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Abstract. We explain why the Kobayashi-Yonezawa translation of CCS into
linear logic does not work properly. Then we introduce our own translation and
prove its correctness.

1. Introduction

In [KoY95, §5.4, pp. 133-134], Kobayashi and Yonezawa introduce a translation
of CCS into their own asynchronous communication model, which is based on
Girard’s linear logic [Gir87]. The difficulty they have to face is to express synchro-
nization within an asynchronous framework. In particular, while the two linear
logic formulae at ® b+ @ C and b+ © a* @ C are equivalent, the two CCS pro-
cesses a.b.C' and b.a.C' are not. To circumvent this problem, the authors propose
to translate message receivers and senders as follows:

Trecssacr(aP) = a1t @ (az B (ast @ Trocs—acn(P)))
Trecssac(@aP) = a1 B (azt @ (a3 B Trocs—acn(P)))

This proposal 1s based on a double acknowledgement scheme: on the one hand,
the sender (Trecs— acr(a.P)) sends out a message (a1), waits for an aknowl-
edgement (as1), then aknowledges this aknowledgement (as); on the other hand,
the receiver (Trccs— acr(a.P)) behaves in a dual way. Unfortunately, this is not
sufficient to express synchronization, as shown in Section 2. More generally, we
show in Section 3 that any translation based on a multiple acknowledgement
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scheme cannot express synchronization. A possible solution to the problem con-
sists in using first order quantifiers to implement private channels. This solution
is explained in Section 4.

2. A counterexample
Consider the following process:
a.(a.a.a.T]a.0)]a.0 (1)

whose translation in linear logic, according to [KoY95] (See Appendix A), must
be the following:

(a1 X (as* © (a3 F (A3 B)))) R C @)
where:
A = at @ (a2 B (ast @ (a1 B (a2t @ (a3 B (a1® @ (a2 X (a5t @ T))))))))
B = aﬂ?(a#@(as?ﬁ’i—))
C = at@(as?(ast @ 1))

While (1) does not terminate in the sense of [KoY95, Theorem 5.1., p. 134], (2)
is provable in linear logic. This is shown by the following derivation, where Ag
and A; abbreviate respectively the following formulae:

Ao = CllJ‘ ® (Clz 73) (Cng‘ ® T))
A1 = ay 73) (ClzJ‘ ® (Clg QXA()))

- a3J‘,a3 - T

= Cl3J' ® T, a3

Lo a3J_ & T,Cl3,J_

I—ClzJ',Clz I—a3J'®T,037§)J_

1 - oas, a3t @ T, a0t © (as ¥ 1)
- as 73’(a3J‘ ®T),a2J‘ ® (az ¥ 1)
- oast,as a27§’(a3J‘®T),a2J‘®(a37B’L),L
- ot — a3,a27§’(a3J‘ ®T),a2J‘ ® (as 73’J_),a3J‘ ® L
- oai,as, a1t @ (as 73’(a3J‘ ®T)),a2J‘ ® (a37§’J_),a3J‘ ® L
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L alaa3aA0aa2J_ & (Cl3 73) J—)aa3J_ & L

> - oastar v oar,az N Ag,ast @ (a3 ¥ L),a3t @ L

- az,al,azj‘ ® (Clg QB)AO),GQJ_ ® (Clg 73) J_),Cl3J' ® 1
= s, oY (azJ' [0%9] (Cl3 QB)AO)),GQJ_ ® (Cl3 QXJ_),agJ' ® L

11,

Lol Cl3J',Clg - az,Al,azL®(a37§)L),03J—®L

5 — 03,02,03J'®A1,02L®(0373)J—),03L®J_

P TR a3,a27§’(a3J‘®A1),a2J‘®(a37§’J_),a3J‘®J_
- oaz, a1t © (az X (GBJ' ®A1)),a1,a2J- ® (az ¥ J—),Cl?)L ® L
- as, a1J' ® (az ¥ (G3J' @ A1), a1 W (ClzJ' ® (az B 1)), a3J' ® L1

113

- a3,A,B,a3L®L
- a3, AB B,ast ® L
- oastas |—a37§’(A7?B),a3J‘®J_
- at® (as ¥ (A @B)),az,agJ‘ ® L
-atar v oast @ (a3 D (AN B)), a2 N (azt @ L)
- oap, a0t @ (a3 X (AXB)), et @ (az 3 (a3t @ 1))
- (a1 ¥ (a2t @ (a3 (AN B)))) 3C
Consequently, [KoY95, Theorem 5.1., p. 134] does not hold.

3. Generalisation of the counterexample

The idea behind the Kobayashi-Yonezawa translation is “synchronization by ac-
knowledgement”: any process which sends out a message must wait for an ac-
knowledgement that witnesses the fact that the message has been captured by
some other process. The problem with this scheme is that the acknowledgements
are also sent out asynchronously, which possibly gives rise to acknowledgement
clashes. The Kobayashi-Yonezawa translation tries to solve this problem by us-
ing acknowledgements of a second type, whose purpose is to acknowledge the
reception of the acknowledgements of the first type. However, as shown in the
previous section, such a protocol does not solve the problem.



4 Ph. de Groote and G. Perrier

One may think of using acknowledgements of a third type. This idea kills the
counterexample of Section 2 but does not solve the problem in general. Indeed,
it is possible to show that any translation based on a multiple acknowledgement
scheme (whatever the number of acknowledgements is) cannot express synchro-
nization.

Let a be a CCS name and let a1, as, as, ... be an alphabet of atomic propo-
sitions associated to a. Given a formula B, we define two families of formulee,

Fn(a, B) and F,(a, B):

fo(a,B) = B

Fnri(a,B) = app1t @ Fpo(a, B)
Fola,B) = B

Fnri(a,B) = any1 B Fo(a, B)

This definition allows us to generalise the Kobayashi-Yonezawa translation as
follows:

Trp(a.P) = Faola, Trp(P))
Trn(@.P) = Fula, Tra(P))
Now consider the following family of processes:
P1 = a.a.T
PZn = Cl.Pzn_l | a.0
P2n+1 = El.Pzn | a.0

Clearly, the only possible sequence of transitions starting from a given P, is the
following:
PPy 5P
Since P; can be reduced no further, it follows that the above family is a family
of non-terminating processes (in the sense of [KoY95]). Consequently, any trans-
lation for which [KoY95, Theorem 5.1.; p. 134] would hold must translate the
above family of processes into non-provable formulee.
The counterexample of Section 2 shows that Trz(Ps) is provable. Therefore,
Trs (which corresponds to the Kobayashi-Yonezawa proposal) is not an appro-

priate translation. This result is generalised by the next proposition, whose proof
is not difficult.

Proposition 3.1. For all n < m, Tr,(Py,) is provable in linear logic.

4. Forcing synchronization by first-order quantification

A possible solution to the synchronization problem is to use private channels for
the transmission of the acknowledgements: a process that sends out a message
attaches to this message the name of a private channel on which it will be waiting
for the acknowledgement. This idea may be implemented in linear logic by means
of first-order quantifiers. Consider the following translation (see Appendix B):

Tr(a.P) = 3Jz.(ai[z]* @ (az[z] B Tr(P)))
Tr(a.P) = Ve (a[z] X (asz]t @ Tr(P)))

where aq[#] and as[z] are monadic relation symbols corresponding to the CCS
name a.
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The idea behind the above translation is that the eigenvariables of the uni-
versal quantifiers play the role of private channels names. Then the usual proviso
coming with the V-introduction rule ensures that each sender will use a different
private channel for the reception of the acknowledgement.

In order to show that the equivalent of [KoY95, Theorem 5.1., p. 134] holds,
we introduce two proof-systems: the ACL-like system, which is asynchronous (see
Appendix C), and the synchronous system, whose inference rules correspond to
the transition rules of CCS (see Appendix D). Then we show that the first system
1s complete for our modified translation, and that the second system is theorem-
equivalent to the first one, in the range of our translation.

Proposition 4.1. Let A be a CCS expression and P be a CCS process defi-
nition. Then !7r(P) v~ Tr(A) is provable in linear logic if and only if it is
provable in the ACL-like system.

Proof. A straightforward adaptation of the proof of [KoY95, Theorem 2.1., p.
116]. O

We now consider the ACL-like system augmented with Rule (S) of the syn-
chronous system, that is the union of the two proof-systems. We call this system
the hybrid system.

Lemma 4.1. Let P ~ I' be a sequent provable in the hybrid system. Then it
is provable in the ACL-like system.

Proof. The following derivation shows that Rule (S) is an admissible rule of the
ACL-like system:

P P,Q,T
n (Ca)
P v as]é], asfé]" @ P, Q, T )
P e af el P aldto @3
P+ ai[¢], as[€]t @ P, 3e.(ay[z]* @ (asz] B Q)), T
P+ Va.(a1[2] D (az[z]t @ P)), Fz.(a1[z]" @ (a2[2] B Q)), T

(v)

O

Lemma 4.2. Let 'P + as[€], az[¢]* @ P, I' be a sequent provable in the hybrid
system, such that as[¢]* does not occur in I'. Then 'P + P, I' is provable with
the same number of occurrences of Rule (V).

Proof. A straightforward induction on the length of the derivation. The two
interesting cases are when the last rule of the derivation is either (Cz) or (V). In
the first case, the non-occurrence hypothesis ensures that the preceeding sequent
in the derivation is indeed !'P + P, T'. In the second case, the eigenvariable
proviso ensures that the non-occurrence hypothesis is maintained. [

Lemma 4.3. Let P ~ I' be a sequent provable in the hybrid system. Then it
is provable in the hybrid system without any use of Rule (V).

Proof. The proof is by induction on the number of occurrences of Rule (V) in
the derivation of P + T'.
If there is no such occurrence, then we are done. Otherwise, consider the last
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occurrence:
I
P al[g]a a2[€]J_ ® Pa F/
P+ Va.(ai[2] D (az[z]t @ P)), T’
By induction hypothesis, there exists a derivation IT" without any use of Rule (V).
Then, the remaining occurrence may be moved up in II’ by applying the permu-

tation schemes of Appendix E.1. This process results either in the elimanation
of the remaining occurence or in the following configuration:

H//

P - wlg] o P, asle], Q Al
1 L I (C1)
P = a1é], a2[¢]” © P, ai[€]” @ (a2[€] B Q), AE] T )
P+ ai[¢], as[€]t @ P, . (a1][z]* @ (as]z] B Q)), Jx.Alz], T
P+ Va.(a[2] B (azfz]t @ P)), Ela:..(al[a:]J‘ @ (az[z] B Q)), Jz.Alz], T”

(v)

where Jz.Afz] stands for a (possibly empty) sequence of existential formulae, and

the double inference bar stands for a sequence of applications of Rule (3).
Then, by Lemma 4.2, there exists a derivation TI"’ of 'P + P, Q, A[¢], T,

which allows the above configuration to be replaced by the following one:

H///

P v P Q, A[¢], T
S Q, Al¢] .
P v P Q,Jx.Alz],T
P+ VYa.(ai[2] D (az[2]t @ P)), Ela:..(al[a:]J‘ @ (az[z] ¥ Q)), Jz.Alz], T

()

O

Lemma 4.4. Let A be a CCS expression and P be a CCS process definition
such that !7r(P) w~ Tr(A) is provable in the hybrid system. Let #(Cs),
#(Cy), #(V) be respectively the numbers of occurrences of Rules (Cs), (Cy), (V)
in the derivation of !7r(P) v Tr(A). Then, #(Ca) < #(Cy) < #(V).

Proof. Reading the derivation backwardly, each application of Rule (Cz) con-
sumes an occurrence of an atomic formula of the form as[¢] that has been intro-
duced by an application of Rule (C;). Similarly, each application of Rule (Cy)
consumes an occurrence of an atomic formula of the form a[£] that has been
introduced by an application of Rule (V). [

Lemma 4.5. Let !P ~ I' be a sequent provable in the synchronous system
augmented with Rule (3) of the ACL-like system. Then it is provable in the
synchronous system.

Proof. Any application of Rule (3) may be moved up in the derivation and
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eventually eliminated, by applying the permutation schemes of Appendix E.2.
]

Proposition 4.2. Let A be a CCS expression and P be a CCS process defini-
tion. Then !7r(P) v Tr(A) is provable in the ACL-like system if and only if
it i1s provable in the synchronous system.

Proof. The if-part of the proposition is given by Lemma 4.1. For the only-if-part,
consider some ACL-like derivation (say II) of !Tr(P) v Tr(A). By Lemma 4.3,
IT may be turned into a hybrid derivation (say IT') that does not use Rule (V).
Then, by Lemma 4.4, TI' does not use Rules (C;) and (Ca) either. Consequently,
by Lemma 4.5, II’ may be turned into a synchronous derivation. [

As a direct consequence of Propositions 4.1 and 4.2, we have that the equiv-
alent of [KoY95, Theorem 5.1.; p. 134] holds for our modified translation.
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A. Kobayashi-Yonezawa translation

Treossaci(aP) = a1t @ (a2 B (ast @ Treocs—acn(P)))
Treessacr(@a.P) = a ( @ (as B Trocssace(P)))
Trecssact(Pl Q) = TTCCQAACL(P) X Trecs—acn(Q)
Trecssac(P+Q) = Trecs—acn(P)® Trecs—acn(Q)
Trees—sact(0) = L
Trees—sacn(T) = T
Trees—acn(A) = A (A, a constant)
Trocssacr(A o P) = Ao Trecsoact(P)

B. Modified translation

Tr(a.P) = 3z.(ai[z]* @ (az[z] B Tr(P)))
Tr(@a.P) = Vzr.(ai[z]? (az[z]t @ Tr(P)))
TP Q) = Tr(P)A THQ)
Tr(P+Q) = Tr(P)® Tr(Q)
r0) = L1
TWT) = T
Tr(A) = A (A, a constant)
TrAY P) = Ao Tr(P)

C. ACL-like system for the modified translation

P T P 1(Ao— B) v B, T
P T,T (T) — () (U)
P LT P l(Ao— B) - A, T
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P~ P T PrQ, T Pw P QT
@) e e ()
P PoQ,T PrPopQ,T Pr PRQ, T

P ai[é]" @ (aa[¢] B P), T a) P+ a[¢], wl]t P, T
P~ Jz.(a1[z]* @ (a2[z] X P)), T P~ Va.(a1[2] D (az[2]* @ P)), T

P v asfé], P, T P+ P T

Cy)

Co
P - a1[€],a1[€]L®(az[€]7?P),F( )

In Rule (U), A is an atomic proposition. In Rule (V), & cannot be free in T.

P v as[¢], az[é]" @ P, T

D. Synchronous system for the modified translation

PwT P, (Ao—B)+ B, T
P T,T (T) — (1) (U)
P L, T P, {(Ao—B)+ AT
P~ P T PrQ, T Pw P QT
e T ) ——— ()
PrPsQ,T PrPaQ,T PrPHQ, T
P+ PQ,T
(S)

P+ Va.(a1[2] D (az[z]t @ P)), Fz.(a1[z]" @ (a2[2] B Q)), T

In Rule (U), A is an atomic proposition.

E. Permutation schemes
E.1. V-schemes

Let S[z] stand for the formula a;[z] % (az[z]* @ P), and S[¢] for the sequence
of formulee a1[¢], az[€]* @ Q. Let R[¢] stand for a (possibly empty) sequence
of formulee bo [€]1 @ (boa[€] B Qo), - - -, bp1[€]* @ (bnalé] B Qn), and let Jz R[z]
stand for the (possibly empty) corresponding sequence of formulee 3z.(boy[z]* @
(boa[#] B Q0)), - - -, Elx.(bnl[a:]J‘ ® (bna[z] B Qp)). Let ¢ # £. In the proof schemes
that follow, a double inference bar stand for a (possibly empty) sequence of
applications of Rule (3).

(T/¥)
P+~ T, S/, RELT
P+~ T, S[E], FeR[x], T ~ P+ T, Vo.S[], I R[z],T
P~ T,Va.S[], Iz R[x], T
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(L/Y)
P S[¢], R[S T P = S[¢], RIS T
P~ L, 8K REL T P S[¢], FxR[z], T
P L SEl,3cR, T 1P e Ves[] 3 R[ i
P v L V&S], 2. R[], T P v L V&S], 2. R[z], T
(U/v)
, (Ao—B) v B, S[¢], RIE], T
(A= B) v A S[¢], RIEL T
P, .(AO—B) — A, S[¢], 2 R[z], T
P, (Ao— B) v A Ve.S[x], o R[x], T

P, (Ao B) v B, S¢], R[§], T

P, (Ao B) v B, S[¢], 3z.R[z], T
, (Ao— B) v B, Yz.5[x] [x],
(Ao B) v A, Vr.5la], 30 R,

Slz], 3z R[z], T
Slz], 3z R[z], T
(®:i/V)

P v A;, S[¢], RIE], T P v A;, S[¢], RIE], T

P = A1 @ As, SE, REEDL T
P+ A & Ay, S[E], 32 R[#], T

P v A, S[¢], Fe R[], T
P v A;, Va.S[z], e R[x], T

P+ Ay @ A, Ve.S[x], e R[], T

P+ Ay @ A, Ve.S[x], . R[z], T

(3/Y)
P v A B, S[E], RIELLT P v A B, S[E], RIELLT
P~ A% B, S[¢], RI¢], T P~ A B, S[], Iz R[z], T
P~ A% B, S[¢], e R[], T P v A B, Ve.S[x], Jx.R[z], T
P~ AX B, Va.S[x], Ju. R[ 1, T P+ AX B, Vo.S[x], Jx.R[x], T
5/%)
P = bi[C]" @ (b2[C) B A), S[E], R[E], T
P+ Ju.(bi[z]* © (b2[¢] B A)), S[€], RIEJ, T
P+ Fo.(bi[2]" @ (bola] B A)), S[¢], T R[x], T
P Ju.(b[z]" @ (bo[2] B A

]
)), Ya.S[x], 3. R[#], T
IR

P v bi[E @ (bo[C) N A), S[E], RIS, T
P ndte ([N A), S, 3R], T
P+ b, [(]" © (b2[¢] 3 A), VaS[a], Fe. R[], T

P~ Ju.(by[2]"

® (bo[2] B A)), Va.S[x], J&.R[z], T
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(C1/v)
P+ bo[(], A, S[E], R[E]L T
P+ bi[C], b1[¢] @ (b2[C] B A), S[E], R[E], T
P - bi[C], b1 [T @ (b2[C] X A), S[€), 3w R[w], T
P 01[C], b1[C]*F @ (b2[C) B A), Va.S[x], Iz R[z], T

P+ bo[C], A, S[¢], RE], T
N P 0s[C], A []Elx R[z], T
P - bz[ ] A, V. S[x] R[z], T

(Ca/v)
P v A, S[E), RIE T
P v 0[], balC] @ A, S[E), RIE, T
P+ 0[], balC] @ A, S[E), Jo.R[], T
P+ by[C], b2[¢]F © A, Va.S[z], Jx.R[z], T

],
[
P v A, S[¢], RIE), T
P v A, S[¢], 32.R[z], T

P v+ A Ve S[z], J2.R[z], T
P v by[C], b2[¢]F © A, Va.S[z], Jx.R[z], T

(S/V)
P v A B, S[E], RIELLT
P+ V(b [2] ¥ (ba[z ] A)), Fe.(bi[2]* @ (bo[2] B B)), S[E], RIE], T

[
]

P V. (bi[z] 7 (bolx ] )) 3. (b1 [2]" © (b2[2] B B)), S[€], 3u.R[z]
P V. (bi[2] X (bof2]* )) Jx.(bi[z]t @ (bo[x] B B)), Va.S[z], Jx. R[x]
'P v+ A B, S[¢], R[], T
'P v+ A B, S[¢], . R[], T
'P v+ A, B, Va.S[z], . R[], T

P+ Va.(b[2] D (bo[z]t @ A)), Jz.(by[x

E.2. 3-schemes

Let R[¢] stand for the formula a1[¢]* @ (a2[¢] 3 P), and 3z.R[z] for the formula
Jz.ai[z]t @ (az[z] B P).
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(T/3)

(L/3)

(U/3)

P v T, R[], T

'P v+ T, 32.R[z], T

P~ R[¢], T
P~ L R[],T

P v T,32.R[z],T

P+ R[], T
P v J2 R[], T

'"P v+ L, 32.R[z], T

P, !(Ao— B) v B, R[¢], T

P, (Ao B) = A, R[¢], T

P v L F2.R[z],T

P, (Ao B) = A, R[], T

bl

P, (Ao— B) v A, 3z.R[z], T

(®i/3)

(%/3)

(5/3)

P v+ A; R[E], T
'P A1 @Az, R[g], F

'P, (Ao B) v B, 3z.R[z]

P, (Ao— B) v B, 3z.R[z],
P v+ A; R[E], T

'P v+ A; Jz.R[z], T

P+ Ay @ Ay, 2. R[z], T

IP v A, B, R[], T
P~ AXB, R[¢], T

P v A @ Ay, J2.R[2], T

P v A, B, Rg], T
'P v+ A, B, 3z.R[z], T

]
P A% B, 3z.R[x], T

P+ AR B, Jx.R[z], T

IP + A, B, R],T

P = V. (bi[2] X (bo[2]t @ A)), Fz.(bi[x]" @ (b2[2] B B)), R[¢], T

P~ V. (bi[2] X (bo[x]t @ A)), Fz.(bi[]" @ (b2[2] B B)), J=.R[z], T

P+ A, B, R, T

P+ A, B, 3x.R[z], T

r
r
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P V. (bi[2] X (bo[z]t @ A)), Fz.(bi[x]" @ (bo[2] B B)), J=.R[z], T



