MPRI 2-27-1 November 21, 2018

MPRI 2-27-1 Exam

Duration: 3 hours
Paper documents are allowed. The numbers in front of questions are indicative
of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar G = (N, 3, T,, T3, 5), the trees
in Lr(G) are called derived trees. We are interested here in another tree structure, called
a derivation tree, for which we propose a formalisation here. Let us assume for simplicity
that all the foot nodes of auxiliary trees have the "*" null adjunction annotation.

For an elementary tree v € T, W T, we define its contents c(v) to be a finite sequence
over the alphabet o {ga | A € Nw N]}. Formally, we enumerate for this the labels
in @) of its nodes in position order; the nodes labelled by > U N™ are ignored.

def def

Consider for instance the TAG G; with N = {S,NP,VP}, ¥ = {VBZo, NNPo, NNSo, RBo},

T, o {likes, Bill, mushrooms}, Tj aof {possibly}, and S aof S, where the elementary trees
are shown below:

S NP NP VP
/N | | /N
NP] VP NNPo NNSo RBo VP}?

/N
VBZo NP|
(likes) (Bill) (mushrooms) (possibly)

Then likes has contents c(likes) = gs, qnpy, qve, gnpy, ¢(Bill) = gnp, ¢(mushrooms) = qnp,

and c(possibly) = qvp.

We now define a finite ranked alphabet F < T, w Ts & {@}. For an elementary tree
v € T, W T, its rank is r(y) oof lc(7y)] the length of its contents. For the symbol e, its
rank is r(g) 0. For a TAG G = (N,X,T,,T3,S), we construct a finite tree automaton

Ag def (Q,F,0,qs;) where Q and F are defined as above and

5 {(ga, 0", c(a)) | AL € N, € T 1(a) = A}

U {(ga. B, ¢(8)) | A € N, 8 € T, 11(8) = A}
U {(qa,e®) | A€ N}

where ‘rl’ returns the root label of the tree.

MPRI 2-27-1 November 21, 2018

[1] 1. Give the finite automaton Ag, associated with the example TAG G;.

[1] 2. Modify your automaton in order to also handle the trees someone € T, and real, fake, thinks €
T shown below, where PNo, JJo, VBo € ¥:

NP NP NP S
| /N /N / N\
PNo JJo NP JJo NP NP| VP
/N
VBo S}
(someone) (real) (fake) (thinks)

[1] 3. The intention that our finite automaton generates the derivation language Lp(G) &

L(Ag) of G. Can you figure out what should be the derivation tree of ‘Someone possibly
thinks Bill likes mushrooms’?

[2] 4. Give a PDL node formula ¢, such that L(Ag,) = {t € T(F) | t,root = ¢1}.

1.1 Macro Tree Transducers

Let X be a countable set of variables and) a countable set of parameters; we assume X and

Y to be disjoint. For () a ranked alphabet with arities greater than zero, we abuse notations

and write Q(X) for the alphabet of pairs (q,z) € @ x X with arity(q, x) def arity(q) — 1.

This is just for convenience, and (q, z)(t1,...,t,) is really the term q(x,t1,...,t,).

Syntax. A macro tree transducer (NMTT) is a tuple M = (Q, F,F', A, I) where @ is
a finite set of states, all of arity > 1, F and F’ are finite ranked alphabets, I C @, is
a set of root states of arity one, and A is a finite set of term rewriting rules of the form
q(f(x1,. ., 2n), Y1, .., Yp) = e where ¢ € Q14, for some p > 0, f € F, for some n € N,
and e € T(F' UQ(AX,),),). Note that this imposes that any occurrence in e of a variable
x € X must be as the first argument of a state ¢ € Q).

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in

T(FUF'UQ) is defined by: ¢ 19, 4/ if there exist a rule q(f(x1, . xn), Y1y Yp) — €In A
a context C' € C(FUF' UQ), and two substitutions o: X — T'(F) and p: Y — T(F’) such
that ¢t = Clg(f(z1,...,2n), Y1, .., Yp)op] and ' = Cleop]. In other words, in inside-out
rewriting, when applying a rewriting rule ¢(f(z1,...,2,),v1,...,Yy,) — e, the parameters
Y1,- .., Yp must be mapped to trees in T'(F’), with no remaining states from Q).

Similarily to context-free tree grammars, the inside-out transduction [M]io realised
by M is defined through inside-out rewriting semantics:

Mo & {(t,)) € T(F) x T(F') | 3g € I . q(t) 1% 1.

MPRI 2-27-1 November 21, 2018

Example 1. Let F & {aM $OY and F' o {3 a® b1 $O1 Consider the NMTT
M = ({qW, q’(?’)},}", F' A {q}) with A the set of rules

g(a(z1)) = q'(21,$,9) q' (8, y1,92) = f(y1,y1.92)
q'(a(z1),y1,92) — ¢ (21, a(y1), a(y2)) q'(a(z1),y1,92) — d'(x1,a(y1), b(y2))
q'(a(z1),y1,92) = '(x1,0(y1), a(y2)) q'(a(z1),y1,92) = d'(21,0(y1), b(y2))
Then we have for instance the following derivation:
g(a(a(a($)))) = ¢ (a(a($)),$,9)
= ¢'(a($),b($),b($))
= ¢'(3,a(b($)), b(b($)))

n
=
Q
=
=
=
a3
—+
=
93
-+
—~
S
—
Q
~
o
~—~
o
SN~—
~—
~—
~
~—
2
—~
<
N
2
N~—
SN~—
@
~—
<
~—~
ES
N~—
o
—~
<
~
2
SN~—
SN~—
~—
SN~—
m
=
=

Exercise 2 (Monadic trees). An NMTT M is called linear and non-deleting if, in ev-
ery rule ¢(f(z1,...,2n),%1,...,Yp) — e in A, the term e is linear in {z1,...,z,} and
{v1,...,yp}, i.e. each variable and each parameter occurs exactly once in the term e.

Let 7' < {a® M §©}. Observe that trees in T(F') are in bijection with contexts
in C(F') and words over {a,b}*. For a context C from C(F’), we write CT for its mirror
context, read from the leaf to the root. For instance, if C = a(b(a(a(0)))), then CF =
a(a(b(a(0d)))). Formally, let n € N be such that dom C' = {0™ | m < n}; then C'(0") = O
and C(0™) € {a,b} for m < n. Then CF is defined by dom C* ' dom C, CE(Om) &,
and CT(0™) oof CE(O"™) for all m < n.

[2] 1. Give alinear and non-deleting NMTT M from F’ to F’ such that [M]io = {(C[$], C[CT[$]]) |
C € C(F')}. In terms of words over {a, b}*, this transducer maps w to the palindrome

ww?. Is [M]io(T(F)) a recognisable tree language?

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar
G, from [Exercise 1]

[3] 1. Give alinear non-deleting NMTT M, that maps the derivation trees of G; to its derived
trees. Formally, we want dom([M;]i0) = Lp(G1) and [Mi]io(T(F)) = Lr(G1).

Exercise 4 (Context-free tree grammar). Let M = (Q,F,F',A,I) be an NMTT and
A= (Q', F,sI) be an NFTA.
[5] 1. Show that L & [M]io(L(A)) = {t' € T(F') | 3t € L(A) . (t,t) € [M]io} is an inside-
out context-free tree language, i.e., show how to construct a CFTG G = (N, F', S, R)
such that Lio(G) = L.

MPRI 2-27-1 November 21, 2018

2 Scope ambiguities and propositional attitudes
Exercise 5. One considers the two following signatures:

(XaBs) suzy : NP
BILL : NP
MUSHROOM : N
A:N—(NP—S)—=S
Agpf N — (NP — Smf) — Smf
EAT : NP — NP — Siyy
TO : (NP — Siy) — VP
WANT : VP — NP — S

(3s-ForM) Suzy : string
Ball : string
mushroom : string

a : string
eat : string
to : string

wants : string

where, as usual, string is defined to be o — o for some atomic type o.

One then defines a morphism (Lsynt : Xaps — Zs.rorm) as follows:

(LsynT) NP := string
N := string

S = string

Sinf = string

VP := string

SuzyY = Suzy
BILL := Bull
MUSHROOM := mushroom
A= Ary.y(a+x)
Apg = Azy.y (a + x)
EAT := Azy.y + eat + x
TO := \x.to + (xe)
WANT = A\zy.y + wants + x

where, as usual, the concatenation operator (+) is defined as functional composition, and
the empty word (€) as the identity function.

[1] 1. Give two different terms, say ¢, and ¢;, such that:

Lsynt(to) = Lsynrt(t1) = Bill + wants + to + eat + a + mushroom

MPRI 2-27-1

Exercise 6. One considers a third signature :

(EL-FORM> suzy

bill :
mushroom :
eat :

want :

One then defines a morphism (Lsgy @ Xaps — Lrroru) as follows:

:ind

ind

ind — prop

ind — ind — prop
ind — prop — prop

November 21, 2018

(ESEM) NP :=ind
N :=ind — prop
S := prop
Sing = prop
VP := ind — prop
SUZY := suzy
BILL := bill
MUSHROOM := mushroom
A=A ry. 3z (z2) A (y2)

Ajpg = Azy. Jz. (2 2) A (y 2)
EAT := A\zy.eatyx
TO (= A\z. @

WANT := Azy. want y (xy)

[1]

1. Compute the different semantic interpretations of the sentence Bill wants to eat a
mushroom, i.e., compute Lspm(to) and Lspm(ty).

Exercise 7. One extends ¥ s and LgynT, respectively, as follows:

VP — NP — S

WANT2 := A\zyz. 2z + wants +x +y

(XABs) WANT2:

(Lsynr)

1. Extend Lggy accordingly in order to allow for the analysis of a sentence such as Bill
wants Suzy to eat a mushroom.

[1]

Exercise 8. One extends Y apg as follows:

(¥aBs) EVERYONE: (NP — S) — S

THINK : § — NP — S
in order to allow for the analysis of the following sentence:

(1)

everyone thinks Bill wants to eat a mushroom.

MPRI 2-27-1 November 21, 2018

[3] 1. Extend s rorm, LsynT, LL-ForM, and Lggy accordingly.

[2] 2. Give the several A-terms that correspond to the different parsings of sentence (1).

	Two-level Syntax
	Macro Tree Transducers

	Scope ambiguities and propositional attitudes

