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MPRI 2-27-1 Exam

Duration: 3 hours
Paper documents are allowed. The numbers in front of questions are indicative
of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar G = (N, 3, T,, T3, 5), the trees
in Lr(G) are called derived trees. We are interested here in another tree structure, called
a derivation tree, for which we propose a formalisation here. Let us assume for simplicity
that all the foot nodes of auxiliary trees have the "*" null adjunction annotation.

For an elementary tree v € T, W T, we define its contents c(v) to be a finite sequence
over the alphabet o {ga | A € Nw N]}. Formally, we enumerate for this the labels
in @) of its nodes in position order; the nodes labelled by > U N™ are ignored.

def def

Consider for instance the TAG G; with N = {S,NP,VP}, ¥ = {VBZo, NNPo, NNSo, RBo},

T, o {likes, Bill, mushrooms}, Tj aof {possibly}, and S aof S, where the elementary trees
are shown below:

S NP NP VP
/N | | /N
NP] VP NNPo NNSo RBo VP}?

/N
VBZo NP|
(likes) (Bill) (mushrooms) (possibly)

Then likes has contents c(likes) = gs, qnpy, qve, gnpy, ¢(Bill) = gnp, ¢(mushrooms) = qnp,

and c(possibly) = qvp.

We now define a finite ranked alphabet F < T, w Ts & {@}. For an elementary tree
v € T, W T, its rank is r(y) oof lc(7y)] the length of its contents. For the symbol e, its
rank is r(g) 0. For a TAG G = (N,X,T,,T3,S), we construct a finite tree automaton

Ag def (Q,F,0,qs;) where Q and F are defined as above and

5 {(ga, 0", c(a)) | AL € N, € T 1(a) = A}

U {(ga. B, ¢(8)) | A € N, 8 € T, 11(8) = A}
U {(qa,e®) | A€ N}

where ‘rl’ returns the root label of the tree.
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[1] 1. Give the finite automaton Ag, associated with the example TAG G;.

Solution:

Q = {gsy, QNP¢> gs, QVPa qNp}
F = {lzkes , BillW mushrooms(l),possz’bly(l),e(o)} ,

6 = {(gsy, likes™, gs, qnpy, Gve, anpy),

(gxpy, BillD, gxp),

(gnp ¢, mushrooms™ | qup),
(gs,¢?),

(qvp, POSSZbly ,QVP),
(QVPa ),

(qNP7 )}

[1] 2. Modify your automaton in order to also handle the trees someone € T, and real, fake, thinks €
T shown below, where PNo, JJo, VBo € X:

NP NP NP S
| /N /N /N
PNo JJo NP@  JJo NP NP| VP
/N
VBo S
(someone) (real) (fake) (thinks)

Solution: Add someone®, real(l), fake(l), and thinks® to F and the rules

(qui,someone(l), qNp)

(QNP,Teal(l), qnp)

(gnp ,fake(l), qnp)
(gs,thinks®, gs, qxpy, qvs)

to 9.

[1] 3. The intention that our finite automaton generates the derivation language Lp(G) &
L(Ag) of G. Can you figure out what should be the derivation tree of ‘Someone possibly
thinks Bill likes mushrooms’?



2]
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Solution:
likes
/N T
thinks Bill e mushrooms
I~ [ [
€ someone  possibly € €
| |
€ €

4. Give a PDL node formula ¢y such that L(Ag,) = {t € T(F) | t,ro0t = 1}

Solution:
o1 E pg) A [L( likes == ({;first?; ps?; —; onpL?; —; @vp?; —; @npy 7)last
thinks = ({;first?; os7; —; pnpy 75 —; @yp?)last
Bill = (J;first?; onp?)last
someone = (|;first?; pnp?)last
real = (;first?; onp?)last
fake — (];first?; onp?)last
mushrooms = ({;first?; pnp?)last
possibly = (J;first?; pyp?)last
e = leaf )
where
©sy L ikes NP}, & Bill v mushrooms V someone
©vs  thinks V & Ovp &t possibly \V e ONP X real v fake V e

1.1 Macro Tree Transducers

Let X be a countable set of variables and ) a countable set of parameters; we assume X and

Y to be disjoint. For () a ranked alphabet with arities greater than zero, we abuse notations

and write Q(X) for the alphabet of pairs (¢,z) € @ x X with arity(q, x) def arity(q) — 1.

This is just for convenience, and (g, x)(t1,...,t,) is really the term q(z,ty,...,t,).

Syntax. A macro tree transducer (NMTT) is a tuple M = (Q, F,F', A, I) where @ is
a finite set of states, all of arity > 1, F and F’ are finite ranked alphabets, I C @, is
a set of root states of arity one, and A is a finite set of term rewriting rules of the form
q(f(x1, .. @n), Y1, .-, Yp) = e where g € Q14 for some p > 0, f € F, for some n € N,
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and e € T(F' UQ(X,),Y,). Note that this imposes that any occurrence in e of a variable
x € X must be as the first argument of a state ¢ € Q).

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in

T(FUF'UQ) is defined by: ¢ 19, # if there exist a rule q(f(x1, oy @n) Yty ooy Yp) = €in A,
a context C' € C(FUF UQ), and two substitutions o: X — T'(F) and p: Y — T(F’) such
that ¢ = Clg(f(x1,...,Zn),Y1,-..,Yp)op] and ¢’ = Cleop|. In other words, in inside-out
rewriting, when applying a rewriting rule ¢(f(z1,...,2,),v1,...,Yy,) — e, the parameters
Y1,- .., Yp must be mapped to trees in T'(F’), with no remaining states from Q).

Similarily to context-free tree grammars, the inside-out transduction [M]o realised
by M is defined through inside-out rewriting semantics:

*

Mo & {(t,¢) e T(F) x T(F) | 3qg € I.q(t) > ¢} .

Example 1. Let F & {aM $OY and F' dof {3 a® b1 $O  Consider the NMTT
M = ({¢W, q’(3)},]-“, F' A {q}) with A the set of rules

q(a(r1)) — ¢'(21,8,9) q'(8,y1,92) = f(y1,91,92)
q'(a(z1),y1,92) — ¢ (x1,a(y1), a(y2)) q'(a(z1),y1,92) — ¢'(x1,a(y1), b(y2))
q'(a(xl), y1,y2) — q/(fEh 5(91)7 a(?ﬁ)) ql(a(fl)a y17y2) — ql(l‘h 5(91)7 b(y2))

Then we have for instance the following derivation:

g(a(a(a(9)))) > ¢'(a(a($)),$,$)
= (a($),b($),0($))
5 (8, a(b($)),b(b($)))
10
10,

showing that (a(a(a($))), f(a(b(3)),a(b($)),b(b($)))) € [M].

Exercise 2 (Monadic trees). An NMTT M is called linear and non-deleting if, in ev-
ery rule ¢(f(z1,...,20n),¥1,.-.,yp) — € in A, the term e is linear in {zy,...,2,} and
{y1,...,yp}, 1.e. each variable and each parameter occurs exactly once in the term e.

Let 7/ & {a® pM) $O} " Observe that trees in T(F') are in bijection with contexts
in C(F’) and words over {a,b}*. For a context C' from C(F’), we write CT for its mirror
context, read from the leaf to the root. For instance, if C = a(b(a(a(0)))), then CF =
a(a(b(a(d)))). Formally, let n € N be such that dom C' = {0™ | m < n}; then C'(0") = O
and C(0™) € {a,b} for m < n. Then C® is defined by dom C* ' dom C, CR(O0m) e,
and C(0™) & CR(0"=™) for all m < n.
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2] 1. Give alinear and non-deleting NMTT M from F’ to F’ such that [M]i0 = {(C[$], C[CE[$]]) |
C € C(F')}. In terms of words over {a, b}*, this transducer maps w to the palindrome
ww?. Is [M]io(T(F)) a recognisable tree language?

Solution: Let M & (Q, F',F',A I) where @ o {qgl),q(z)}, = {¢;}, and A is the

set of rules

¢(3) = gi(a(z1)) = alq(zy, a($))) qi(b(x1)) = blq(z1,b(8)))
43, 91) = v qla(z),pn) = alg(@r, alyr)))  q(b(z1),91) = blg(21, b(31))) -

We leave the proof of correctness to the reader.

This macro tree transducer is deterministic, and complete. Because a monadic tree
language over F' is recognisable if and only if the corresponding word language over
{a, b} is recognisable, [M]io(T'(F)) is not a recognisable tree language. In turn, this
shows that recognisable tree languages are not closed under linear non-deleting macro
transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar
G from [Exercise 1]

[3] 1. Give alinear non-deleting NMTT M, that maps the derivation trees of G; to its derived
trees. Formally, we want dom([Mi]i0) = Lp(G1) and [Mq]io(T(F)) = Lr(G1).

Solution: We set 7/ < N 3, Q (2} {qéli),qS ),ql(\lll)%,qNP,qVP} i {qS }, and A:

qéli) (likes(xy, 2, T3, T4)) — qg)

VRN
I S
OMC)
dNpp  dvp
| /N
T X3 VP
/N

VBZo q\p,
|

Zq
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Exercise 4 (Context-free tree grammar). Let M = (Q,F,F',A,I) be an NMTT and
A= (Q',F,s 1) be an NFTA.

[5] 1. Show that L o [IMlio(L(A)) ={t' e T(F') | 3t € L(A) . (t,t') € [M]io} is an inside-
out context-free tree language, i.e., show how to construct a CFTG G = (N, F', S, R)
such that Lio(G) = L.

Solution: Let
def
N=(QxQ)w{S}
where each pair (¢"*?), ¢') from Q x @' has arity p, and

RE{S = (9,4)” g€ l,d €I'}
U {(q7 ql)(p)(yh 000 7yp) — e[qz//xl]z ‘ dn . EIf € Fn o q(ler)(f(xl? 00 C 7xn)7 Y, - - - ,yn) —e€A
and (¢, f,q1,---.,q,) € 6}
where we abuse notation as indicated at the beginning of the section. For a tree

ee T(NUF), welet N(e) = {(q1,4}),---,(qn,q,)} be the set of symbols from N
occurring inside e.

Let us show that, for all k € N, for alle € T(NUF') with N(e) = {(q1,4}),---,(qn,q,)}

k k
and for allt’ € T(F'), e gg t"ifand only if 3¢y, ..., t, € T(F) such that e[t;/q}]1<i<n gM
t" and for all 1 <i <mn, t; %Aqg.

We prove the statement by induction, first over k the number of rewriting steps in G
and M, and second over the term e. We only prove the ‘if’ direction, as the ‘only if’
one is similar.

QkF ,
If Assume e =gt

Ife= f(e1y...,€em) for some m € N and f € F/ , then this rewrite can be
decomposed as

1QF / / /
e= f(er,...,em) =g f(t,...,t,) =t

where for all 1 < j < m, t; € T(F') is such that

k.
10k

and
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Let N(ej) = {(gj1, q3,1>a Sy (qj‘,nja q;',nj)}; then N(e) = U1§jgm N{(e;)-
For each 1 < j < m, by induction hypothesis on the subterms e; since
k; <k, there exist ¢;1,...,t;,, € T(F) such that

1Q ki
eilt;i/ @il 1<icn; =t

and
og ¥
i =>4 4j
for all 1 <¢ <mn;. Thus

g, 9
fler, ... em)tii/dilicicmacicn; = aq 1,0 ty) =1

as desired.

If e = (q,q") P (ey,...,e,) for some p € N and (¢,¢')?) € Q x Q', then this

rewrite can be decomposed as

0%
e=(q,¢)P(e,... ep) =g (4, )P, ... ,ty)
10
=g €[/ Tii<i<m[t;/Yih<i<p
k”
N
where for all 1 < j <m, 1} € T(F’) is such that

€; I:O>ZJ t;
and k' =}, i, kj and k = 1+k'+k"; also N(e) = {(¢, ¢') VU, <<, N(e;)
where N(ej) = {(4j1:d}1), - -+ (@ny» Gn, )} Such a rule application re-
lies on the existence of m € N and f € F,, such that there are rules
a1, Tm)s Yy -5 Yp) — € € Aand (¢, f,q,---,q,) €.
By induction hypothesis on k; < k for each 1 < j < p, there exist
tjt, .- tjn, € T(F) such that

10 ki
eilt;i/ @i al1<icn; = p t)

and

*

g /
tis =>4 Qi

for all 1 <1 <n,.
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Furthermore, N (€'t} /y;]1<j<pldi/il1<i<m) = {(q1,a1), - - -, (4m, ¢7,) } and
by induction hypothesis over k" < k, there exist ti,...,t,, € T(F) such

that
k/l
[t /yj]1<]<p[t [ Til1<i<m :>M t'

and

*

t; g,ﬁ\ 4

for all 1 < ¢ < m. Note that, because (¢, f,qi,...,q,) € d, the latter

imply
o * )
flt, - otm) =4 (@, ) =ad

Thus, in M, we have the rewrite

[f(t17 00 7tm)/q][ 7, z/q] z]lgjﬁm,lﬁlﬁnz
U (f(tr, - tm), et/ ili<ignn, - - > Emlti i/ Qi i) 1<i<nm)
1+p( [z, . $m) e[ty i/ icicnys - - - s Emltmi/ G ii<icna ) [t1 /21, - - -

1%
:>M @ (Fzy, .. ), b, - M i < = = o B ]
10
= M GI[ti/l‘i]1Si§m[t;/yj]1§jfp
k//
2t

as desired.

2 Scope ambiguities and propositional attitudes
Exercise 5. One considers the two following signatures:

(XaBs) suzy : NP
BILL : NP
MUSHROOM : N
A:N—(NP—S)—=S
Agpf N — (NP — Smf) — Smf
EAT : NP — NP — Siyy
TO : (NP — Siy) — VP
WANT : VP — NP — S

ton/ Tm)
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(Xs-rorm) Suzy :
Ball :

mushroom :

a:

eat :

to :

wants :

where, as usual, string is defined to be 0 — o for some atomic type o.

string
string
string
string
string
string
string

One then defines a morphism (Lsynt : Xaps — Zs.rorm) as follows:

(ESYNT) NP =
N

S

Smf .

VP =

SUZY =

BILL :=

MUSHROOM :=

A= Ary.y(a+x)
Apf = A2y.y (@ + )
EAT := A\ry.y + eat + x
TO := \x.to + (xe)
WANT = A\zy.y + wants + x

string
string
string
string
string

Suzy
Bill
mushroom

where, as usual, the concatenation operator (+) is defined as functional composition, and

the empty word (€) as the identity function.

1. Give two different terms, say ¢y and t;, such that:

Lsynt(to) = Lsynr(t1) = Bill + wants + to + eat + a + mushroom

Solution:

to = WANT (TO (Az. Ay MUSHROOM (Ay. EAT y x))) BILL
{1 = A MUSHROOM (Ay. WANT (TO (Az. EAT y x)) BILL)

Exercise 6. One considers a third signature :
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(3L-FORM) suzy : ind
bill : ind
mushroom : ind — prop
eat : ind — ind — prop
want : ind — prop — prop

One then defines a morphism (Lsgy @ Xaps — Lrroru) as follows:

(ACSEM) NP := ind
N :=ind — prop
S := prop
Smf ‘= prop

VP := ind — prop

SUZY := suzy
BILL := bill
MUSHROOM := mushroom
A=A ry. 3z (z2) A (y2)
A 1= Azy. Jz. (z2) A\ (y 2)
EAT := A\zy.eatyx
TO (= A\z. @
WANT := Azy. want y (xy)

[1] 1. Compute the different semantic interpretations of the sentence Bill wants to eat a
mushroom, i.e., compute Lsgpm(to) and Lspm(ty).

Solution:

Lsrm(to) = want bill (3z. (mushroom z) A (eat bill 2))
Lspm(t1) = Jz. (mushroom z) A (want bill (eat bill 2))

Exercise 7. One extends YXaps and LgynT, respectively, as follows:
(XaBs) WANT2: VP — NP — S
(LsynT) WANT2 := A\zyz.z + wants +x +y

[1] 1. Extend Lggym accordingly in order to allow for the analysis of a sentence such as Bill
wants Suzy to eat a mushroom.
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Solution:

(Lspm) WANT2 := A\xyz. want z (y )

Exercise 8. One extends Yapg as follows:

(XaBs) EVERYONE: (NP — S)— S
THINK : § — NP — S

in order to allow for the analysis of the following sentence:

(1) everyone thinks Bill wants to eat a mushroom.

3] 1. Extend ¥g.rorm, LsynT, Lr-ForM, and Lggy accordingly.

Solution:
(Xs.rorM) everyome : string
thinks : string

(LsynT) EVERYONE := A\x.x everyone
THINK := A\zy.y + thinks + x

(ZL-FORM) human : ind — prop
think : ind — prop — prop

(Lsem) EVERYONE := Az.Vy. (humany) — (zy)
THINK := A\zy.thinkyx

2] 2. Give the several A-terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:

EVERYONE (Az. THINK (WANT (TO (A2. A;,f MUSHROOM (Ay. EAT y 2))) BILL) 7)
EVERYONE (Az. THINK (A MUSHROOM (Ay. WANT (TO (Az. EAT y z)) BILL)) x)

EVERYONE (Az. A MUSHROOM (Ay. THINK (WANT (TO (Az. EATy z)) BILL) ))
A MUSHROOM (\y. EVERYONE (Az. THINK (WANT (TO (Az. EAT y z)) BILL) x))
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