Exam: Abstract Categorial Grammars

Duration: 3 hours.

Written documents are allowed. The numbers in front of questions are indicative of hardness or duration. Please put your answers to sections 1 and 2 on separate sheets; do not forget to write your name on both.

Quick Course Recap. Recall from the course that a higher-order linear signature is a triple $\Sigma = \langle A, C, \tau \rangle$ where A is a finite set of atomic types, C is a finite set of constants, and $\tau: C \to \mathcal{T}(A)$ is a function that assigns each constant in C to a linear implicative type α built over A, according to the syntax

$$\alpha ::= a \mid \alpha \multimap \alpha$$

where a ranges over A. By convention we consider \multimap to be right-associative, i.e. we write $\alpha \multimap \beta \multimap \gamma$ for $\alpha \multimap (\beta \multimap \gamma)$. The order of a linear type is defined inductively as

$$\operatorname{ord}(a) = 1$$
 $\operatorname{ord}(\alpha \multimap \beta) = \max(\operatorname{ord}(\alpha) + 1, \operatorname{ord}(\beta))$

Given a higher-order linear signature Σ , each linear lambda term of $\Lambda^{\circ}(\Sigma)$ can be assigned a type in $\mathcal{T}(A)$ by the typing system

$$\frac{1}{\vdash_{\Sigma} c : \tau(c)} (\mathsf{Cons}) \qquad \frac{1}{x : \alpha \vdash_{\Sigma} x : \alpha} (\mathsf{Var}) \qquad \frac{\Gamma, x : \alpha \vdash_{\Sigma} t : \beta}{\Gamma \vdash_{\Sigma} \lambda x.t : \alpha \multimap \beta} (\mathsf{Abs})$$

$$\frac{1}{\Gamma \vdash_{\Sigma} t : \alpha \multimap \beta} \Delta \vdash_{\Sigma} u : \alpha}{\Gamma, \Delta \vdash_{\Sigma} tu : \beta} (\mathsf{App})$$

Note that x occurs free in t exactly once in (Abs) and the environments Γ and Δ are disjoint in (App).

Given two higher-order linear signatures Σ_1 and Σ_2 , a linear higher-order homomorphism is generated by two functions $\eta: A_1 \to \mathcal{T}(A_1)$ on types and $\theta: C_1 \to \Lambda^{\circ}(\Sigma_2)$ on constants such that $\vdash_{\Sigma_2} \theta(c): \eta(\tau_1(c))$ for all c in C_1 , where η and θ are lifted in a natural way by $\eta(\alpha \multimap \beta) = \eta(\alpha) \multimap \eta(\beta)$ on the one hand, and $\theta(x) = x$, $\theta(\lambda x.t) = \lambda x.\theta(t)$, and $\theta(tu) = \theta(t)\theta(u)$ on the other hand.

An abstract categorial grammar is a tuple $\mathcal{G} = \langle \Sigma_1, \Sigma_2, \mathcal{L}, s \rangle$ where \mathcal{L} is a linear higher-order homomorphism from Σ_1 to Σ_2 and s is a distinguished type in $\mathcal{T}(A_1)$. The abstract language generated by \mathcal{G} is

$$\mathscr{A}(\mathcal{G}) = \{ t \in \Lambda^{\circ}(\Sigma_1) \mid \vdash_{\Sigma_1} t : s \}$$

while its object language is the image of the abstract language by the homomorphism: $\mathscr{L}(\mathcal{G}) = \{t \in \Lambda^{\circ}(\Sigma_2) \mid \exists u \in \mathscr{A}(\mathcal{G}) . t = \mathcal{L}(u)\}.$

1 Second-Order ACGs and Regular Tree Languages

Exercise 1 (Ground Lambda Terms). Let Σ be a second-order linear signature, i.e. a signature such that the type of any constant c is of form

$$\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$$

for atomic a_i 's in A. Consider the normalized typing system with a single rule

$$\frac{\vdash_{\Sigma} c : \tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0 \quad \vdash_{\Sigma}' t_1 : a_1 \ldots \vdash_{\Sigma}' t_n : a_n}{\vdash_{\Sigma}' c t_1 \cdots t_n : a_0} (\mathsf{App}')$$

We want to show that, for all ground terms t and atomic types $a, \vdash_{\Sigma} t : a$ if and only if $\vdash'_{\Sigma} t : a$.

[2] 1. Show that, if $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$, $0 \le i \le n$, and $\vdash_{\Sigma} t_j : a_j$ for all $1 \le j \le i$, then $\vdash_{\Sigma} c t_1 \cdots t_i : a_{i+1} \multimap \cdots \multimap a_n \multimap a_0$. Deduce that $\vdash'_{\Sigma} t : a$ implies $\vdash_{\Sigma} t : a$ if t is ground and a atomic.

By induction on $0 \leq i \leq n$. For the base case i = 0, (Cons) shows $\vdash_{\Sigma} c : \tau(c)$ as desired, and for the induction step, $\vdash_{\Sigma} c t_1 \cdots t_i : a_{i+1} \multimap \cdots \multimap a_n \multimap a_0$ (by induction hypothesis) together with $\vdash_{\Sigma} t_{i+1} : a_{i+1}$ allows to deduce $\vdash_{\Sigma} c t_1 \cdots t_i t_{i+1} : a_{i+2} \multimap \cdots \multimap a_n \multimap a_0$ via (App).

This suffices to mimic (App') in the original typing system.

[2] 2. Show that, if $\vdash_{\Sigma} t : \alpha$ for a ground term t and type α , then $t = c t_1 \cdots t_i$ for some constant c with $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0$, some $0 \le i \le n$, and some ground terms t_1, \ldots, t_i such that $\alpha = a_{i+1} \multimap \cdots \multimap a_n \multimap a_0$ and $\vdash_{\Sigma} t_j : a_j$ for $0 \le j \le i$ for some atomic types a_j 's.

By induction on t. For the base case, t = c and i = 0 as desired. For the induction step, $t = t't_{i+1}$ for some ground terms t' and t_{i+1} and the judgement $\vdash_{\Sigma} t : \alpha$ can only be the consequence of (App) with $\vdash_{\Sigma} t' : \beta \multimap \alpha$ and $\vdash_{\Sigma} t_{i+1} : \beta$. Since we are working with second-order types, $\beta = a_{i+1}$ is some atomic proposition and by induction hypothesis $t' = ct_1 \cdots t_i$ for a constant c with $\tau(c) = a_1 \multimap \cdots \multimap$ $a_n \multimap a_0$ and some ground terms t_1, \ldots, t_i such that $a_{i+1} \multimap \alpha = a_{i+1} \multimap a_{i+2} \multimap$ $\cdots \multimap a_n \multimap a_0$ and $\vdash_{\Sigma} t_j : a_j$ for $0 \le j \le i$ for some atomic types a_j 's. Hence $\alpha = a_{i+2} \multimap \cdots \multimap a_n \multimap a_0$ and $t = ct_1 \cdots t_i t_{i+1}$ as desired.

[1] 3. Deduce that $\vdash_{\Sigma} t : a$ implies $\vdash'_{\Sigma} t : a$ whenever t is a ground term and a an atomic type.

Let us show by induction on t that $\vdash_{\Sigma} t : a$ with t a ground term and a an atomic type that $\vdash'_{\Sigma} t : a$. By the previous question, $t = c t_1 \cdots t_n$ with $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a$ and $\vdash_{\Sigma} t_j : a_j$ for all $1 \le j \le n$. If n = 0 then t = c is a constant and (App') can be applied directly; otherwise by induction hypothesis $\vdash'_{\Sigma} t_j : a_j$ for all $1 \le j \le n$, hence (App') also applies to show $\vdash_{\Sigma} t : a$.

[2]

Exercise 2 (Local Tree Languages). For a second-order constant c with type $\tau(c) = a_1 - \cdots - a_n - a_0$, we call n its arity (and thus can see C as a ranked alphabet) and associate to the ground lambda term $t = c t_1 \cdots t_n$ the unique tree $\overline{t} = c^{(n)}(\overline{t}_1, \ldots, \overline{t}_n)$. Given a second-order signature Σ and a distinguished atomic type s, we define the tree language

 $\mathscr{G}(\Sigma, s) = \{ \overline{t} \in T(C) \mid \vdash_{\Sigma} t : s \text{ where } t \text{ is ground} \}.$

[1] 1. Consider the second-order linear signature Σ_0 with atomic types $A_0 = \{np, s, c\}$, constants $C_0 = \{\text{ALICE, BELIEVE, LEFT, SOMEONE, THAT}\}$, and typing

 $\begin{aligned} \tau_0(\text{ALICE}) &= np & \tau_0(\text{BELIEVE}) = c \multimap np \multimap s \\ \tau_0(\text{LEFT}) &= np \multimap s & \tau_0(\text{SOMEONE}) = np \\ \tau_0(\text{THAT}) &= s \multimap c \end{aligned}$

The corresponding ranked alphabet is $\mathcal{F}_0 = \{\text{ALICE}^{(0)}, \text{BELIEVE}^{(2)}, \text{LEFT}^{(1)}, \text{SOMEONE}^{(0)}, \text{THAT}^{(1)}\}.$ Give a tree automaton over \mathcal{F}_0 for $\mathscr{G}(\Sigma_0, s)$.

Let
$$\mathcal{A} = \langle Q, \mathcal{F}_0, \delta, I \rangle$$
 with $Q = A_0, I = \{s\}$, and

$$\delta = \{ (np, \text{ALICE}^{(0)}), \\ (s, \text{BELIEVE}^{(2)}, c, np) \\ (s, \text{LEFT}^{(1)}, np) \\ (np, \text{SOMEONE}^{(0)}) \\ (c, \text{THAT}^{(1)}, s) \} .$$

2. Let \mathcal{F} be a ranked alphabet. A deterministic top-down tree automaton $\mathcal{A} = \langle Q, \mathcal{F}, \delta, \{q_0\} \rangle$ is *local* if there exists a function $\ell: \mathcal{F} \to Q$ such that the rules in δ are all of the form $(\ell(f^{(n)}), f^{(n)}, q_1, \ldots, q_n)$. Such an automaton is *total* if exactly one rule of this form exists in δ for each $f^{(n)}$ in \mathcal{F} .

Show that, if L is recognized by a total local deterministic top-down tree automaton, then there is a second order linear signature Σ and a distinguished atomic type s such that $L = \mathscr{G}(\Sigma, s)$.

We define $A = Q, C = \mathcal{F}, s = q_0$, and $\tau(f^{(n)}) = q_1 \multimap \cdots q_n \multimap q_0$ if $(q_0, f^{(n)}, q_1, \ldots, q_n)$ is the rule associated with $f^{(n)}$ by δ . Let us show by induction on the ground term t that $\vdash_{\Sigma} t : q$ for q an atomic type iff $\bar{t} \Rightarrow_{\mathcal{A}}^+ q$. For the base case t = c, qatomic implies $\tau(c) = q$ iff $(q, c^{(0)}) \in \delta$ iff $\bar{t} = c \Rightarrow_{\mathcal{A}}^+ q$. For the induction step $t = ct_1 \cdots t_n$, by Exercise $1 \vdash_{\Sigma} t : q$ iff $\tau(c) = q_1 \multimap \cdots \multimap q_n \multimap q$ and $\vdash_{\Sigma} t_i : q_i$ for all $1 \leq i \leq n$, iff $(q, c^{(n)}, q_1, \ldots, q_n) \in \delta$ and $\bar{t}_i \Rightarrow_{\mathcal{A}}^+ q_i$ for all $1 \leq i \leq n$ by ind. hyp., iff $\bar{t} = c^{(0)}(\bar{t}_1, \ldots, \bar{t}_n) \Rightarrow_{\mathcal{A}}^+ q$. [2] 3. Show that, conversely, given a second-order signature Σ and a distinguished atomic type s, there exists a total local top-down deterministic tree automaton \mathcal{A} such that $L(\mathcal{A}) = \mathscr{G}(\Sigma, s)$.

We define $\mathcal{A} = \langle Q, \mathcal{F}, \delta, \{q_0\} \rangle$ total local deterministic top-down with Q = A, $\mathcal{F} = C, q_0 = s$, and

$$\delta = \{(a_0, c^{(n)}, a_1, \dots, a_n) \mid \tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a_0\};\$$

hence $\ell(c^{(n)}) = a_0$. Let us show by induction on t a ground term of Σ that $\vdash_{\Sigma} t : a$ for some atomic type a iff $\bar{t} \Rightarrow_{\mathcal{A}}^+ a$. For the base case where t = c is a constant, $\vdash_{\Sigma} c : a$ iff $\tau(c) = a$ iff $(a, c^{(0)}) \in \delta$. For the induction step, using Exercise 1, $\vdash_{\Sigma} t : a$ iff $t = ct_1 \cdots t_n$ with $\tau(c) = a_1 \multimap \cdots \multimap a_n \multimap a$ and $\vdash_{\Sigma} t_i : a_i$ for all $1 \le i \le n$, iff $(a, c^{(n)}, a_1, \ldots, a_n) \in \delta$ and $\bar{t}_i \Rightarrow_{\mathcal{A}}^+ a_i$ for all $1 \le i \le n$ by ind. hyp., iff $\bar{t} = c^{(n)}(\bar{t}_1, \ldots, \bar{t}_n) \Rightarrow_{\mathcal{A}}^+ a$.

[1] 4. Give an example of a regular tree language, which cannot be expressed as $\mathscr{G}(\Sigma, s)$ for any second-order linear signature Σ and distinguished atomic type s.

The language $L = \{f(g(a), g(b))\}$ is not local.

Exercise 3 (Regular Tree Languages). Fix some ranked alphabet \mathcal{F} . We define the generic tree signature $\Sigma_{\mathcal{F}} = \langle \{\sigma\}, \mathcal{F}, \tau_{\mathcal{F}} \rangle$ by $\tau_{\mathcal{F}}(f^{(n)}) = \overbrace{\sigma \multimap \cdots \multimap \sigma}^{n} \multimap \sigma = \sigma^{n} \multimap \sigma$. Let $\mathcal{G} = \langle \Sigma_{1}, \Sigma_{\mathcal{F}}, \mathcal{L}, s \rangle$ be an ACG with Σ_{1} a second-order linear signature and s an atomic type of A_{1} . We define the tree language of \mathcal{G} as

 $\mathscr{T}(\mathcal{G}) = \{ \bar{t} \in T(\mathcal{F}) \mid \exists t \text{ ground.} \exists u \in \mathscr{G}(\Sigma_1, s) . \mathcal{L}(u) \to_{\beta}^* t \}.$

[1] 1. Give an ACG \mathcal{G} s.t. $\mathscr{T}(\mathcal{G}) = \{f(g(a), g(b))\}.$

Let $A_1 = C_1 = \{f, g_1, g_2, a, b\}$ and

$$\begin{aligned} \tau_1(f) &= g_1 \multimap g_2 \multimap f & \tau_1(g_1) = a \multimap g_1 & \tau_1(g_2) = b \multimap g_2 \\ \tau_1(a) &= a & \tau_1(b) = b . \end{aligned}$$

Then $\mathscr{G}(\Sigma_1, f) = \{f(g_1(a), g_2(b))\}.$

Define $\eta(g_1) = \eta(g_2) = g^{(1)}$ and let η be the identity otherwise; let $\theta(\alpha) = \sigma$ for all atomic α in A_1 . Then $\mathcal{L}(\mathscr{G}(\Sigma_1, f)) = \{f(g(a), g(b))\}.$

[3] 2. Assume that $\max_{a \in A_1} \operatorname{ord}(a) = 1$. Show that $\mathscr{T}(\mathcal{G})$ is a regular tree language. Hint: consider the set of contexts $\{\operatorname{Sub}(\bar{t}) \mid \exists c \in C_1.\eta(c) \downarrow_{\beta\eta} \lambda x_1 \cdots x_n.t\}$, where $\operatorname{Sub}(\bar{t})$ denotes the set of subcontexts of a context \bar{t} , and $\bar{x} = x$ if x is a variable.

2 ACGs for Semantics

Exercise 4 (Covert movements and spurious ambiguities). Consider again the signature of Exercise 2.1, to which we add a constant QR, i.e., $\Sigma_0 = \langle A_0, C_0, \tau_0 \rangle$ where:

$$A_0 = \{np, s, c\}$$
 $C_0 = \{\text{ALICE, BELIEVE, LEFT, SOMEONE, THAT, QR}\}$

$$\begin{aligned} \tau_0(\text{ALICE}) &= np & \tau_0(\text{BELIEVE}) &= c \multimap np \multimap s \\ \tau_0(\text{LEFT}) &= np \multimap s & \tau_0(\text{SOMEONE}) &= np \\ \tau_0(\text{THAT}) &= s \multimap c & \tau_0(\text{QR}) &= np \multimap (np \multimap s) \multimap s \end{aligned}$$

Consider the signatures $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ and $\Sigma_2 = \langle A_2, C_2, \tau_2 \rangle$, which are respectively defined as follows:

$$A_1 = \{\sigma\}$$
 $C_1 = \{/\text{Alice}/, /\text{believes}/, /\text{left}/, /\text{someone}/, /\text{that}/\}$

$$\begin{aligned} \tau_1(/\text{Alice}/) &= \sigma \multimap \sigma & \tau_1(/\text{believes}/) &= \sigma \multimap \sigma \\ \tau_1(/\text{left}/) &= \sigma \multimap \sigma & \tau_1(/\text{someone}/) &= \sigma \multimap \sigma \\ \tau_1(/\text{that}/) &= \sigma \multimap \sigma \end{aligned}$$

$$A_2 = \{\iota, o\} \qquad C_2 = \{\mathbf{a}, \mathbf{left}, \mathsf{B}, \exists\}$$

$$\tau_2(\mathbf{a}) = \iota \qquad \qquad \tau_2(\mathbf{left}) = \iota \multimap o$$

$$\tau_2(\mathbf{B}) = \iota \multimap o \multimap o \qquad \qquad \tau_2(\exists) = (\iota \multimap o) \multimap o$$

Finally, define two linear higher-order homomorphisms \mathcal{L}_1 and \mathcal{L}_2 as follows:

$$\mathcal{L}_1(np) = \sigma \multimap \sigma \qquad \mathcal{L}_1(s) = \sigma \multimap \sigma \qquad \mathcal{L}_1(c) = \sigma \multimap \sigma$$

$$\begin{aligned} \mathcal{L}_1(\text{ALICE}) &= /\text{Alice}/ & \mathcal{L}_1(\text{BELIEVE}) &= \lambda x y. \ y + /\text{believes}/ + x \\ \mathcal{L}_1(\text{LEFT}) &= \lambda x. \ x + /\text{left}/ & \mathcal{L}_1(\text{SOMEONE}) &= /\text{someone}/ \\ \mathcal{L}_1(\text{THAT}) &= \lambda x. \ /\text{that}/ + x & \mathcal{L}_1(\text{QR}) &= \lambda x p. \ p \ x \end{aligned}$$

where a + b is defined as $\lambda x. a(bx)$,

$$\mathcal{L}_2(np) = (\iota \multimap o) \multimap o \qquad \mathcal{L}_2(s) = o \qquad \mathcal{L}_2(c) = o$$

$$\begin{aligned} \mathcal{L}_2(\text{ALICE}) &= \lambda k. \, k \, \mathbf{a} \\ \mathcal{L}_2(\text{LEFT}) &= \lambda k. \, k \, (\lambda x. \, \text{left} \, x) \\ \mathcal{L}_2(\text{THAT}) &= \lambda x. \, x \end{aligned} \qquad \begin{aligned} \mathcal{L}_2(\text{BELIEVE}) &= \lambda p k. \, k \, (\lambda x. \, \text{B} \, x \, p) \\ \mathcal{L}_2(\text{SOMEONE}) &= \lambda k. \, \exists x. \, k \, x \\ \mathcal{L}_2(\text{QR}) &= \dots \end{aligned}$$

[1] 1. Show that the two following terms

 $t_1 = \text{Believe} (\text{THAT} (\text{LEFT SOMEONE})) \text{ Alice}$ $t_2 = \text{QR SOMEONE} (\lambda x. \text{Believe} (\text{THAT} (\text{LEFT} x)) \text{ Alice})$

get the same interpretation under \mathcal{L}_1 .

- [1] 2. Compute $\mathcal{L}_2(t_1)$.
- [2] 3. Define $\mathcal{L}_2(QR)$ in such a way that $\mathcal{L}_2(t_2)$ yields the *de re* interpretation (i.e., the interpretation where the existential quantifier takes wide scope over the modal operator).
- [3] 4. Show that there is an infinity of terms u_0, u_1, u_2, \ldots such that:

$$\mathcal{L}_1(u_i) = /\text{Alice} / + /\text{believes} / + /\text{that} / + /\text{someone} / + /\text{left} /$$