MPRI 2-27-1 Exam

Duration: 3 hours

Paper documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar $\mathcal{G} = \langle N, \Sigma, T_{\alpha}, T_{\beta}, S \rangle$, the trees in $L_T(\mathcal{G})$ are called *derived* trees. We are interested here in another tree structure, called a *derivation* tree, for which we propose a formalisation here. Let us assume for simplicity that all the foot nodes of auxiliary trees have the 'na' null adjunction annotation.

For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, we define its *contents* $c(\gamma)$ to be a finite sequence over the alphabet $Q \stackrel{\text{def}}{=} \{q_A \mid A \in N \uplus N \downarrow\}$. Formally, we enumerate for this the labels in Q of its nodes in position order; the nodes labelled by $\Sigma \cup N^{\text{na}}$ are ignored.

Consider for instance the TAG \mathcal{G}_1 with $N \stackrel{\text{def}}{=} \{S, NP, VP\}$, $\Sigma \stackrel{\text{def}}{=} \{VBZ \diamond, NNP \diamond, NNS \diamond, RB \diamond\}$, $T_{\alpha} \stackrel{\text{def}}{=} \{likes, Bill, mushrooms\}$, $T_{\beta} \stackrel{\text{def}}{=} \{possibly\}$, and $S \stackrel{\text{def}}{=} S$, where the elementary trees are shown below:

Then likes has contents $c(likes) = q_S, q_{NP\downarrow}, q_{VP}, q_{NP\downarrow}, c(Bill) = q_{NP}, c(mushrooms) = q_{NP},$ and $c(possibly) = q_{VP}$.

We now define a finite ranked alphabet $\mathcal{F} \stackrel{\text{def}}{=} T_{\alpha} \uplus T_{\beta} \uplus \{\varepsilon^{(0)}\}$. For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, its rank is $r(\gamma) \stackrel{\text{def}}{=} |c(\gamma)|$ the length of its contents. For the symbol ε , its rank is $r(\varepsilon) \stackrel{\text{def}}{=} 0$. For a TAG $\mathcal{G} = \langle N, \Sigma, T_{\alpha}, T_{\beta}, S \rangle$, we construct a finite tree automaton $\mathcal{A}_{\mathcal{G}} \stackrel{\text{def}}{=} \langle Q, \mathcal{F}, \delta, q_{S\downarrow} \rangle$ where Q and \mathcal{F} are defined as above and

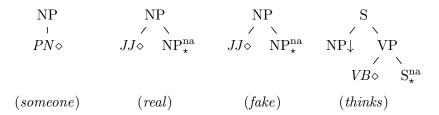
$$\delta \stackrel{\text{def}}{=} \{ (q_{A\downarrow}, \alpha^{(r(\alpha))}, c(\alpha)) \mid A\downarrow \in N\downarrow, \alpha \in T_{\alpha}, \text{rl}(\alpha) = A \}$$

$$\cup \{ (q_A, \beta^{(r(\beta))}, c(\beta)) \mid A \in N, \beta \in T_{\beta}, \text{rl}(\beta) = A \}$$

$$\cup \{ (q_A, \varepsilon^{(0)}) \mid A \in N \}$$

where 'rl' returns the root label of the tree.

- [1] 1. Give the finite automaton $\mathcal{A}_{\mathcal{G}_1}$ associated with the example TAG \mathcal{G}_1 .
- [1] 2. Modify your automaton in order to also handle the trees $someone \in T_{\alpha}$ and $real, fake, thinks \in T_{\beta}$ shown below, where $PN\diamond, JJ\diamond, VB\diamond \in \Sigma$:



- [1] 3. The intention that our finite automaton generates the derivation language $L_D(\mathcal{G}) \stackrel{\text{def}}{=} L(\mathcal{A}_{\mathcal{G}})$ of \mathcal{G} . Can you figure out what should be the derivation tree of 'Someone possibly thinks Bill likes mushrooms'?
- [2] 4. Give a PDL node formula φ_1 such that $L(\mathcal{A}_{\mathcal{G}_1}) = \{t \in T(\mathcal{F}) \mid t, \text{root} \models \varphi_1\}.$

1.1 Macro Tree Transducers

Let \mathcal{X} be a countable set of variables and \mathcal{Y} a countable set of parameters; we assume \mathcal{X} and \mathcal{Y} to be disjoint. For Q a ranked alphabet with arities greater than zero, we abuse notations and write $Q(\mathcal{X})$ for the alphabet of pairs $(q, x) \in Q \times \mathcal{X}$ with $arity(q, x) \stackrel{\text{def}}{=} arity(q) - 1$. This is just for convenience, and $(q, x)(t_1, \ldots, t_n)$ is really the term $q(x, t_1, \ldots, t_n)$.

Syntax. A macro tree transducer (NMTT) is a tuple $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ where Q is a finite set of states, all of arity ≥ 1 , \mathcal{F} and \mathcal{F}' are finite ranked alphabets, $I \subseteq Q_1$ is a set of root states of arity one, and Δ is a finite set of term rewriting rules of the form $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ where $q \in Q_{1+p}$ for some $p \geq 0$, $f \in \mathcal{F}_n$ for some $n \in \mathbb{N}$, and $e \in T(\mathcal{F}' \cup Q(\mathcal{X}_n), \mathcal{Y}_p)$. Note that this imposes that any occurrence in e of a variable $x \in \mathcal{X}$ must be as the first argument of a state $q \in Q$.

Inside-Out Semantics. Given a NMTT, the *inside-out* rewriting relation over trees in $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$ is defined by: $t \xrightarrow{\mathrm{IO}} t'$ if there exist a rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ in Δ , a context $C \in C(\mathcal{F} \cup \mathcal{F}' \cup Q)$, and two substitutions $\sigma: \mathcal{X} \to T(\mathcal{F})$ and $\rho: \mathcal{Y} \to T(\mathcal{F}')$ such that $t = C[q(f(x_1, \ldots, x_n), y_1, \ldots, y_p)\sigma\rho]$ and $t' = C[e\sigma\rho]$. In other words, in inside-out rewriting, when applying a rewriting rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$, the parameters y_1, \ldots, y_p must be mapped to trees in $T(\mathcal{F}')$, with no remaining states from Q.

Similarly to context-free tree grammars, the *inside-out* transduction $[\![\mathcal{M}]\!]_{IO}$ realised by \mathcal{M} is defined through inside-out rewriting semantics:

$$[\![\mathcal{M}]\!]_{\mathrm{IO}} \stackrel{\mathrm{def}}{=} \{(t,t') \in T(\mathcal{F}) \times T(\mathcal{F}') \mid \exists q \in I : q(t) \stackrel{\mathrm{IO}}{\longrightarrow}^* t'\} .$$

Example 1. Let $\mathcal{F} \stackrel{\text{def}}{=} \{a^{(1)}, \$^{(0)}\}$ and $\mathcal{F}' \stackrel{\text{def}}{=} \{f^{(3)}, a^{(1)}, b^{(1)}, \$^{(0)}\}$. Consider the NMTT $\mathcal{M} = (\{q^{(1)}, q'^{(3)}\}, \mathcal{F}, \mathcal{F}', \Delta, \{q\})$ with Δ the set of rules

$$q(a(x_1)) \to q'(x_1, \$, \$) \qquad q'(\$, y_1, y_2) \to f(y_1, y_1, y_2)$$

$$q'(a(x_1), y_1, y_2) \to q'(x_1, a(y_1), a(y_2)) \qquad q'(a(x_1), y_1, y_2) \to q'(x_1, a(y_1), b(y_2))$$

$$q'(a(x_1), y_1, y_2) \to q'(x_1, b(y_1), a(y_2)) \qquad q'(a(x_1), y_1, y_2) \to q'(x_1, b(y_1), b(y_2))$$

Then we have for instance the following derivation:

$$q(a(a(a(\$)))) \xrightarrow{\text{IO}} q'(a(a(\$)), \$, \$)$$

$$\xrightarrow{\text{IO}} q'(a(\$), b(\$), b(\$))$$

$$\xrightarrow{\text{IO}} q'(\$, a(b(\$)), b(b(\$)))$$

$$\xrightarrow{\text{IO}} f(a(b(\$)), a(b(\$)), b(b(\$)))$$

showing that $(a(a(a(\$))), f(a(b(\$)), a(b(\$)), b(b(\$)))) \in [\![\mathcal{M}]\!].$

Exercise 2 (Monadic trees). An NMTT \mathcal{M} is called *linear* and *non-deleting* if, in every rule $q(f(x_1,\ldots,x_n),y_1,\ldots,y_p)\to e$ in Δ , the term e is linear in $\{x_1,\ldots,x_n\}$ and $\{y_1,\ldots,y_p\}$, i.e. each variable and each parameter occurs exactly once in the term e.

Let $\mathcal{F}' \stackrel{\text{def}}{=} \{a^{(1)}, b^{(1)}, \$^{(0)}\}$. Observe that trees in $T(\mathcal{F}')$ are in bijection with contexts in $C(\mathcal{F}')$ and words over $\{a,b\}^*$. For a context C from $C(\mathcal{F}')$, we write C^R for its mirror context, read from the leaf to the root. For instance, if $C = a(b(a(a(\square))))$, then $C^R = a(a(b(a(\square))))$. Formally, let $n \in \mathbb{N}$ be such that $\operatorname{dom} C = \{0^m \mid m \leq n\}$; then $C(0^n) = \square$ and $C(0^m) \in \{a,b\}$ for m < n. Then C^R is defined by $\operatorname{dom} C^R \stackrel{\text{def}}{=} \operatorname{dom} C$, $C^R(0^n) \stackrel{\text{def}}{=} \square$, and $C^R(0^m) \stackrel{\text{def}}{=} C^R(0^{n-m})$ for all m < n.

[2] 1. Give a linear and non-deleting NMTT \mathcal{M} from \mathcal{F}' to \mathcal{F}' such that $[\![\mathcal{M}]\!]_{IO} = \{(C[\$], C[C^R[\$]]) \mid C \in C(\mathcal{F}')\}$. In terms of words over $\{a,b\}^*$, this transducer maps w to the palindrome ww^R . Is $[\![\mathcal{M}]\!]_{IO}(T(\mathcal{F}))$ a recognisable tree language?

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar \mathcal{G}_1 from Exercise 1.

[3] 1. Give a linear non-deleting NMTT \mathcal{M}_1 that maps the derivation trees of \mathcal{G}_1 to its derived trees. Formally, we want dom($[\![\mathcal{M}_1]\!]_{IO}$) = $L_D(\mathcal{G}_1)$ and $[\![\mathcal{M}_1]\!]_{IO}(T(\mathcal{F})) = L_T(\mathcal{G}_1)$.

Exercise 4 (Context-free tree grammar). Let $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ be an NMTT and $\mathcal{A} = (Q', \mathcal{F}, \delta, I')$ be an NFTA.

[5] 1. Show that $L \stackrel{\text{def}}{=} \llbracket \mathcal{M} \rrbracket_{\text{IO}}(L(\mathcal{A})) = \{t' \in T(\mathcal{F}') \mid \exists t \in L(\mathcal{A}) . (t, t') \in \llbracket \mathcal{M} \rrbracket_{\text{IO}} \}$ is an insideout context-free tree language, i.e., show how to construct a CFTG $\mathcal{G} = (N, \mathcal{F}', S, R)$ such that $L_{\text{IO}}(\mathcal{G}) = L$.

2 Scope ambiguities and propositional attitudes

Exercise 5. One considers the two following signatures:

```
SUZY : NP
(\Sigma_{\rm ABS})
                      BILL: NP
             MUSHROOM: N
                          A: N \to (NP \to S) \to S
                       A_{inf}: N \to (NP \to S_{inf}) \to S_{inf}
                       EAT : NP \rightarrow NP \rightarrow S_{inf}
                        TO: (NP \rightarrow S_{inf}) \rightarrow VP
                    Want : VP \rightarrow NP \rightarrow S
(\Sigma_{\text{S-FORM}})
                         Suzy: string
                           Bill: string
                 mushroom: string
                               a: string
                            eat: string
                              to: string
                        wants: string
```

where, as usual, string is defined to be $o \rightarrow o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{SYNT} : \Sigma_{ABS} \to \Sigma_{S\text{-}FORM})$ as follows:

```
(\mathcal{L}_{\text{SYNT}}) \qquad NP := string \\ N := string \\ S := string \\ VP := string \\ VP := string \\ \text{SUZY} := \textbf{Suzy} \\ \text{BILL} := \textbf{Bill} \\ \text{MUSHROOM} := \textbf{mushroom} \\ \text{A} := \lambda xy. \ y \ (\textbf{a} + x) \\ \text{A}_{inf} := \lambda xy. \ y \ (\textbf{a} + x) \\ \text{EAT} := \lambda xy. \ y + \textbf{eat} + x \\ \text{TO} := \lambda x. \ \textbf{to} + (x \ \epsilon) \\ \text{WANT} := \lambda xy. \ y + \textbf{wants} + x
```

where, as usual, the concatenation operator (+) is defined as functional composition, and the empty word (ϵ) as the identity function.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$\mathcal{L}_{ ext{SYNT}}(t_0) = \mathcal{L}_{ ext{SYNT}}(t_1) = oldsymbol{Bill} + oldsymbol{wants} + oldsymbol{to} + oldsymbol{eat} + oldsymbol{a} + oldsymbol{mushroom}$$

Exercise 6. One considers a third signature :

$$\begin{array}{ccc} (\Sigma_{\text{L-FORM}}) & \textbf{suzy}: \mathsf{ind} \\ & & \mathbf{bill}: \mathsf{ind} \\ & \mathbf{mushroom}: \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{eat}: \mathsf{ind} \to \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{want}: \mathsf{ind} \to \mathsf{prop} \to \mathsf{prop} \end{array}$$

One then defines a morphism $(\mathcal{L}_{SEM} : \Sigma_{ABS} \to \Sigma_{L\text{-FORM}})$ as follows:

$$(\mathcal{L}_{ ext{SEM}})$$
 $NP := ext{ind}$ $N := ext{ind} o ext{prop}$ $S := ext{prop}$ $S_{inf} := ext{prop}$ $VP := ext{ind} o ext{prop}$ $SUZY := ext{suzy}$ $SUZY := ext{suzy}$ $SUZY := ext{bill}$ $SUZY := ext{bill}$ $SUZY := ext{suzh}$ $SUZY := e$

[1] 1. Compute the different semantic interpretations of the sentence *Bill wants to eat a mushroom*, i.e., compute $\mathcal{L}_{\text{SEM}}(t_0)$ and $\mathcal{L}_{\text{SEM}}(t_1)$.

Exercise 7. One extends Σ_{ABS} and \mathcal{L}_{SYNT} , respectively, as follows:

$$(\Sigma_{ABS})$$
 Want2: $VP \rightarrow NP \rightarrow S$ (\mathcal{L}_{SYNT}) Want2:= $\lambda xyz.z + \boldsymbol{wants} + x + y$

[1] 1. Extend \mathcal{L}_{SEM} accordingly in order to allow for the analysis of a sentence such as *Bill* wants Suzy to eat a mushroom.

Exercise 8. One extends Σ_{ABS} as follows:

$$(\Sigma_{\mathrm{ABS}})$$
 EVERYONE : $(NP \to S) \to S$
THINK : $S \to NP \to S$

in order to allow for the analysis of the following sentence:

(1) everyone thinks Bill wants to eat a mushroom.

MPRI 2-27-1 November 21, 2018

- [3] 1. Extend $\Sigma_{\text{S-FORM}}$, $\mathcal{L}_{\text{SYNT}}$, $\Sigma_{\text{L-FORM}}$, and \mathcal{L}_{SEM} accordingly.
- [2] 2. Give the several λ -terms that correspond to the different parsings of sentence (1).