , δ, I ′) be an NFTA.

1.[5] Show that L
def
= JMKIO(L(A)) = {t′ ∈ T (F ′) | ∃t ∈ L(A) . (t, t′) ∈ JMKIO} is an inside-

out context-free tree language, i.e., show how to construct a CFTG G = (N,F ′, S, R)
such that LIO(G) = L.

Solution: Let

N
def
= (Q×Q′)] {S}

where each pair (q(1+p), q′) from Q×Q′ has arity p, and

R
def
= {S → (q, q′)(0) | q ∈ I, q′ ∈ I ′}
∪ {(q, q′)(p)(y1, . . . , yp)→ e[q′i/xi]i | ∃n . ∃f ∈ Fn . q(1+p)(f(x1, . . . , xn), y1, . . . , yn)→ e ∈ ∆

and (q′, f, q′1, . . . , q
′
n) ∈ δ}

where we abuse notation as indicated at the beginning of the section. For a tree
e ∈ T (N ∪ F ′), we let N(e) = {(q1, q′1), . . . , (qn, q′n)} be the set of symbols from N
occurring inside e.

Let us show that, for all k ∈ N, for all e ∈ T (N∪F ′) withN(e) = {(q1, q′1), . . . , (qn, q′n)}
and for all t′ ∈ T (F ′), e IO

=⇒
k

G t
′ if and only if ∃t1, . . . , tn ∈ T (F) such that e[ti/q

′
i]1≤i≤n

IO
=⇒

k

M

t′ and for all 1 ≤ i ≤ n, ti
δB=⇒
∗
A q
′
i.

We prove the statement by induction, first over k the number of rewriting steps in G
andM, and second over the term e. We only prove the ‘if’ direction, as the ‘only if’
one is similar.

If Assume e
IO
=⇒

k

G t
′.

If e = f(e1, . . . , em) for some m ∈ N and f ∈ F ′m, then this rewrite can be
decomposed as

e = f(e1, . . . , em)
IO
=⇒

k

G f(t′1, . . . , t
′
m) = t′

where for all 1 ≤ j ≤ m, t′j ∈ T (F ′) is such that

ej
IO
=⇒

kj

G t′j

and

k =
∑

1≤j≤m

kj .

MPRI 2-27-1 November 21, 2018

Let N(ej) = {(qj,1, q′j,1), . . . , (qj,nj
, q′j,nj

)}; then N(e) =
⋃

1≤j≤mN(ej).

For each 1 ≤ j ≤ m, by induction hypothesis on the subterms ej since
kj ≤ k, there exist tj,1, . . . , tj,nj

∈ T (F) such that

ej[tj,i/q
′
j,i]1≤i≤nj

IO
=⇒

kj

M t′j

and

tj,i
δB=⇒
∗
A q
′
j,i

for all 1 ≤ i ≤ nj. Thus

f(e1, . . . , em)[tj,i/q
′
j,i]1≤j≤m,1≤i≤nj

IO
=⇒

k

M f(t′1, . . . , t
′
m) = t′

as desired.

If e = (q, q′)(p)(e1, . . . , ep) for some p ∈ N and (q, q′)(p) ∈ Q×Q′, then this
rewrite can be decomposed as

e = (q, q′)(p)(e1, . . . , ep)
IO
=⇒

k′

G (q, q′)(p)(t′1, . . . , t
′
p)

IO
=⇒G e′[q′i/xi]1≤i≤m[t′j/yj]1≤j≤p

IO
=⇒

k′′

G t′

where for all 1 ≤ j ≤ m, t′j ∈ T (F ′) is such that

ej
IO
=⇒

kj

G t′j

and k′ =
∑

1≤j≤m kj and k = 1+k′+k′′; alsoN(e) = {(q, q′)}∪
⋃

1≤j≤pN(ej)
where N(ej) = {(qj,1, q′j,1), . . . , (qj,nj

, q′j,nj
)}. Such a rule application re-

lies on the existence of m ∈ N and f ∈ Fm such that there are rules
q(1+p)(f(x1, . . . , xm), y1, . . . , yp)→ e′ ∈ ∆ and (q′, f, q′1, . . . , q

′
m) ∈ δ.

By induction hypothesis on kj < k for each 1 ≤ j ≤ p, there exist
tj,1, . . . , tj,nj

∈ T (F) such that

ej[tj,i/q
′
j,i]1≤i≤nj

IO
=⇒

kj

M t′j

and

tj,i
δB=⇒
∗
A q
′
j,i

for all 1 ≤ i ≤ nj.

MPRI 2-27-1 November 21, 2018

Furthermore, N(e′[t′j/yj]1≤j≤p[q
′
i/xi]1≤i≤m) = {(q1, q′1), . . . , (qm, q′m)} and

by induction hypothesis over k′′ < k, there exist t1, . . . , tm ∈ T (F) such
that

e′[t′j/yj]1≤j≤p[ti/xi]1≤i≤m
IO
=⇒

k′′

M t′

and

ti
δB=⇒
∗
A q
′
i

for all 1 ≤ i ≤ m. Note that, because (q′, f, q′1, . . . , q
′
m) ∈ δ, the latter

imply

f(t1, . . . , tm)
δB=⇒
∗
A f(q′1, . . . , q

′
m)

δB=⇒A q′ .

Thus, in M, we have the rewrite

e[f(t1, . . . , tm)/q][t′j,i/q
′
j,i]1≤j≤m,1≤i≤ni

= q(1+p)(f(t1, . . . , tm), e1[t
′
1,i/q

′
1,i]1≤i≤n1 , . . . , em[t′m,i/q

′
m,i]1≤i≤nm)

= q(1+p)(f(x1, . . . , xm), e1[t
′
1,i/q

′
1,i]1≤i≤n1 , . . . , em[t′m,i/q

′
m,i]1≤i≤nm)[t1/x1, . . . , tm/xm]

IO
=⇒

k′

M q(1+p)(f(x1, . . . , xm), t′1, . . . , t
′
p)[t1/x1, . . . , tm/xm]

IO
=⇒M e′[ti/xi]1≤i≤m[t′j/yj]1≤j≤p

IO
=⇒

k′′

M t′

as desired.

2 Scope ambiguities and propositional attitudes

Exercise 5. One considers the two following signatures:

(ΣABS) suzy : NP
bill : NP

mushroom : N
a : N → (NP → S)→ S

ainf : N → (NP → Sinf)→ Sinf

eat : NP → NP → Sinf

to : (NP → Sinf)→ VP
want : VP → NP → S

MPRI 2-27-1 November 21, 2018

(ΣS-FORM) Suzy : string
Bill : string

mushroom : string
a : string

eat : string
to : string

wants : string

where, as usual, string is defined to be o→ o for some atomic type o.

One then defines a morphism (LSYNT : ΣABS → ΣS-FORM) as follows:

(LSYNT) NP := string
N := string
S := string

Sinf := string
VP := string

suzy := Suzy
bill := Bill

mushroom := mushroom
a := λxy. y (a + x)

ainf := λxy. y (a + x)
eat := λxy. y + eat + x
to := λx. to + (x ε)

want := λxy. y + wants + x

where, as usual, the concatenation operator (+) is defined as functional composition, and
the empty word (ε) as the identity function.

1.[1] Give two different terms, say t0 and t1, such that:

LSYNT(t0) = LSYNT(t1) = Bill + wants + to + eat + a + mushroom

Solution:

t0 = want (to (λx.ainf mushroom (λy.eat y x)))bill

t1 = amushroom (λy.want (to (λx.eat y x))bill)

Exercise 6. One considers a third signature :

MPRI 2-27-1 November 21, 2018

(ΣL-FORM) suzy : ind
bill : ind

mushroom : ind→ prop
eat : ind→ ind→ prop

want : ind→ prop→ prop

One then defines a morphism (LSEM : ΣABS → ΣL-FORM) as follows:

(LSEM) NP := ind
N := ind→ prop
S := prop

Sinf := prop
VP := ind→ prop

suzy := suzy
bill := bill

mushroom := mushroom
a := λxy.∃z. (x z) ∧ (y z)

ainf := λxy.∃z. (x z) ∧ (y z)
eat := λxy. eat y x
to := λx. x

want := λxy.want y (x y)

1.[1] Compute the different semantic interpretations of the sentence Bill wants to eat a
mushroom, i.e., compute LSEM(t0) and LSEM(t1).

Solution:

LSEM(t0) = wantbill (∃z. (mushroom z) ∧ (eat bill z))

LSEM(t1) = ∃z. (mushroom z) ∧ (wantbill (eat bill z))

Exercise 7. One extends ΣABS and LSYNT, respectively, as follows:

(ΣABS) want2 : VP → NP → S

(LSYNT) want2 := λxyz. z + wants + x+ y

1.[1] Extend LSEM accordingly in order to allow for the analysis of a sentence such as Bill
wants Suzy to eat a mushroom.

MPRI 2-27-1 November 21, 2018

Solution:

(LSEM) want2 := λxyz.want z (y x)

Exercise 8. One extends ΣABS as follows:

(ΣABS) everyone : (NP → S)→ S
think : S → NP → S

in order to allow for the analysis of the following sentence:

(1) everyone thinks Bill wants to eat a mushroom.

1.[3] Extend ΣS-FORM, LSYNT, ΣL-FORM, and LSEM accordingly.

Solution:

(ΣS-FORM) everyone : string
thinks : string

(LSYNT) everyone := λx. x everyone
think := λxy. y + thinks + x

(ΣL-FORM) human : ind→ prop
think : ind→ prop→ prop

(LSEM) everyone := λx.∀y. (human y)→ (x y)
think := λxy. think y x

2.[2] Give the several λ-terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:

everyone (λx.think (want (to (λz.ainf mushroom (λy.eat y z)))bill)x)

everyone (λx.think (amushroom (λy.want (to (λz.eat y z))bill))x)

everyone (λx.amushroom (λy.think (want (to (λz.eat y z))bill)x))

amushroom (λy.everyone (λx.think (want (to (λz.eat y z))bill)x))

	Two-level Syntax
	Macro Tree Transducers

	Scope ambiguities and propositional attitudes

