
Higher-Order Matching in the Linear λ-calculus
with Pairing

Philippe de Groote and Sylvain Salvati

LORIA UMR no 7503 – INRIA
Campus Scientifique, B.P. 239

54506 Vandœuvre lès Nancy Cedex – France
{degroote, salvati}@loria.fr

Abstract. We prove that higher-order matching in the linear λ-calculus
with pairing is decidable. We also establish its NP-completeness under
the assumption that the right-hand side of the equation to be solved is
given in normal form.

1 Introduction

The decidability of higher-order matching (which consists in determining whether
a simply typed λ-term is an instance of another one, modulo the conversion rules
of the λ-calculus), has been intensively studied in the literature. In particular,
second-order matching [12], third-order matching [5], and fourth-order match-
ing [16] have been shown to be decidable (both modulo β and βη). On the
other hand, it has been proved that, starting from the sixth order, higher-order
matching modulo β is undecidable [14] (for βη, the problem is still open).

In two recent papers [9] and [10], we studied the decidability and the com-
plexity of a quite restricted form of higher-order matching, namely, higher-order
matching in the linear λ-calculus. This calculus corresponds, through the Curry-
Howard isomorphism, to the implicative fragment of Girard’s linear logic [7],
and may be naturally extended by taking into account the other connectives of
linear logic. We follow this line of research in the present paper by considering
the linear λ-calculus with pairing, i.e., the calculus corresponding to the negative
fragment of multiplicative additive linear logic.

The paper is organized as follows. Section 2 presents the necessary mathe-
matical notions and notations that we use in the sequel. In section 3, we show
that deciding whether a linear λ-term with pairs may be reduced to a given nor-
mal form may be done in polynomial time. Finally, section 4 shows that every
term may be turned into another term that has the same behaviour with respect
to reductions, and whose length is bounded in terms of the redices it contains
and the size of its normal form. This technical result allows us to conclude that
higher-order matching in the linear λ-calculus with pairing is decidable. We also
obtain that the problem is NP-complete when the right member of the equation
is given in normal form.

J. Marcinkowski and A. Tarlecki (Eds.): CSL 2004, LNCS 3210, pp. 220–234, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

Higher-Order Matching in the Linear λ-calculus with Pairing 221

2 Mathematical Background

Definition 1. Let A be a finite set of atomic types. The set F of types is
defined according to the following grammar:

F ::= A | (F −◦ F) | (F & F).

Definition 2. Let (Σα)α∈F be a family of pairwise disjoint finite sets indexed
by F , whose almost every member is empty. Let (Xα)α∈F and (Yα)α∈F be
two families of pairwise disjoint countably infinite sets indexed by F , such that
(
⋃

α∈F Xα) ∩ (
⋃

α∈F Yα) = ∅. The set T of raw λ-terms is defined according
to the following grammar:

T ::= Σ | X | Y | λX .T | (T T) | 〈T ,T 〉 | (π1T) | (π2T),

where Σ =
⋃

α∈F Σα, X =
⋃

α∈F Xα, and Y =
⋃

α∈F Yα.

In the above definition, the elements of Σ correspond to constants, and the
elements of X are the λ-variables. The elements of Y are called the unknowns,
and will be denoted by uppercase bold letters (X,Y,Z, . . .).

The notions of free and bound occurrences of a λ-variable are defined as
usual, and we write FV(t) for the set of λ-variables that occur free in a λ-term t.
A λ-term that does not contain any subterm of the form 〈t, u〉 is called a purely
applicative λ-term. A λ-term that does not contain any unknown is called a pure
λ-term.

The notion of linear λ-term is then defined as follows.

Definition 3. The family (Tα)α∈F of sets of linear λ-terms is inductively de-
fined as follows:

1. if a ∈ Σα then a ∈ Tα;
2. if X ∈ Yα then X ∈ Tα;
3. if x ∈ Xα then x ∈ Tα;
4. if x ∈ Xα, t ∈ Tβ, and x ∈ FV(t), then λx. t ∈ T(α−◦β);
5. if t ∈ T(α−◦β), u ∈ Tα, and FV(t) ∩ FV(u) = ∅, then (t u) ∈ Tβ;
6. if t ∈ Tα, u ∈ Tβ, and FV(t) = FV(u) then 〈t, u〉 ∈ Tα&β;
7. if t ∈ Tα&β then (π1t) ∈ Tα;
8. if t ∈ Tα&β then (π2t) ∈ Tβ.

The conditions on the free variables in clauses 4, 5, and 6 correspond to the
linearity conditions. They constraint the way λ-variables may occur in a term.

We define T to be
⋃

α∈F Tα (which is a proper subset of the set of raw
λ-terms). It is easy to prove that the sets (Tα)α∈F are pairwise disjoint. Conse-
quently, we may define the type of a linear λ-term t to be the unique linear type
α such that t ∈ Tα.

We let t[x:=u] denote the usual capture-avoiding substitution of a λ-variable
by a λ-term, and t[x1:=u1, . . . , xn:=un] denote the usual notion of parallel sub-
stitution. If σ denotes such a parallel substitution [x1:=u1, . . ., xn:=un], we

222 P. de Groote and S. Salvati

write t.σ for t[x1:=u1, . . . , xn:=un], σ(xi) for ui, and we define dom(σ) to be
the finite set of variables {x1, . . . , xn}. We use the same notations to denote the
substitutions of unknowns by λ-terms. The substitution the domain of which is
empty is the identity and is noted Id.

We take for granted the usual notions of β reduction, left projection, and
right projection:

(λx. t)u → t[x:=u], π1〈t, u〉 → t, π2〈t, u〉 → u.

The union of these three notions of reduction induces the relation of one step
reduction (→), the relation of at most one step reduction (=→), the relations of n

steps reduction (n→), and the relations of many steps reduction (∗→). The equality
between linear λ-terms (=) is defined to be the reflexive, symmetric, transitive
closure of the relation of reduction and we write ≡ for syntatic equality. The
linear λ-calculus with pairing is strongly normalizable, the equality (=) is then
decidable and every term has a unique normal form.

We now give a precise definition of the matching problem with which this
paper is concerned.

Definition 4. A matching problem (in the linear λ-calculus with pairing) con-
sists of a pair of linear λ-terms (t, u) of the same type such that u does not
contain any unknown.

Such a problem admits a solution if and only if there exists a substitution
[X1:=t1, . . ., Xn:=tn] such that t[X1:=t1, . . . ,Xn:=tn] = u

We end this section with two remarks about the previous definition:

1. In the substitution [X1:=t1, . . . ,Xn:=tn] we do not require t1, . . . , tn to be
pure terms. This is mandatory. Consider, for instance, the following matching
problem: π1X = c, where c is a constant of type α, and X an unknown of
type α & β. This problem admits the solution [X:=〈c,Y〉], where Y is an
unknown of type β. Now, if we would require the solution to be made of pure
terms, we would face the problem of constructing a closed term of type β,
which is undecidable.

2. In defining the notion of equality, we did not take into account η-reduction
and surjective pairing. In fact, all the results we obtain in this paper also
hold for this stronger notion of equality.

3 A Polynomially Bounded Reduction Strategy

One of the key properties in establishing the NP-completeness of higher-order
matching in the linear λ-calculus [9] is that any linear λ-term (without pairs)
may be reduced to its normal form in polynomial (actually, linear) time. This
is a direct consequence of the fact that the length of the linear λ-terms strictly
decreases under β-reduction.

Higher-Order Matching in the Linear λ-calculus with Pairing 223

This property does not hold in the presence of pairing. Indeed, in a linear λ-
term of the form λx. 〈t, u〉, there are at least two occurrences of x that are bound
by the abstraction. Consequently, the length of a redex such as (λx. 〈t, u〉) v may
be stricly less than the length of its contractum 〈t, u〉[x:=v]. In fact, it is even not
the case (modulo P 	= co-NP) that a linear λ-term with pairs may be reduced
to its normal form in polynomial time [15]. Consequently, in this section we
establish the following weaker property: if t

∗→ u then there exists a reduction
strategy t

n→ u such that n is polynomially bounded with respect to the length
of t and u.

In order to establish this property, we first define two notions of complexity.

Definition 5. The complexity ρ(α) of a linear type α is defined to be the number
of connectives it contains:

1. ρ(a) = 0, for a atomic;
2. ρ(α −◦ β) = ρ(α) + ρ(β) + 1;
3. ρ(α & β) = ρ(α) + ρ(β) + 1.

The complexity ρ(t) of a linear λ-term t is defined to be the complexity of its
type.

Definition 6. The norm µ(t) of a linear λ-term t is inductively defined as fol-
lows:

1. µ(c) = 0, for c being a constant, a λ-variable, or an unknown.
2. µ(λx. t1) = µ(t1)

3. µ(t1 t2) =
{

µ(t1) + µ(t2) + ρ(t1), if t1 t2 is a redex.
µ(t1) + µ(t2), otherwise.

4. µ(〈t1, t2〉) = max(µ(t1), µ(t2))

5. µ(π1t1) =
{

µ(t1) + ρ(t1), if π1t1 is a redex.
µ(t1), otherwise.

6. µ(π2t1) =
{

µ(t1) + ρ(t1), if π2t1 is a redex.
µ(t1), otherwise.

The above norm does not strictly decrease when reducing a term. This is due
to clause 4. Indeed, in case t1 → t2 with µ(t1) ≤ µ(u), we have that 〈t1, u〉 →
〈t2, u〉 while µ(〈t1, u〉) = µ(〈t2, u〉). In fact, this is the only problematic case,
and we will prove that the norm strictly decreases under reduction if there is
no reduction step that takes place within a pair. To this end, we introduce the
following notion of external reduction.

Definition 7. The relation of external reduction () is defined by means of the
following formal system.

(λx. t)u 	 t[x:=u] π1〈t, u〉 	 t π2〈t, u〉 	 u
t 	 u

λx. t 	 λx. u

t 	 u

t v 	 u v

t 	 u

v t 	 v u

t 	 u

π1t 	 π1u

t 	 u

π2t 	 π2u

224 P. de Groote and S. Salvati

We state two technical lemmas that will be useful in the sequel. Their proofs,
which are not difficult, are left to the reader.

Lemma 1. Let t and λx. u be two linear λ-terms such that t
∗→ λx. u. Then,

there exists a linear λ-term λx. v such that t
∗
	 λx. v

∗→ λx. u. ��

Lemma 2. Let t and 〈u1, u2〉 be two linear λ-terms such that t
∗→ 〈u1, u2〉.

Then, there exists a linear λ-term 〈v1, v2〉 such that t
∗
	 〈v1, v2〉 ∗→ 〈u1, u2〉. ��

We are now in a position of proving that the norm of a term strictly decreases
under external reduction. The keystone of the proof is the following substitution
lemma.

Lemma 3. Let t ∈ T , and u, x ∈ Tα be such that x ∈ FV(t). Then, we have
that µ(t[x:=u]) ≤ µ(t) + µ(u) + ρ(u).

Proof. The proof proceeds by induction on the structure of t.

1. t ≡ x.
µ(t[x:=u]) = µ(x[x:=u])

= µ(u)
≤ µ(u) + ρ(u)
= µ(t) + µ(u) + ρ(u)

2. t ≡ λy. t1.
µ(t[x:=u]) = µ(λy. t1[x:=u])

= µ(t1[x:=u])
≤ µ(t1) + µ(u) + ρ(u)

(by induction hypothesis)
= µ(t) + µ(u) + ρ(u)

3. t ≡ t1 t2. We distinguish between two cases:
(a) x ∈ FV(t1). Because of the linearity of t, we have that x 	∈ FV(t2).

Consequently, t[x:=u] = t1[x:=u] t2. Then, there are three subcases:
i. t1 ≡ x and u ≡ λy. u1.

µ(t[x:=u]) = µ(x t2[x:=u])
= µ(u t2)
= µ(t2) + µ(u) + ρ(u)
= µ(x) + µ(t2) + µ(u) + ρ(u)
= µ(t) + µ(u) + ρ(u)

ii. t1 ≡ λy. t11.

µ(t[x:=u]) = µ(t1[x:=u] t2)
= µ(t1[x:=u]) + µ(t2) + ρ(t1[x:=u])
= µ(t1[x:=u]) + µ(t2) + ρ(t1)

(by stability of typing under substitution)
≤ µ(t1) + µ(t2) + ρ(t1) + µ(u) + ρ(u)

(by induction hypothesis)
= µ(t) + µ(u) + ρ(u)

Higher-Order Matching in the Linear λ-calculus with Pairing 225

iii. Otherwise.

µ(t[x:=u]) = µ(t1[x:=u] t2)
= µ(t1[x:=u]) + µ(t2)
≤ µ(t1) + µ(t2) + µ(u) + ρ(u)

(by induction hypothesis)
= µ(t) + µ(u) + ρ(u)

(b) x ∈ FV(t2). There are two subcases, which are similar to Subcases ii
and iii of Case (a).

4. t ≡ 〈t1, t2〉.

µ(t[x:=u]) = µ(〈t1[x:=u], t2[x:=u]〉)
= max(µ(t1[x:=u]), µ(t2[x:=u]))
≤ max(µ(t1) + µ(u) + ρ(u), µ(t2) + µ(u) + ρ(u))

(by induction hypothesis)
= max(µ(t1), µ(t2)) + µ(u) + ρ(u)
= µ(t) + µ(u) + ρ(u)

5. t ≡ π1t1. We distinguish between three cases:
(a) t1 ≡ x and u ≡ 〈u1, u2〉.

µ(t[x:=u]) = µ(π1u)
= µ(u) + ρ(u)
= µ(π1x) + µ(u) + ρ(u)
= µ(t) + µ(u) + ρ(u)

(b) t1 ≡ 〈t11, t12〉.

µ(t[x:=u]) = µ(π1(t1[x:=u]))
= µ(t1[x:=u]) + ρ(t1[x:=u])
= µ(t1[x:=u]) + ρ(t1)

(by stability of typing under substitution)
≤ µ(t1) + ρ(t1) + µ(u) + ρ(u)

(by induction hypothesis)
= µ(t) + µ(u) + ρ(u)

(c) Otherwise.

µ(t[x:=u]) = µ(π1(t1[x:=u]))
= µ(t1[x:=u])
≤ µ(t1) + µ(u) + ρ(u)

(by induction hypothesis)
= µ(t) + µ(u) + ρ(u)

6. t ≡ π2t1. This case is similar to the previous one. ��

226 P. de Groote and S. Salvati

Proposition 1. Let t and u be two linear λ-terms such that t 	 u. Then µ(u) <
µ(t).

Proof. The proof proceeds by induction on the derivation of t 	 u. We only give
the base cases, the induction steps are straightforward.

1. t ≡ (λx. t1) t2 and u ≡ t1[x:=t2].

µ(u) = µ(t1[x:=t2])
≤ µ(t1) + µ(t2) + ρ(t2) (by Lemma 3)
< µ(t1) + µ(t2) + ρ(t2) + ρ(t1) + 1
= µ(t1) + µ(t2) + ρ(λx. t1)
= µ(t)

2. t ≡ π1〈t1, t2〉, and u ≡ t1.

µ(u) = µ(t1)
≤ max(µ(t1), µ(t2))
< max(µ(t1), µ(t2)) + ρ(〈t1, t2〉)
= µ(π1〈t1, t2〉)
= µ(t)

3. t ≡ π2〈t1, t2〉, and u ≡ t2. This case is similar to the previous one. ��

Corollary 1. Let t and u be two linear λ-terms such that t
n
	 u. Then n ≤

µ(t) − µ(u).

Proof. By iterating Proposition 1. ��
As we explained at the beginning of this section, we intend to establish that

whenever t → u, there exists a reduction strategy that is polynomially bounded
by the size of both t and u. The idea is to use µ(t). This is not sufficient because it
only works for external reduction. Now, a reduction step that takes place within
one of the two components of a pair is useless if the residual of this component
eventually disappears because of a subsequent projection. However, if there is no
subsequent projection the residual of the pair will occur in u. These observations,
which suggest that we must take into account the number of pair components
that occur in u, motivate the next definition.

Definition 8. The number of slices #(t) of a linear λ-term t is defined as fol-
lows:

1. if t is a purely applicative term then #(t) = 1,
2. otherwise, the definition #(t) obeys the following equations:

(a) #(λx. t1) = #(t1)

(b) #(t1 t2) =

⎧
⎨

⎩

#(t1), if t2 is a purely applicative term,
#(t2), if t1 is a purely applicative term,
#(t1) + #(t2), otherwise.

(c) #(〈t1, t2〉) = #(t1) + #(t2)

Higher-Order Matching in the Linear λ-calculus with Pairing 227

(d) #(π1t1) = #(t1)
(e) #(π2t1) = #(t1)

We now state and prove the main proposition of this section.

Proposition 2. Let t and u be two linear λ-terms such that t
∗→ u. Then, there

exists n ∈ N such that t
n→ u and n ≤ µ(t) × #(u)

Proof. The proof proceeds by induction on the subterm/reduction relation.

1. t ≡ x. We must have u ≡ x, and consequently n = 0 = µ(x).
2. t ≡ λx. t1. We must have u ≡ λx. u1, with t1

∗→ u1. Hence, the property
holds by induction hypothesis.

3. t ≡ t1 t2. If u ≡ u1 u2, with t1
∗→ u1 and t2

∗→ u2, the induction is straight-
forward. Otherwise, there exist t′11 and t′2 such that:

t1 t2
∗→ (λx. t′11) t′2 → t′11[x:=t′2]

∗→ u,

where t1
∗→ λx. t′11 and t2

∗→ t′2. Then, by Lemma 1, there exists t11 such
that t1

∗
	 λx. t11

∗→ λx. t′11. Therefore there exists n1, n2 ∈ N such that
t1 t2

n1
	 (λx. t11) t2 	 t11[x:=t2]

n2→ u, because t11[x:=t2]
∗→ t′11[x:=t′2]. Hence,

by Corollary 1, we have:

n1 + 1 ≤ µ(t1 t2) − µ(t11[x:=t2]),

which implies n1 +1 ≤ (µ(t1 t2)−µ(t11[x:=t2]))×#(u), since #(u) > 0. On
the other hand, by induction hypothesis, we have n2 ≤ µ(t11[x:=t2]))×#(u).
Consequently, we have that n1 + n2 + 1 ≤ µ(t1 t2) × #(u). Then, we take
n = n1 + n2 + 1.

4. t ≡ 〈t1, t2〉. We must have that u ≡ 〈u1, u2〉, with t1
∗→ u1 and t2

∗→ u2.
Hence, by induction hypothesis, there exists n1, n2 ∈ N such that: t1

n1→ u1

with n1 ≤ µ(t1)×#(u1), and t2
n2→ u1 with n2 ≤ µ(t2)×#(u2). Consequently,

we have that 〈t1, t2〉 n1→ 〈u1, t2〉 n2→ 〈u1, u2〉. Then, we may take n = n1 + n2

because the following inequalities hold:

n1 + n2 ≤ µ(t1) × #(u1) + µ(t2) × #(u2)
≤ max(µ(t1), µ(t2)) × #(u1) + max(µ(t1), µ(t2)) × #(u2)
= max(µ(t1), µ(t2)) × (#(u1) + #(u2))
= µ(〈t1, t2〉) × #(〈u1, u2〉)

5. t ≡ π1t1. If u ≡ π1u1, with t1
∗→ u1, the induction is straightforward.

Otherwise, there exist t′11 and t′12 such that π1t1
∗→ π1〈t′11, t′12〉 → t′11

∗→ u,

where t1
∗→ 〈t′11, t′12〉. Then, by Lemma 2, there exist t11 and t12 such that

t1
∗
	 〈t11, t12〉 ∗→ 〈t′11, t′12〉. Consequently, there exists n1, n2 ∈ N such that:

π1t1
n1
	 π1〈t11, t12〉 	 t11

n2→ u, because t11
∗→ t′11. Then, by Corollary 1, we

have n1 + 1 ≤ µ(π1t1)− µ(t11), which implies n1 + 1 ≤ (µ(π1t1)− µ(t11))×
#(u). By induction hypothesis, we also have that n2 ≤ µ(t11)×#(u). Hence,
we have that n1 + n2 + 1 ≤ µ(π1t1) × #(u), and we take n = n1 + n2 + 1.

6. t ≡ π1t2. This case is similar to the previous one. ��

228 P. de Groote and S. Salvati

4 Decidability and NP-Completeness

In the presence of pairs, linear λ-terms may contain subterms which are bound
to disappear during the reduction because of projections. Those subterms may
be arbitrarily huge and contain many redices. The previous section showed how
to cope with them in order not to reduce useless redices and to have a polynomial
reduction. The purpose of this one is to prove that if t

n→ u then there exists
some t′ obtained by deleting useless subterms from t and the size of which is
polynomial with respect to n and the size of u. Together with the results of the
previous section this property will help us to obtain decidability and complexity
insights about the matching problem.

In order to model deletion in terms, we add a special constant (♦) to the
calculus. This constant may be used to replace any term of any type in the
formation rules of Definition 3 (not taking into account the side condition on
free variables in the case of the formation of a pair).

Within this new notion of term, we ditinguish those obtained by adding the
following term formation rules to the formation rules of Definition 3:

if t ∈ Tα then 〈t,♦〉 ∈ Tα&β and 〈♦, t〉 ∈ Tβ&α.

those terms are called hollow terms. A substitution is hollow if for all x (resp.
X) σ(x) (resp. σ(X)) is hollow.

The fact that a certain term is obtained from another one by deleting one of
its subterm induces a reflexive and transitive relation (�) on terms defined by
the following formal system:

♦ � t
t � u

λx. t � λx. u

t1 � u1 t2 � u2

t1 t2 � u1 u2

t1 � u1 t2 � u2

〈t1, t2〉 � 〈u1, u2〉
t � u

π1t � π1u

t � u

π2t � π2u

This relation is naturally extended to the substitutions:

Definition 9. Given two substitutions σ1 and σ2, we write σ1 � σ2 if for all x
(resp. for all X) σ1(x) � σ2(x) (resp. σ1(X) � σ2(X))

Definition 10. We define the length of term |t| as follows:

1. |♦| = 1
2. |h| = 1 if h is an atomic term
3. |λx.t| = |t| + 1
4. |t1t2| = |t1| + |t2|
5. |〈t1, t2〉| = |t1| + |t2|
6. |π1(t)| = |t| + 1 and |π2(t)| = |t| + 1

Then we define the length of a substitution to be |σ| =
∑

x∈dom(σ) |σ(x)| +
∑

X∈dom(σ) |σ(X)|

Higher-Order Matching in the Linear λ-calculus with Pairing 229

Lemma 4. If t is a hollow term then there is a linear λ-term u such that
FV (u) = FV (t), t � u, |u| ≤ |t|2.
Proof. The proof is an induction on the structure of t. We only present the case
where t ≡ 〈♦, t′〉, the other ones being either similar to this one or straightfor-
ward.

If t ≡ 〈♦, t′〉 the by induction hypothesis we have the existence of a linear term
u′ such that FV (u′) = FV (t′), t′ � u′ and |u′| ≤ |t′|2. Let FV (u′) = {x1; . . . ;xn}
and X be an unknown with a type so that u ≡ 〈Xx1 . . . xn, u′〉 is a linear λ-
term with the same type as t. Obviously we have FV (u) = FV (t) and t � u, it
remains to show that |u| ≤ |t|. As FV (t′) = {x1; . . . ;xn}, n ≤ |t′| and :

|u| = |u′| + n + 1 ≤ |t′|2 + n + 1 ≤ |t′|2 + |t′| + 1 ≤ (|t′| + 1)2 ≤ |t|2

��Lemma 5. If u1 � u2 and σ1 � σ2 then u1.σ1 � u2.σ2.

Proof. By induction on the structure of u1 :

1. If u1 ≡ ♦ then u1.σ1 ≡ ♦ and obviously u1.σ1 � u2.σ2.
2. If u1 ≡ x then u2 ≡ x and ui.σi ≡ σi(x). As σ1 � σ2, we have σ1(x) � σ2(x)

and as a consequence we have u1.σ1 � u2.σ2.
3. If u1 ≡ h where h is a constant, then u2 ≡ h and ui.σi ≡ h. So u1.σ1 � u2.σ2.
4. The other cases are direct consequences of the induction hypothesis. ��

With a specific strategy, the relation � can be preserved through reduction.

Lemma 6. If v1 � v2 and v1 → w1 then there exists w2 such that v2 → w2 and
w1 � w2.

Proof. By induction on the structure of v1:

1. If v1 ≡ (λx.t1)t2 and w1 ≡ t1[x := t2] then v2 ≡ (λx.t′1)t
′
2 where ti � t′i.

Then from lemma 5 if we let w2 ≡ t′1[x := t′2] then w1 � w2.
2. The other cases are straightforward. ��

Lemma 7. If v1 � v2 and v2 → w2 then there exists w1 such that v1
=→ w1 and

w1 � w2.

Proof. This lemma can be proved by induction on the structure of v2 in a way
similar to the previous one. The only difference appears in the case where v1 ≡ ♦.
In that case w1 ≡ ♦ and obviously w1 � w2. ��

As a consequence, under certain conditions, the relation � preserves equality
between terms.

Lemma 8. If v is the normal form of v1, v does not contain any occurence of
♦ and v1 � v2 then v1 = v2.

Proof. The lemma can be proved by iterating Lemma 6 and remarking that as
♦ has no occurence in v if v � w then v ≡ w. ��

230 P. de Groote and S. Salvati

Lemma 9. If v1 = v3 and v1 � v2 � v3 then v1 = v2.

Proof. If v is the common normal form of v1 and v3, then there exists n such
that v1

n→ v. In order to prove the lemma we use an induction on n.
In case n = 0, then v1 is in normal form. But v3 is not necessarily in normal

form. We are going to prove by induction on v1 that the normal form of v2 is v1.

1. v1 ≡ ♦ : we then have to prove that if v3 = ♦, the fact that v2 � v3 implies
that v2 = ♦.
We proceed by induction on the length of the reduction v3

p→ ♦. In case
p = 0, v3 ≡ ♦ and then v2 � ♦ so v2 ≡ ♦. If p > 0 then v3 → v′

3
p−1→ ♦.

By Lemma 7 there is v′
2 such that v2

=→ v′
2 and v′

2 � v′
3. Then, by induction

hypothesis, v′
2 = ♦ and v2 = ♦.

2. The other cases are simple consequences of induction.

Now if n > 0 then v1 → v′
1

n−1→ v. By Lemma 6 there exists v′
2 such that

v2 → v′
2 and v′

1 � v′
2. Still from Lemma 6 there exists v′

3 such that v3 → v′
3 and

v′
2 � v′

3. Thus we have v′
1 � v′

2 � v′
3 and v′

1
n−1→ v, the induction hypothesis gives

that v′
2 = v′

1 which allows us to conclude that v1 = v2. ��
When two terms are dominated (with respect to �) by another one, they

share a common syntactic structure but each of them can have specific subterms.
The following lemma proves the existence of a term which possesses both their
common and specific features.

Lemma 10. If there are three hollow terms v1, v2 and v such that v1 � v and
v2 � v then there is v3 such that :

1. v3 is a hollow term
2. v3 � v, v1 � v3 and v2 � v3

3. |v3| ≤ |v1| + |v2| − 1

Proof. We proceed by induction on the structure of v. The only interesting case
consists in having v ≡ 〈u1, u2〉, v1 ≡ 〈w1,♦〉 and v2 ≡ 〈♦, w2〉 the other cases
are straightforward. In that case, it suffices to take v3 ≡ 〈w1, w2〉 to respect the
conditions of the lemma. ��

The next lemma is the generalisation of the previous one to the substitutions.

Lemma 11. If σ , σ1 and σ2 are hollow substitutions, dom(σ) 	= ∅, σ1 � σ and
σ2 � σ then there is σ3 such that:

1. σ3 � σ, σ1 � σ3 and σ2 � σ3.
2. |σ3| ≤ |σ1| + |σ2| − 1.

Proof. The proof of this lemma uses an induction on the size of dom(σ), the
initial case is simply proved using the previous lemma and if x /∈ dom(σ) we set
σ3(x) to be equal to x. ��

Higher-Order Matching in the Linear λ-calculus with Pairing 231

If a term t is obtained from a term v by deleting some of its subterms (i.e.
t � v) then t and v still share a main global syntactic structure. In particular
one can expect that if v is the result of a substitution σ applied to a term u then
t is also somehow the result of applying a substitution to a certain term. The
next lemma explicits precisely this fact.

Lemma 12. If t and u are hollow terms, σ is a hollow substitution and t � u.σ
then there exist u′ and σ′ such that:

1. u′ and σ′ are hollow
2. u′ � u and σ′ � σ
3. t � u′.σ′ � u.σ
4. |u′| + |σ′| ≤ |t| + 1

Proof. If dom(σ) = ∅ then σ = Id and we just have to take u′ ≡ t and σ′ = Id
to get all that is needed. The rest of the proof won’t take this trivial case into
account, and the condition dom(σ) 	= ∅ which will allow us to apply the Lemma
11 will be implicitly verified.

We prove this lemma using an induction on the structure of u:

1. In case u ≡ x and x ∈ dom(σ) we take u′ ≡ x and σ′ ≡ [x := t]. Such u′ and
σ′ verify the requiered properties.

2. In case u ≡ X and X ∈ dom(σ) then we also take u′ ≡ X and σ′ = [X := t].
3. In case u ≡ h where h is an atomic term which is not in dom(σ), we let

u′ ≡ t and σ′ = Id.
4. In case u ≡ 〈u1, u2〉 then t ≡ 〈t1, t2〉 so that ti � ui.σ. The induction

hypothesis implies the existence of two pairs u′
1, σ1 and u′

2, σ2 such that
ti � u′

i.σi � ui.σ, u′
i � ui, σi � σ and |u′

i| + |σi| ≤ |ti| + 1. As σ1 � σ
and σ2 � σ, from Lemma 11, there exists σ′ such that σ′ � σ, σi � σ′ and
|σ′| ≤ |σ1|+ |σ2| − 1. By Lemma 5, as u′

i � ui and σi � σ′ � σ it comes that
ti � u′

i.σi � u′
i.σ

′ � ui.σ. We let u′ ≡ 〈u′
1, u

′
2〉 and verify that t � u′.σ′ � u.σ

and :

|u′| + |σ′| ≤ |u′
1| + |u′

2| + |σ1| + |σ2| − 1
≤ |t1| + 1 + |t2| + 1 − 1
≤ |t| + 1

5. the case where u ≡ u1u2 can be solved in the same way as the previous one.
6. the other cases are straightforward. ��

Corollary 2. If t, t1 and t2 are hollow terms, t = t1[x := t2] and t � t1[x := t2]
then there exists t′1 and t′2 such that:

1. t′1 and t′2 are hollow terms
2. t′1 � t1 and t′2 � t2
3. t = t′1[x := t′2]
4. |t′1| + |t′2| ≤ |t| + 1

232 P. de Groote and S. Salvati

Proof. From the previous lemma we know that there exists t′1 and t′2 such that
t′1 � t1, t′2 � t2, t � t′1[x := t′2] � t1[x := t2] and |t′1| + |t′2| ≤ |t| + 1. As
t = t1[x := t2] lemma 9 implies t = t′1[x := t′2]. ��

We now establish the key lemma of this section. We get a bound on the size
of the term t′ obtained by deleting useless subterms of a term t.

Lemma 13. If t, u and u′ are hollow term, t → u, u′ � u and u′ = u then
there is some t′ such that:

1. t′ is a hollow term
2. t′ � t
3. t′ = t
4. |t′| ≤ |u′| + 2

Proof. We proceed by induction on the structure of t. We just present the cases
where t is a redex and u is the result of the contraction of that redex, the other
ones are direct consequences of the induction hypothesis:

1. If t ≡ (λx.t1)t2 and u ≡ t1[x := t2], from Corollary 2 there are two hollow
terms t′1 and t′2 such that t′i � ti, t′1[x := t′2] = u′ = u = t and |t′1| + |t′2| ≤
|u′| + 1. Thus (λx.t′1)t

′
2 is a hollow term (λx.t′1)t

′
2 � (λx.t1)t2, (λx.t′1)t

′
2 = t

and |(λx.t′1)t
′
2| = |t′1| + |t′2| + 1 ≤ |u′| + 2.

2. If t ≡ π1(〈t1, t2〉) (resp. t ≡ π2(〈t1, t2〉)) and u ≡ t1 (resp. u ≡ t2) then we
let t′ ≡ π1(〈u′,♦〉) (resp. t′ ≡ π2(〈♦, u′〉) and we verify that t′ fullfills the
conditions of the lemma. ��

Lemma 14. If t and u are hollow terms and t
n→ u then there is some t′ such

that :

1. t′ is a hollow term
2. t′ � t
3. t′ = t
4. |t′| ≤ |u| + 2n

Proof. This result is obtained by iterating the previous lemma. The iteration
can be initiated because u � u and u = u. ��
Proposition 3. If t and u are hollow terms, σ is a hollow subsitution and t.σ

n→
u then there exists σ′ such that:

1. σ′ is a hollow substitution
2. σ′ � σ
3. t.σ′ = u
4. |σ′| ≤ |u| + 2n

Proof. From the previous lemma, we know that if t.σ
n→ u then there exists a

hollow term t′ such that t′ � t.σ, t′ = u and |t′| ≤ |u| + 2n. Lemma 12 leads to

Higher-Order Matching in the Linear λ-calculus with Pairing 233

the existence of a hollow term t′′ and a hollow subsitution σ′ such that t′′ � t,
σ′ � σ, t′ � t′′.σ′ � t.σ and |t′′|+ |σ′| ≤ |t′|+1. As a consequence |σ′| ≤ |u|+2n.

We now have to verify that t.σ′ = u. Lemma 9 gives t′′.σ′ = u because t′ = u
and t.σ = u. As t′′ � t and σ′ � σ Lemma 5 gives t′′.σ′ � t.σ′ � t.σ. But
t′′.σ′ = u and t.σ = u, then Lemma 9 leads to what we expected. ��

Theorem 1. Given a matching problem in the linear λ-calculus with pairing
(t, u), it is decidable whether it has a solution or not. Furthermore, if u is in
normal form, this problem is NP-complete.

Proof. Let v be the normal form of u. If the matching equation (t, u) admits
a solution σ then, from Proposition 2, there exists n such that t.σ

n→ v and
n ≤ µ(t.σ) × #(v). If we consider that the terms substituted to unknowns by
σ are in normal form then the redices contained in t.σ are those contained in t
and those created by the substitution. Thus, if {X1, . . . ,Xn} is the multiset of
unknowns that occure in t, we have:

µ(t.σ) ≤ µ(t) +
n∑

i=1

ρ(Xi)

From proposition 3 we know that there exists σ′ such that σ′ � σ, t.σ′ = v
and |σ′| ≤ |v|+2n ≤ |v|+2#(v)µ(t)+

∑n
i=1 2#(v)ρ(Xi). But σ′ may substitute

to some unknowns terms which contain some ♦. Lemma 4 gives us the existence
of a substitution σ′′ with the same domain as σ′, which substitutes a linear
λ-term to each unknown of its domain and such that σ′ � σ′′ and:

|σ′′| ≤ |σ′|2 ≤ (|v| + 2#(v)µ(t) +
n∑

i=1

2#(v)ρ(Xi))2

As σ′ � σ′′, Lemma 5 proves that t.σ′ � t.σ′′. Finally, since it is a linear
λ-term, v does not contain any ♦ and we have (Lemma 8) t.σ′′ = t.σ′ = v.
Hence, if there is a solution to the equation then there is also a solution which
is bounded. The problem is then decidable.

Furthermore, if u is in normal form then |v| = |u| and the existence of a
solution implies the existence of a polynomially bounded one. And since Propo-
sition 2 entails, in that case, that verifying whether a substitution is a solution
or not is polynomial, the problem is in NP if u is in normal form. And as it is
an extension of linear λ-calculus which is NP-hard [9], matching in the linear
λ-calculus with pairing is NP-complete when u is in normal form. ��

We have not found yet the precise complexity of matching in the linear λ-
calculus with pairing in the case where the right part of the equation is not in
normal form. We managed to prove that this problem was PSPACE-hard, but
we did not find a PSPACE-algorithm which solves it. At worst, we still have the
EXP-time algorithm which consists in normalizing the right part of the equation
and then solving it.

234 P. de Groote and S. Salvati

References

1. H. Comon. Completion of rewrite systems with membership constraints. Part I:
Deduction rules. Journal of Symbolic Computation, 25(4):397–419, 1998.

2. H. Comon. Completion of rewrite systems with membership constraints. Part II:
Constraint solving. Journal of Symbolic Computation, 25(4):421–453, 1998.

3. S. A. Cook. The complexity of theorem proving procedures. Proceedings of the 3rd
annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

4. D. Dougherty and T. Wierzbicki. A decidable variant of higher order matching.
In Proc. 13th Conf. on Rewriting Techniques and Applications, RTA’02, volume
2378, pages 340–351, 2002.

5. G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic,
69(2–3):135–155, 1994.

6. G. Dowek. Higher-order unification and matching. In A. Robinson and A. Voronkov
(eds.), Handbook of Automated Reasoning, pp. 1009-1062, Elsevier, 2001.

7. J.Y. Girard Linear logic Theoritical Computer Science, 50:1–102, 1987.
8. W. D. Goldfarb. The undecidability of the second-order unification problem. The-

oretical Computer Science, 13(2):225–230, 1981.
9. Ph. de Groote. Higher-order linear matching is NP-complete. Lecture Notes in

Computer Science, 1833:127–140, 2000.
10. Ph. de Groote, S. Salvati. On the complexity of higher-order matching in the linear

λ-calculus. Lecture Notes in Computer Science, 2706:234–245, 2003.
11. G. Huet. The undecidability of unification in third order logic. Information and

Control, 22(3):257–267, 1973.
12. G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse de

Doctorat d’Etat, Université Paris 7, 1976.
13. J. Levy. Linear second-order unification. In H. Ganzinger, editor, Rewriting Tech-

niques and Applications, RTA’96, volume 1103 of Lecture Notes in Computer Sci-
ence, pages 332–346. Springer-Verlag, 1996.

14. R. Loader. Higher order β matching is undecidable. Logic Journal of the IGPL,
11(1): 51–68, 2002.

15. H. Mairson and K. Terui. On the Computational Complexity of Cut-Elimination
in Linear Logic. Theoretical Computer Science (Proceedings of ICTCS2003), LNCS
2841, Springer-Verlag, pp. 23–36 (2003)

16. V. Padovani. Filtrage d’ordre supérieure. Thèse de Doctorat, Université de Paris
7, 1996.

17. M. Schmidt-Schauß and J. Stuber. On the complexity of linear and stratified
context matching problems. Rapport de recherche A01-R-411, LORIA, December
2001.

	Introduction
	Mathematical Background
	A Polynomially Bounded Reduction Strategy
	Decidability and NP-Completeness

