MPRI 2-27-1 Exam

Duration: 3 hours

Paper documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar $\mathcal{G} = \langle N, \Sigma, T_\alpha, T_\beta, S \rangle$, the trees in $L_T(\mathcal{G})$ are called *derived* trees. We are interested here in another tree structure, called a derivation tree, for which we propose a formalisation here. Let us assume for simplicity that all the foot nodes of auxiliary trees have the 'na' null adjunction annotation.

For an elementary tree $\gamma \in T_\alpha \oplus T_\beta$, we define its *contents* $c(\gamma)$ to be a finite sequence over the alphabet $Q \stackrel{\text{def}}{=} \{q_A \mid A \in N \cup N\}$. Formally, we enumerate for this the labels in Q of its nodes in position order; the nodes labelled by $\Sigma \cup N^{na}$ are ignored.

Consider for instance the TAG \mathcal{G}_1 with $N \stackrel{\text{def}}{=} \{S, NP, VP\}$, $\Sigma \stackrel{\text{def}}{=} \{VBZ\diamond, NNP\diamond, NNS\diamond, RB\diamond\},\$ $T_{\alpha} \stackrel{\text{def}}{=} \{likes, Bill, mustrooms\}, T_{\beta} \stackrel{\text{def}}{=} \{possibly\}, \text{ and } S \stackrel{\text{def}}{=} S, \text{ where the elementary trees}$ are shown below:

Then likes has contents $c(likes) = q_s, q_{NP\downarrow}, q_{VP}, q_{NP\downarrow}, c(Bill) = q_{NP}, c(mushrooms) = q_{NP}$ and $c(possibly) = q_{VP}$.

We now define a finite ranked alphabet $\mathcal{F} \stackrel{\text{def}}{=} T_{\alpha} \oplus T_{\beta} \oplus {\epsilon^{(0)}}$. For an elementary tree $\gamma \in T_\alpha \oplus T_\beta$, its rank is $r(\gamma) \stackrel{\text{def}}{=} |c(\gamma)|$ the length of its contents. For the symbol ε , its rank is $r(\varepsilon) \stackrel{\text{def}}{=} 0$. For a TAG $\mathcal{G} = \langle N, \Sigma, T_\alpha, T_\beta, S \rangle$, we construct a finite tree automaton $\mathcal{A}_{\mathcal{G}} \stackrel{\text{def}}{=} \langle Q, \mathcal{F}, \delta, q_{S\downarrow} \rangle$ where Q and \mathcal{F} are defined as above and

$$
\delta \stackrel{\text{def}}{=} \{ (q_{A\downarrow}, \alpha^{(r(\alpha))}, c(\alpha)) \mid A\downarrow \in N\downarrow, \alpha \in T_{\alpha}, \text{rl}(\alpha) = A \}
$$

$$
\cup \{ (q_A, \beta^{(r(\beta))}, c(\beta)) \mid A \in N, \beta \in T_{\beta}, \text{rl}(\beta) = A \}
$$

$$
\cup \{ (q_A, \varepsilon^{(0)}) \mid A \in N \}
$$

where 'rl' returns the root label of the tree.

[1] 1. Give the finite automaton $\mathcal{A}_{\mathcal{G}_1}$ associated with the example TAG \mathcal{G}_1 .

Solution:

$$
Q = \{q_{S\downarrow}, q_{NP\downarrow}, q_S, q_{VP}, q_{NP}\},
$$

\n
$$
\mathcal{F} = \{likes^{(4)}, Bill^{(1)}, mushrooms^{(1)}, possibly^{(1)}, \varepsilon^{(0)}\},
$$

\n
$$
\delta = \{(q_{S\downarrow}, likes^{(4)}, q_S, q_{NP\downarrow}, q_{VP}, q_{NP\downarrow}),
$$

\n
$$
(q_{NP\downarrow}, Bill^{(1)}, q_{NP}),
$$

\n
$$
(q_{NP\downarrow}, mushrooms^{(1)}, q_{NP}),
$$

\n
$$
(q_{SP}, \varepsilon^{(0)}),
$$

\n
$$
(q_{VP}, \varepsilon^{(0)}),
$$

\n
$$
(q_{NP}, \varepsilon^{(0)})
$$

[1] 2. Modify your automaton in order to also handle the trees *someone* $\in T_{\alpha}$ and *real*, fake, thinks \in T_β shown below, where $PN \diamond$, $JJ \diamond$, $VB \diamond \in \Sigma$:

Solution: Add *someone*⁽¹⁾, *real*⁽¹⁾, *fake*⁽¹⁾, and *thinks*⁽³⁾ to $\mathcal F$ and the rules

$$
(q_{\rm NP\downarrow}, someone^{(1)}, q_{\rm NP})
$$

\n
$$
(q_{\rm NP}, real^{(1)}, q_{\rm NP})
$$

\n
$$
(q_{\rm NP}, fake^{(1)}, q_{\rm NP})
$$

\n
$$
(q_{\rm S}, thinks^{(3)}, q_{\rm S}, q_{\rm NP\downarrow}, q_{\rm VB})
$$

to δ .

[1] 3. The intention that our finite automaton generates the *derivation* language $L_D(\mathcal{G}) \stackrel{\text{def}}{=}$ $L(\mathcal{A}_{G})$ of G. Can you figure out what should be the derivation tree of 'Someone possibly thinks Bill likes mushrooms'?

[2] 4. Give a PDL node formula φ_1 such that $L(\mathcal{A}_{\mathcal{G}_1}) = \{t \in T(\mathcal{F}) \mid t, \text{root} \models \varphi_1\}.$

Solution:

$$
\varphi_1 \stackrel{\text{def}}{=} \varphi_{S\downarrow} \land [\downarrow^*] \qquad \qquad likes \implies \langle \downarrow; \text{first?}; \varphi_{S}?; \rightarrow; \varphi_{NP\downarrow}?; \rightarrow; \varphi_{VP}?; \rightarrow; \varphi_{NP\downarrow}? \rangle \text{last}
$$
\n
$$
\qquad \qquad thinks \implies \langle \downarrow; \text{first?}; \varphi_{S}?; \rightarrow; \varphi_{NP\downarrow}?; \rightarrow; \varphi_{VP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \text{some one} \implies \langle \downarrow; \text{first?}; \varphi_{NP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \text{some one} \implies \langle \downarrow; \text{first?}; \varphi_{NP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \text{rate} \implies \langle \downarrow; \text{first?}; \varphi_{NP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \text{fake} \implies \langle \downarrow; \text{first?}; \varphi_{NP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \text{mushrooms} \implies \langle \downarrow; \text{first?}; \varphi_{NP?} \rangle \text{last}
$$
\n
$$
\qquad \qquad \varphi_{VP?} \text{last}
$$
\n
$$
\qquad \qquad \varepsilon \implies \text{leaf} \quad \rangle
$$

where

$$
\varphi_{S\downarrow} \stackrel{\text{def}}{=} \text{likes} \qquad \varphi_{NP\downarrow} \stackrel{\text{def}}{=} \text{Bill} \vee \text{mushrooms} \vee \text{ someone}
$$
\n
$$
\varphi_{S} \stackrel{\text{def}}{=} \text{thinks} \vee \varepsilon \qquad \varphi_{VP} \stackrel{\text{def}}{=} \text{possibly} \vee \varepsilon \qquad \varphi_{NP} \stackrel{\text{def}}{=} \text{real} \vee \text{fake} \vee \varepsilon
$$

1.1 Macro Tree Transducers

Let X be a countable set of variables and Y a countable set of parameters; we assume X and Y to be disjoint. For Q a ranked alphabet with arities greater than zero, we abuse notations and write $Q(\mathcal{X})$ for the alphabet of pairs $(q, x) \in Q \times \mathcal{X}$ with $arity(q, x) \stackrel{\text{def}}{=} arity(q) - 1$. This is just for convenience, and $(q, x)(t_1, \ldots, t_n)$ is really the term $q(x, t_1, \ldots, t_n)$.

Syntax. A macro tree transducer (NMTT) is a tuple $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ where Q is a finite set of states, all of arity ≥ 1 , $\mathcal F$ and $\mathcal F'$ are finite ranked alphabets, $I \subseteq Q_1$ is a set of root states of arity one, and Δ is a finite set of term rewriting rules of the form $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ where $q \in Q_{1+p}$ for some $p \geq 0, f \in \mathcal{F}_n$ for some $n \in \mathbb{N}$,

and $e \in T(\mathcal{F} \cup Q(\mathcal{X}_n), \mathcal{Y}_p)$. Note that this imposes that any occurrence in e of a variable $x \in \mathcal{X}$ must be as the first argument of a state $q \in Q$.

Inside-Out Semantics. Given a NMTT, the *inside-out* rewriting relation over trees in $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$ is defined by: $t \stackrel{\text{IO}}{\longrightarrow} t'$ if there exist a rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ in Δ , a context $C \in C(\mathcal{F} \cup \mathcal{F}' \cup Q)$, and two substitutions $\sigma: \mathcal{X} \to T(\mathcal{F})$ and $\rho: \mathcal{Y} \to T(\mathcal{F}')$ such that $t = C[q(f(x_1,...,x_n), y_1,..., y_p)\sigma\rho]$ and $t' = C[e\sigma\rho]$. In other words, in inside-out rewriting, when applying a rewriting rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e$, the parameters y_1, \ldots, y_p must be mapped to trees in $T(\mathcal{F}')$, with no remaining states from Q.

Similarily to context-free tree grammars, the *inside-out* transduction $\mathcal{M}\parallel_{\text{IO}}$ realised by M is defined through inside-out rewriting semantics:

$$
[\![\mathcal{M}]\!]_{\text{IO}} \stackrel{\text{def}}{=} \{ (t, t') \in T(\mathcal{F}) \times T(\mathcal{F}') \mid \exists q \in I \,.\, q(t) \stackrel{\text{IO}^*}{\longrightarrow} t' \} \,.
$$

Example 1. Let $\mathcal{F} \stackrel{\text{def}}{=} \{a^{(1)}, \mathcal{S}^{(0)}\}$ and $\mathcal{F}' \stackrel{\text{def}}{=} \{f^{(3)}, a^{(1)}, b^{(1)}, \mathcal{S}^{(0)}\}$. Consider the NMTT $\mathcal{M} = (\{q^{(1)}, q'^{(3)}\}, \mathcal{F}, \mathcal{F}', \Delta, \{q\})$ with Δ the set of rules

q(a(x1)) → q 0 (x1, \$, \$) q 0 (\$, y1, y2) → f(y1, y1, y2) q 0 (a(x1), y1, y2) → q 0 (x1, a(y1), a(y2)) q 0 (a(x1), y1, y2) → q 0 (x1, a(y1), b(y2)) q 0 (a(x1), y1, y2) → q 0 (x1, b(y1), a(y2)) q 0 (a(x1), y1, y2) → q 0 (x1, b(y1), b(y2))

Then we have for instance the following derivation:

$$
q(a(a(a(\mathbb{S})))) \xrightarrow{IO} q'(a(a(\mathbb{S})), \mathbb{S}, \mathbb{S})
$$

\n
$$
\xrightarrow{IO} q'(a(\mathbb{S}), b(\mathbb{S}), b(\mathbb{S}))
$$

\n
$$
\xrightarrow{IO} q'(\mathbb{S}, a(b(\mathbb{S})), b(b(\mathbb{S})))
$$

\n
$$
\xrightarrow{IO} f(a(b(\mathbb{S})), a(b(\mathbb{S})), b(b(\mathbb{S})))
$$

showing that $(a(a(a(\$))), f(a(b(\$)), a(b(\$)), b(b(\$))) \in [\! [\mathcal{M}]\!].$

Exercise 2 (Monadic trees). An NMTT M is called *linear* and *non-deleting* if, in every rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \rightarrow e$ in Δ , the term e is linear in $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_p\}$, i.e. each variable and each parameter occurs exactly once in the term e.

Let $\mathcal{F}' \stackrel{\text{def}}{=} \{a^{(1)}, b^{(1)}, \mathcal{F}^{(0)}\}$. Observe that trees in $T(\mathcal{F}')$ are in bijection with contexts in $C(\mathcal{F}')$ and words over $\{a,b\}^*$. For a context C from $C(\mathcal{F}')$, we write C^R for its mirror context, read from the leaf to the root. For instance, if $C = a(b(a(a(\Box))))$, then $C^R =$ $a(a(b(a(\Box))))$. Formally, let $n \in \mathbb{N}$ be such that dom $C = \{0^m \mid m \leq n\}$; then $C(0^n) = \Box$ and $C(0^m) \in \{a, b\}$ for $m < n$. Then C^R is defined by dom $C^R \stackrel{\text{def}}{=} \text{dom } C$, $C^R(0^n) \stackrel{\text{def}}{=} \square$, and $C^R(0^m) \stackrel{\text{def}}{=} C^R(0^{n-m})$ for all $m < n$.

[2] 1. Give a linear and non-deleting NMTT M from \mathcal{F}' to \mathcal{F}' such that $[\![\mathcal{M}]\!]_{\text{IO}} = \{ (C[\$], C[C^R[\$]]) \mid$
 $C \in C(\mathcal{F}')$ In terms of words over $[a, b]^*$, this transducer maps w to the polindroma $C \in C(\mathcal{F}')$. In terms of words over $\{a, b\}^*$, this transducer maps w to the palindrome ww^R. Is $\llbracket \mathcal{M} \rrbracket_{\text{IO}}(T(\mathcal{F}))$ a recognisable tree language?

Solution: Let $\mathcal{M} \stackrel{\text{def}}{=} (Q, \mathcal{F}', \mathcal{F}', \Delta, I)$ where $Q \stackrel{\text{def}}{=} \{q_i^{(1)}\}$ $i^{(1)}, q^{(2)}\}, I \stackrel{\text{def}}{=} \{q_i\}, \text{ and } \Delta \text{ is the }$ set of rules

$$
q_i(\$) \rightarrow \$ \qquad q_i(a(x_1)) \rightarrow a(q(x_1, a(\$))) \qquad q_i(b(x_1)) \rightarrow b(q(x_1, b(\$)))
$$

$$
q(\$, y_1) \rightarrow y_1 \qquad q(a(x_1), y_1) \rightarrow a(q(x_1, a(y_1))) \qquad q(b(x_1), y_1) \rightarrow b(q(x_1, b(y_1))) .
$$

We leave the proof of correctness to the reader.

This macro tree transducer is deterministic, and complete. Because a monadic tree language over \mathcal{F}' is recognisable if and only if the corresponding word language over ${a, b}$ is recognisable, $\mathcal{M}\vert_{\mathcal{I}}(T(\mathcal{F}))$ is not a recognisable tree language. In turn, this shows that recognisable tree languages are not closed under linear non-deleting macro transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar \mathcal{G}_1 from [Exercise 1.](#page-0-0)

[3] 1. Give a linear non-deleting NMTT \mathcal{M}_1 that maps the derivation trees of \mathcal{G}_1 to its derived trees. Formally, we want dom $([\mathcal{M}_1]]_{IO}) = L_D(\mathcal{G}_1)$ and $[\mathcal{M}_1]]_{IO}(T(\mathcal{F})) = L_T(\mathcal{G}_1)$.

Solution: We set $\mathcal{F}' \stackrel{\text{def}}{=} N \oplus \Sigma$, $Q \stackrel{\text{def}}{=} \{q_{\text{S}}^{(1)}\}$ $\mathrm{g}^{(1)}_{\downarrow},q^{(2)}_{\mathrm{S}}$ $q_\mathrm{N}^{(2)}, q_\mathrm{NP}^{(1)}$ $\binom{1}{NP\downarrow}, q_{NP}^{(2)}, q_{VP}^{(2)}\}, I \stackrel{\text{def}}{=} \{q_{S}^{(1)}\}$ $\{S}^{(1)}\}$, and Δ : $q_{\mathrm{S1}}^{(1)}$ $S_{\downarrow}^{(1)}(likes(x_1, x_2, x_3, x_4)) \rightarrow q_{\rm S}^{(2)}$ S x_1 S $q_{\rm NP}^{\left(1\right)}$ NP↓ $\overline{x_2}$ $q_{\mathrm{VP}}^{(2)}$ VP x_3 VP $VBZ\diamond q_{NP}^{(1)}$ NP↓ x_4

 ϵ

$$
q_{\rm NP}^{(2)}(thinks(x_1, x_2, x_3), y_1) \rightarrow q_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow s
$$
\n
$$
q_{\rm NP}^{(1)} \rightarrow q_{\rm VP}^{(2)}
$$
\n
$$
y_{\rm NP}^{(2)} \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(1)} \rightarrow s_2
$$
\n
$$
y_{\rm NP}^{(1)}
$$
\n
$$
q_{\rm NP}^{(1)}(Bill(x_1)) \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(1)}
$$
\n
$$
y_{\rm NP}^{(1)}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
x_1 \rightarrow \text{NP}
$$
\n
$$
y_{\rm NP}^{(2)}
$$
\n
$$
y_1 \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(2)}(fake(x_1), y_1) \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(2)}(fake(x_1), y_1) \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(2)}(fase(y_1), y_1) \rightarrow s_1
$$
\n
$$
y_{\rm NP}^{(2)}(g_1, g_2) \rightarrow g_1^{(2)}
$$
\n
$$
y_{\rm NP}^{
$$

Exercise 4 (Context-free tree grammar). Let $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ be an NMTT and $\mathcal{A} = (Q', \mathcal{F}, \delta, I')$ be an NFTA.

[5] 1. Show that $L \stackrel{\text{def}}{=} [\![\mathcal{M}]\!]_{\text{IO}}(L(\mathcal{A})) = \{t' \in T(\mathcal{F}') \mid \exists t \in L(\mathcal{A}) \cdot (t, t') \in [\![\mathcal{M}]\!]_{\text{IO}}\}$ is an inside-
out context free tree language i.e. show how to construct a CFTC $\mathcal{C} = (N, \mathcal{F}' \times \mathcal{D})$ out context-free tree language, i.e., show how to construct a CFTG $\mathcal{G} = (N, \mathcal{F}', S, R)$ such that $L_{\text{IO}}(\mathcal{G}) = L$.

Solution: Let

 $N \stackrel{\text{def}}{=} (Q \times Q') \uplus \{S\}$

where each pair $(q^{(1+p)}, q')$ from $Q \times Q'$ has arity p, and

$$
R \stackrel{\text{def}}{=} \{S \to (q, q')^{(0)} \mid q \in I, q' \in I'\}
$$

$$
\cup \{ (q, q')^{(p)}(y_1, \dots, y_p) \to e[q'_i/x_i]_i \mid \exists n \cdot \exists f \in \mathcal{F}_n \cdot q^{(1+p)}(f(x_1, \dots, x_n), y_1, \dots, y_n) \to e \in \Delta
$$

and $(q', f, q'_1, \dots, q'_n) \in \delta\}$

where we abuse notation as indicated at the beginning of the section. For a tree $e \in T(N \cup \mathcal{F}')$, we let $N(e) = \{(q_1, q'_1), \ldots, (q_n, q'_n)\}\$ be the set of symbols from N occurring inside e.

Let us show that, for all $k \in \mathbb{N}$, for all $e \in T(N \cup \mathcal{F}')$ with $N(e) = \{(q_1, q'_1), \ldots, (q_n, q'_n)\}\$ and for all $t' \in T(\mathcal{F}')$, $e \stackrel{\text{IO}}{\Rightarrow}_d^k$ $\frac{k}{\mathcal{G}} \ t' \text{ if and only if } \exists t_1, \ldots, t_n \in T(\mathcal{F}) \text{ such that } e[t_i / q'_i]_{1 \leq i \leq n} \stackrel{\text{IQ}}{\Rightarrow}_\mathcal{M} k$ $\mathcal M$ t' and for all $1 \leq i \leq n$, $t_i \stackrel{\delta_B^*}{\Rightarrow}_\mathcal{A} q'_i$.

We prove the statement by induction, first over k the number of rewriting steps in $\mathcal G$ and \mathcal{M} , and second over the term e. We only prove the 'if' direction, as the 'only if' one is similar.

- If Assume $e \stackrel{\mathrm{IO}}{\Rightarrow}_\mathcal{G}^k$ $\overset{\cdot \cdot }{{\cal G}}$ $t^{\prime }.$
	- If $e = f(e_1, \ldots, e_m)$ for some $m \in \mathbb{N}$ and $f \in \mathcal{F}'_m$, then this rewrite can be decomposed as

$$
e = f(e_1, \dots, e_m) \stackrel{\text{IO}}{\Rightarrow} g f(t'_1, \dots, t'_m) = t'
$$

where for all $1 \leq j \leq m$, $t'_j \in T(\mathcal{F}')$ is such that

$$
e_j \stackrel{\text{IO}}{\Rightarrow}^{k_j}_\mathcal{G} t'_j
$$

and

$$
k=\sum_{1\leq j\leq m}k_j.
$$

Let $N(e_j) = \{(q_{j,1}, q'_{j,1}), \ldots, (q_{j,n_j}, q'_{j,n_j})\};$ then $N(e) = \bigcup_{1 \leq j \leq m} N(e_j)$. For each $1 \leq j \leq m$, by induction hypothesis on the subterms e_j since $k_j \leq k$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(\mathcal{F})$ such that

$$
e_j[t_{j,i}/q'_{j,i}]_{1\leq i\leq n_j}\stackrel{\text{IQ}}{\Longrightarrow}_{\mathcal{M}}^{k_j}t'_j
$$

and

$$
t_{j,i}\stackrel{\delta_B}{\Longrightarrow}_\mathcal{A}^* q'_{j,i}
$$

for all $1 \leq i \leq n_j$. Thus

$$
f(e_1,..., e_m)[t_{j,i}/q'_{j,i}]_{1\leq j\leq m, 1\leq i\leq n_j} \stackrel{\text{IQ}^k}{\Rightarrow}_{\mathcal{M}} f(t'_1,..., t'_m) = t'
$$

as desired.

If $e = (q, q')^{(p)}(e_1, \ldots, e_p)$ for some $p \in \mathbb{N}$ and $(q, q')^{(p)} \in Q \times Q'$, then this rewrite can be decomposed as

$$
e = (q, q')^{(p)}(e_1, \dots, e_p) \stackrel{\text{IO}}{\Rightarrow}^k_g (q, q')^{(p)}(t'_1, \dots, t'_p)
$$

$$
\stackrel{\text{IO}}{\Rightarrow}^k_g e'[q'_i/x_i]_{1 \leq i \leq m}[t'_j/y_j]_{1 \leq j \leq p}
$$

$$
\stackrel{\text{IO}}{\Rightarrow}^k_g t'
$$

where for all $1 \leq j \leq m$, $t'_j \in T(\mathcal{F}')$ is such that

$$
e_j \stackrel{\text{IO}}{\Rightarrow}^{k_j}_\mathcal{G} t'_j
$$

and $k' = \sum_{1 \le j \le m} k_j$ and $k = 1 + k' + k''$; also $N(e) = \{(q, q')\} \cup \bigcup_{1 \le j \le p} N(e_j)$ where $N(e_j) = \{(q_{j,1}, q'_{j,1}), \ldots, (q_{j,n_j}, q'_{j,n_j})\}$. Such a rule application relies on the existence of $m \in \mathbb{N}$ and $f \in \mathcal{F}_m$ such that there are rules $q^{(1+p)}(f(x_1,...,x_m), y_1,..., y_p) \to e' \in \Delta \text{ and } (q', f, q'_1,..., q'_m) \in \delta.$

By induction hypothesis on $k_j < k$ for each $1 \leq j \leq p$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(\mathcal{F})$ such that

$$
e_j[t_{j,i}/q'_{j,i}]_{1\leq i\leq n_j}\stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{M}}^{k_j}t'_j
$$

and

$$
t_{j,i}\stackrel{\delta_B}{\Longrightarrow}_\mathcal{A}^q_{j,i}
$$

for all $1 \leq i \leq n_j$.

Furthermore, $N(e'[t'_j/y_j]_{1 \leq j \leq p}[q'_i/x_i]_{1 \leq i \leq m}) = \{(q_1, q'_1), \ldots, (q_m, q'_m)\}\$ and by induction hypothesis over $k'' < k$, there exist $t_1, \ldots, t_m \in T(\mathcal{F})$ such that

$$
e'[t'_j/y_j]_{1 \le j \le p}[t_i/x_i]_{1 \le i \le m} \stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{M}}^{k''} t'
$$

and

$$
t_i \stackrel{\delta_B}{\Longrightarrow}_\mathcal{A}^* q_i'
$$

for all $1 \leq i \leq m$. Note that, because $(q', f, q'_1, \ldots, q'_m) \in \delta$, the latter imply

$$
f(t_1,\ldots,t_m) \stackrel{\delta_B}{\Longrightarrow}_\mathcal{A} f(q'_1,\ldots,q'_m) \stackrel{\delta_B}{\Longrightarrow}_\mathcal{A} q'.
$$

Thus, in M , we have the rewrite

$$
e[f(t_1,...,t_m)/q][t'_{j,i}/q'_{j,i}]_{1\leq j\leq m, 1\leq i\leq n_i}
$$

\n
$$
= q^{(1+p)}(f(t_1,...,t_m), e_1[t'_{1,i}/q'_{1,i}]_{1\leq i\leq n_1},...,e_m[t'_{m,i}/q'_{m,i}]_{1\leq i\leq n_m})
$$

\n
$$
= q^{(1+p)}(f(x_1,...,x_m), e_1[t'_{1,i}/q'_{1,i}]_{1\leq i\leq n_1},...,e_m[t'_{m,i}/q'_{m,i}]_{1\leq i\leq n_m})[t_1/x_1,...,t_m/x_m]
$$

\n
$$
\stackrel{\text{IQ } k'}{\Rightarrow}_{\mathcal{M}} q^{(1+p)}(f(x_1,...,x_m), t'_1,...,t'_p)[t_1/x_1,...,t_m/x_m]
$$

\n
$$
\stackrel{\text{IQ } k''}{\Rightarrow}_{\mathcal{M}} e'[t_i/x_i]_{1\leq i\leq m}[t'_j/y_j]_{1\leq j\leq p}
$$

\n
$$
\stackrel{\text{IQ } k''}{\Rightarrow}_{\mathcal{M}} t'
$$

\nas desired.

2 Scope ambiguities and propositional attitudes

Exercise 5. One considers the two following signatures:

$$
\begin{array}{ll}\n(\Sigma_{\text{ABS}}) & \text{SUZY}: NP \\
& \text{BILL}: NP \\
& \text{A}: N \to (NP \to S) \to S \\
& \text{A}_{\text{inf}}: N \to (NP \to S_{\text{inf}}) \to S_{\text{inf}} \\
& \text{EAT}: NP \to NP \to S_{\text{inf}} \\
& \text{TO}: (NP \to S_{\text{inf}}) \to VP \\
& \text{WANT}: VP \to NP \to S\n\end{array}
$$

```
(\Sigma_{\text{S-FORM}}) Suzy : string
                        Bill : string
              mushroom : string
                           \boldsymbol{a} : string
                         eat : string
                          to : string
                     wants : string
```
where, as usual, *string* is defined to be $o \rightarrow o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{\text{SYNT}} : \Sigma_{\text{ABS}} \to \Sigma_{\text{S-FORM}})$ as follows:

 $(\mathcal{L}_{\text{SYNT}})$ $NP := string$ $N := string$ $S := string$ $S_{\text{inf}} := \text{string}$ $VP := string$ $suzy := Suzy$ $BILL := Bill$ $MUSH$ ROOM $:=$ mushroom $A := \lambda xy. y (\boldsymbol{a} + x)$ $A_{inf} := \lambda xy \cdot y \left(a + x \right)$ EAT := $\lambda xy. y + eat + x$ TO := $\lambda x.$ **to** + $(x \in)$ WANT := $\lambda xy. y + \textbf{wants} + x$

where, as usual, the concatenation operator $(+)$ is defined as functional composition, and the empty word (ϵ) as the identity function.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$
\mathcal{L}_{\text{SYNT}}(t_0) = \mathcal{L}_{\text{SYNT}}(t_1) = \textit{Bill} + \textit{wants} + \textit{to} + \textit{eat} + a + \textit{mushroom}
$$

Solution:

$$
t_0 = \text{WANT} \left(\text{TO} \left(\lambda x. \mathbf{A}_{\text{inf}} \text{ MUSHROOM} \left(\lambda y. \text{EAT } y \, x \right) \right) \right) \text{BILL}
$$

$$
t_1 = \text{A MUSHROOM} \left(\lambda y. \text{WANT} \left(\text{TO} \left(\lambda x. \text{EAT } y \, x \right) \right) \text{BILL} \right)
$$

Exercise 6. One considers a third signature :

 $(\Sigma_{\text{L-FORM}})$ suzy : ind bill : ind $mushroom : ind \rightarrow prop$ eat : ind \rightarrow ind \rightarrow prop want : ind \rightarrow prop \rightarrow prop

One then defines a morphism $(\mathcal{L}_{SEM} : \Sigma_{ABS} \to \Sigma_{L\text{-FORM}})$ as follows:

 $(\mathcal{L}_{\text{SEM}})$ $NP := \text{ind}$ $N := \text{ind} \rightarrow \text{prop}$ $S := \text{prop}$ $S_{inf} := \text{prop}$ $VP := \mathsf{ind} \to \mathsf{prop}$ $suzy := suzy$ $BILL := bill$ $MUSH$ ROO $M :=$ **mushroom** $A := \lambda xy$. $\exists z \ (x \ z) \land (y \ z)$ $A_{inf} := \lambda xy. \exists z. (xz) \wedge (yz)$ EAT := λxy eat y x TO := $\lambda x \cdot x$ WANT := λxy . want $y(x y)$

 $[1]$ 1. Compute the different semantic interpretations of the sentence *Bill wants to eat a* mushroom, i.e., compute $\mathcal{L}_{SEM}(t_0)$ and $\mathcal{L}_{SEM}(t_1)$.

Solution:

$$
\mathcal{L}_{\text{SEM}}(t_0) = \text{want bill} \left(\exists z. \left(\text{mushroom } z \right) \land \left(\text{eat bill } z \right) \right)
$$

$$
\mathcal{L}_{\text{SEM}}(t_1) = \exists z. \left(\text{mushroom } z \right) \land \left(\text{want bill} \left(\text{eat bill } z \right) \right)
$$

Exercise 7. One extends Σ_{ABS} and $\mathcal{L}_{\text{SYNT}}$, respectively, as follows:

$$
(\Sigma_{\text{ABS}})
$$
 WANT2 : $VP \rightarrow NP \rightarrow S$
 $(\mathcal{L}_{\text{SYNT}})$ WANT2 := $\lambda xyz. z + \text{wants} + x + y$

[1] 1. Extend \mathcal{L}_{SEM} accordingly in order to allow for the analysis of a sentence such as *Bill* wants Suzy to eat a mushroom.

Solution:

```
(\mathcal{L}_{\text{SEM}}) want z = \lambda xyz. want z(yx)
```
Exercise 8. One extends Σ_{ABS} as follows:

 (Σ_{ABS}) EVERYONE : $(NP \rightarrow S) \rightarrow S$ THINK : $S \rightarrow NP \rightarrow S$

in order to allow for the analysis of the following sentence:

- (1) everyone thinks Bill wants to eat a mushroom.
- [3] 1. Extend $\Sigma_{\text{S-FORM}}, \mathcal{L}_{\text{SYNT}}, \Sigma_{\text{L-FORM}},$ and \mathcal{L}_{SEM} accordingly.

[2] 2. Give the several λ -terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:

EVERYONE $(\lambda x.$ THINK (WANT (TO $(\lambda z. A_{inf}$ MUSHROOM $(\lambda y.$ EAT $y z))$) BILL) x) EVERYONE $(\lambda x.$ THINK $(A$ MUSHROOM $(\lambda y.$ WANT $(TO(\lambda z.$ EAT $y z))$ BILL $)) x)$ EVERYONE $(\lambda x. A$ MUSHROOM $(\lambda y. THINK (WANT (TO (\lambda z. EAT y z)) BILL) x))$ A MUSHROOM $(\lambda y. EVERYONE (\lambda x. THINK (WANT (TO (\lambda z. EAT y z)) BILL) x))$