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Abstract. The goal of this paper is to demonstrate how the very rich notion of proof-
net may be used, in the framework of categorial grammars, as a unique structure that
allows the syntactic and semantic aspects of sentence analysis to be unified. We first
explain how the intuitionistic multiplicative proof-nets correspond exactly to the so-
called linear λ-terms. This allow us to interpret proof-nets not only as syntactic
structures but also as semantic readings à la van Benthem. Then, we generalize the
correspondence between proof-nets and λ-terms to the complete categorial hierarchy,
and we show how Montague-like semantics may be handled in this framework.

1 Introduction

If one were to summarize in a few words the logical principles underlying categorial gram-
mars [15, 17, 24], these could well be: Parsing as Deduction and Grammar Theory as Proof
Theory. Indeed, during the last decade, proof-theoretical investigations of categorial gram-
mars have been extremely fruitful, e.g., [21, 24].

On the syntactic side, Roorda advocates the notion of proof-net as an appropriate pars-
ing structure [21]. Proof-nets are a new proof-theoretic tool introduced by Girard in the
framework of linear logic [6]. They allow several proofs of the sequent calculus to be repre-
sented by the same structure when they do not differ in an essential way. In this sense, they
correspond to unambiguous representations of proofs. Moreover, their nice mathematical
theory gives rise to new parsing algorithms [13, 16, 21].

On the semantic side, van Benthem uses the Curry-Howard correspondence as an in-
terface between syntax and semantics [23]. This correspondence, which dates back to the
sixties [9] (see also [5, 8]), establishes an isomorphism between natural deduction, on the
one hand, and typed λ-calculus, on the other hand:

Natural Deduction Typed λ-Calculus
Formulas Types
Proofs λ-Terms

Proof Normalization β-Reduction
(cut elimination)

In the framework of categorial grammars, a third collumn may be added to this table:

Natural Deduction Typed λ-Calculus Categorial Grammars
Formulas Types Semantic Categories
Proofs λ-Terms Semantic Readings,

Semantic Recipes
Proof Normalization β-Reduction Composition of Semantic Recipes

(cut elimination)



Now, in the framework of linear logic, the essence of the Curry-Howard isomorphism is
stated by Girard as follows:

Formulas Types
Proofs Proof-Nets

Proof Normalization Proof-Net Evaluation
(cut elimination)

Therefore, by a simple juxtaposition of the two tables above, one sees that proof-nets
may play the semantic part that is usually played by λ-terms. In this paper we introduce
and illustrate by several examples this new point of view.

The next section gives a brief introduction to the notion of proof-net, and explains how
linear λ-terms may be represented as proof-nets by using a notion of polarity. Section 3
shows how to get semantic readings of categorial principles, such Montagovian type raising,
directly from a proof-net. In Section 4, we explain how to adapt the notion of proof-net to the
different logics of the categorial hierarchy, i.e., the Lambek calculus L, the intuitionistic logic
I, and van Benthem’s intermediate logics LP , LC, and LPC. Finally, Section 5 provides a
short but complete example of a syntactic and semantic analysis based on proof-nets, in the
spirit of Montague’s PTQ grammar [14].

While this paper tries to be as self contained as possible, we assume that the reader has
some familiarity with categorial grammars [1, 17, 18], the Lambek calculus [12, 15, 24], and
linear logic [6, 7, 22].

2 Correspondence between Linear λ-Terms and Intuitionistic
Multiplicative Proof-Nets

2.1 A Brief Introduction to Multiplicative Proof-Nets

The notion of proof-net has been introduced by Girard [6] as the most suitable way of
representing proofs in linear logic. With respect to sequential derivations, proof-nets have
at least two advantages: firstly, they are more compact; secondly, they allow sequential
proofs that differ in an inessential way to be identified.

Roughly speaking, proof-nets are obtained from sequential derivations by considering
only the active formulas and by linking together the formulas that occur in the same axiom.
Consider, for instance, the following derivation where the active formulas are framed:

− C⊥, C

− A⊥, A − B⊥, B

− B, (A⊗B⊥) , A⊥

− B, ((A⊗B⊥)�A⊥)

− C⊥, B, (C ⊗ ((A⊗B⊥)�A⊥))

− (C⊥ �B) , (C ⊗ ((A⊗B⊥)�A⊥))

(1)

This derivation may be transformed into the following proof-net:

C⊥ B

(C⊥
�B)

C

A B⊥

(A⊗B⊥) A⊥

((A⊗B⊥)�A⊥)

(C ⊗ ((A⊗B⊥)�A⊥))

(2)



More abstractly, the above proof-net may be identified with the following graph:
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(3)

which represents the core of Derivation (1).
On the formal side, Girard defines first the notion of proof structure, which corresponds

to a class of graphs akin to Graph 3. Then, a global geometrical criterion allows the proof-
nets, which are the graphs that correspond actually to sequential proofs, to be discriminated
from the other proof-structures (see [3, 6, 10, 20] for instances of such criteria and for more
details).

2.2 Intuitionistic Multiplicative Proof-Nets

The examples in the previous section are taken from the so-called classical multiplicative
linear logic. Now, logics such as the Lambek calculus are intuitionistic in the technical
sense that they are defined by means of sequent calculi whose sequents are made of several
antecedent formulas and only one succedent formula. In order to accommodate the notion of
proof-net to such logics, one must use a notion of input (•) and output (◦) polarities [2, 10].
The idea is that the input (or negative) polarities correspond to those occurrences of formulas
that appear in the antecedents of the sequents while the output (or positive) polarities
correspond to the occurrences of formulas that appear in the succedents.

More precisely, consider the following table that defines the notion of links for the proof-
structures of the intuitionistic implicative linear logic (IILL, also known as van Benthem’s
LP∗), whose only connective is the linear implication −◦.

Name Axiom Tensor Par Cut
Link

• ◦
c1 c2

j@@ ��
◦ •

•
c

p1 p2

⊗ j@@ ��
• ◦

◦
c

p1 p2

�
◦ •
p1 p2

Premises none p1, p2 p1, p2 p1, p2

Conclusions c1, c2 c c none
Types c1 : A−

c2 : A+
p1 : A+

p2 : B−

c : (A−◦B)−

p1 : A−

p2 : B+

c : (A−◦B)+

p1 : A+

p2 : A−

Polarities c1 : input
c2 : output

p2, c : input
p1 : output

p1 : input
p2, c : output

p2 : input
p1 : output

Proof-structures are then defined to be graphs made of links such that:

1. any premise of any link is connected to exactly one conclusion of some other link;
2. any conclusion of any link is connected to at most one premise of some other link;
3. input (resp. output) premises are connected to input (resp. output) conclusions of the

same type.



Then, as we have already pointed out, a correctness criterion allows one to distinguish the
proof-nets among the proof-structures. In fact, this correctness criterion ensures that the
proof-nets are those proof-structures that may be sequentialized into Gentzen-like deriva-
tions. In particular, it ensures that any proof-net has exactly one output conclusion.

The proof-net formalism also captures the dynamics of proofs: cut elimination may be
performed directly on the proof-nets without any reference to the sequent calculus. More-
over, the cut elimination process is specified by simple graph rewriting rules. In the case of
ILLL, these rewriting rules, which are purely local, are the following:

b r bx

y

−→
xb
y

r b ry
x

−→
yr
x

jr b
b

@@ �� jb r
r

@@ ��

x1 x2 y1 y2

� ⊗
−→ r b b rx1 x2 y1 y2

2.3 Encoding of the Linear λ-Terms into the Intuitionistic Multiplicative
Proof-Nets

The proof-nets introduced in the previous section give a way of representing the proofs of
intuitionistic implicative linear logic. Another way of representing these proofs is given by
the Curry-Howard isomorphism. It consists of using the so-called linear λ-terms. This raises
immediately the following question: what is the relationship between these two different
formalisms? The answer is quite simple: the linear λ-terms may be encoded as proof-nets
and, in the case of linear λ-terms in normal form, the resulting correspondence is one-one.

As is well known, λ-terms in normal form may be defined by the following grammar:

A ::= x | (AT )
T ::= A | λx.T

By adding the constraint that each λ must bind exactly one variable occurrence, one defines
the linear λ-terms that correspond, through the Curry-Howard isomorphism, to the proofs
of IILL.

Now, the encoding of these terms into proof-nets obeys the following principles:

1. to any λ-term of type A with free variables xi of types Ai corresponds some proof-net
whose unique output conclusion is of type A and whose input conclusions, which are of
types Ai, may be labelled with the variables xi.

2. to any λ-term defined by the non-terminal A corresponds some proof-net whose unique
output conclusion is the output conclusion of an axiom-link.

Keeping these two invariants in mind, one may define the encoding by induction on the
above grammar.

Case 1: variable. The proof-net encoding a variable x is made of an axiom-link:

• ◦
x : A− A+



Case 2: application. Let Π1 and Π2 be the two proof-nets encoding respectively A and T :

r b
r rr

Π1
(B −◦ C)+

x1:A−1 x2:A−2 xn:A−n

· · · r br
Π2

y1:B−
1 y2:B−

2 B+

· · ·

The proof-net encoding (AT ) is obtained by gluing Π1 and Π2 with a tensor-link as follows:

r rr
Π1

x1:A−1 x2:A−2 xn:A−n

· · ·

r br
Π2

y1:B−
1 y2:B−

2

· · · j r b
��@@

r
⊗ C+

Case 3: abstraction. Let Π be the proof-net encoding T :

r rr b
x1:A−1 x2:A−2

· · ·

Π

x:B− C+

The proof-net encoding λx.T is obtained by adding a par-link as follows:

b
r rr j b

��@@
�x1:A−1 x2:A−2

· · ·

Π

(B −◦ C)+

The above encoding is not merely syntactic: it relies on an actual correspondence that
also takes into account the dynamics of the λ-calculus. Indeed, β-redexes may be repre-
sented by using cuts as follows.



Let Π1 and Π2 be the proof-nets encoding respectively λx.T1 and T2:

b
r rr j b

��@@
�x1:A−1 x2:A−2

· · ·

Π1

(B −◦ C)+

r br
Π2

y1:B−
1 y2:B−

2 B+

· · ·

The proof-net encoding ((λx.T1) T2) is obtained as follows:

jb
b

@@ ��

r r rjr
br rr b

��@@

Π2

· · ·
y1:B−

1 y2:B−
2

· · ·

Π1

x1:A−1 x2:A−2 � ⊗ C+

Then, the process of cut elimination, as specified at the end of Section 2.2, amounts to the
reduction of the β-redexes.

3 Semantic Readings as Proof-Nets

As noticed by van Benthem, λ-terms provide a semantic reading of categorial laws such as
Montague type raising, Geach composition, argument lowering, etc.

Consider, for instance, Montague type raising, i.e.,

e − ((e, t), t)

or, using Girard’s notation,
e − ((e−◦ t)−◦ t).

Its semantic reading is provided by the λ-term λx.x y, where y is a free variable of type e.
In the case of a sequential proof, it is necessary to decorate each sequent with a λ-term in
order to get this semantic reading:

x : (e−◦ t) − x : (e−◦ t) y : e − y : e

y : e, x : (e−◦ t) − x y : t

y : e − λx. x y : ((e−◦ t)−◦ t)

When using proof-nets, however, one may get the semantic reading directly. Consider
the proof-net that proves Montague type raising:

r j b
b

@@ ��
�

rb j��@@⊗

r
e− ((e−◦ t)−◦ t)+



As we will see, a simple traversal of this proof-net will provide the semantic reading. This
traversal, which follows Lamarche’s dependency paths [10], may be specified by a simple set
of instructions:

1. enter the proof-net by its unique output conclusion;
2. follow the path specified by the output polarities until an axiom-link is eventually

reached; this path, which is ascending, is made of par-links that correspond to successive
λ-abstractions;

3. cross the axiom-link following the output-input direction;
4. follow the path specified by the input polarities; this path, which is descending, is made

of tensor-links that correspond to successive applications; it ends either on some input
conclusion of the proof-net, or on the input premise of some par-link; in both cases, the
end of the path coincides with the head-variable of the corresponding λ-term; in the
first case (input conclusion), this head-variable is free; in the second case (premise of a
par-link) this head-variable is bound to the λ corresponding to the par-link;

5. in order to get all the arguments to which the head-variable is applied, start again the
same sort of traversal from every output premise of the tensor-links that have been
encountered during the descending phase described in 4;

It is worth noting that the above traversal algorithm does not make sense on every proof-
structure. For instance, one may easily imagine proof-structures some links of which would
never have been visited during the traversal. Another possible problem is when reading the
head-variable: the descending path that follows the input polarities could end on the input
premise of a par-link that would not have been visited before, i.e., a par-link that would
not correspond to a λ-abstraction. But these “pathological” proof-structures, for which the
reading algorithm does not work, are precisely the ones that are rejected by the correctness
criterion. In other words, they are not proof-nets.

As a further illustration, consider the following consequence of Geach composition rule:

(a−◦ b) − (c−◦ a)−◦ (c−◦ b),

to which is associated the following proof-net:

r j b
b

@@ ��
�

rb j��@@⊗

r j
b

QQ ��
�

rb j��@@⊗

r
(a−◦ b)− ((c−◦ a)−◦ (c−◦ b))+

Let us try to apply the reading algorithm on this example:

1. we enter the proof-net by its output conclusion (i.e. the conclusion of type ((c−◦a)−◦(c−◦
b))+), and go up, following the output polarities; we cross two par-links that correspond
to two successive λ-abstractions, say λx and λy; hence, the λ-term that we are reading
has the form λx.λy.T1

2. we follow the axiom-link in the output-input direction, and go down, following the intput
polarities; we cross the leftmost tensor-link, and we end on the input conclusion of type
(a−◦ b)−; this input conclusion corresponds to a free head-variable, say z; therefore, we
are reading a λ-term of the form λx.λy.(z T2);



3. in order to read the argument to which is applied the head-variable z (i.e. the λ-term
T2), we again start the process from the output conclusion of the tensor-link that we
just crossed; we follow the leftmost axiom-link, cross the second tensor-link and we end
on the input premise of the par-link corresponding to λx; hence, we have read a λ-term
of the form λx.λy.(z (x T3));

4. similarly, we read the λ-term corresponding to T3 and we get the complete reading of
the proof-net: λx.λy.(z (x y)).

Thus, we have shown how to obtain semantic readings from proof-nets by a simple
traversal following Lamarche’s dependency paths. In fact, this traversal of the proof-nets is
so simple (linear time) that one can say that the semantic reading is no longer provided by
a λ-term but by the proof-net itself. In other words, we argue that we no longer need the
λ-terms anymore since we have the proof-nets at our disposal. This point of view will make
more sense when working with logics more powerfull than IILL in which the correspondence
between λ-terms and proof-nets is no longer one-one. Indeed, for such logics, the notion of
proof-net is much richer than that of λ-term.

4 Proof-Nets for the Categorial Hierarchy

4.1 The Categorial Hierarchy

In [24], van Benthem defines the following categorial hierarchy, starting on the left with the
Lambek calculus and ending on the right with the intuitionistic implicative logic:

�
�

��

Q
Q

QQ

Q
Q

QQ

�
�

��

LP

L

LC

LPC IL

Each of these implicational caculi may be obtained from another by adding or removing
one or more structural rules. For instance, starting from L, one gets LC by admitting
the contraction-rule. Then, LPC is obtained by adding the permutation-rule. Finally, one
reaches IL by adding to LPC by the weakening-rule.

In Section 2, we have introduced the notion of proof-net in the framework of IILL, which
is another name for LP.1 Therefore, in order to adapt this notion to the Lambek calculus, we
must explain how to reject the permutation-rule. This will be explained briefly in Section 4.2.

On the other hand, in order to adapt the notion of proof-net to LC, LPC, and IL, we
must allow for the structural rules of contraction and weakening. This is done, in linear
logic, by using Girard’s modal operator “!”. Hence, we will consider, in Section 4.3, a the
fragment of intuitionistic linear logic that contains “−◦” and “!” as the only connectives.
This fragment is called intuitionistic implicative exponential linear logic (IIELL, for short).

4.2 Proof-Nets for the Lambek calculus

Proof-nets for the lambek calculus have been defined by Roorda in his thesis [21] and are
presented in detail in [11, 20].

In order to deal with the non-commutativity of L, one must distinguish between the left
and right premises of the links. Consequently, one gets two different sorts of tensor-links,
corresponding to the formulas (A\B)− and (A/B)−, and two different sorts of par-links,
corresponding to the formulas (A\B)+ and (A/B)+. One must also take into account the
fact that the formulas in Lambek’s sequents are ordered. This gives rise to an order on the
1 There is actually one difference: in LP, the empty antecedent is not admitted in the sequents.



conclusions of the proof-nets (a cyclical order, to be precise). Then, in order to adapt the
correctness criterion, one has to add a planarity requirement: the axiom-links may not cross
one another.

4.3 Proof-nets for Intuitionistic Implicative Exponential Linear Logic

Girard’s unary connective “!” is a modal operator that allows for the structural rules of
contraction and weakening. It obeys the following logical rules:

A,Γ − C
(dereliction)

!A,Γ − C

!A1, . . . !An − C
(promotion)

!A1, . . . !An − !C
!A, !A,Γ − C

(contraction)
!A,Γ − C

Γ − C
(weakening)

!A,Γ − C

Consequently, intuitionisitc implication “→” may be defined as follows:

(A → B) = (!A−◦B).

Now, in order to accomodate the proof-nets with this modal operator, new sorts of links
must be introduced:

Name Dereliction Contraction
Link

j•
•
c

p

d j@@ ��
• •

•
c

p1 p2

c

Premises p p1, p2

Conclusions c c

Types p : A−

c : !A−
p1, p2, c : !A−

Polarities p, c : input p1, p2, c : input

As for promotion and weakening, simple links are not sufficient. The problem with the
promotion rule is that it is contextual:

In order to circumvent these difficulties, one uses boxes: A box is a part of the proof
structure, the interior of which is itself a proof structure. The conclusions of a box are called
its doors. There are two kinds of boxes: promotion-boxes and weakening-boxes.

r r bjbp
. . .

Π

!A1 !An

C

promotion-box :

!C

r r b. . .

Π

rjw
Γ C!A

weakening-box :

Then, the notion of correctness is defined by induction on the nesting of the boxes:

1. the proof-net obtained by replacing each box by a n-ary axiom-link whose conclusions
are the doors of the boxes satisfies the usual correctness criterion;



2. the interior of each box is correct.

On the dynamic side, the presence of the connective “!” gives rise to new cut-elimination
cases that correspond to new graph rewriting rules:

r r bj rj
r

b

x

p d

. . .

Π

y1 yn

−→ r r b r
x

. . .

Π

y1 yn

r r b. . .

Π1 r r b. . .

Π2rjwjbpy1 yn x1 xm

−→ r r b. . .

Π2r r
y1 yn

. . .

jw jw
x1 xm

r r bj rjb
r r
@@ ��p

. . .

Π

y1 yn c

x1 x2 −→

bjb
r r

p

Π

. . .

bjb
r r

p

Π

. . .

rjc
c

c
c

#
#

#

rjc
c

c
c

#
#

#

r r

. . .

x1 x2

y1 yn

where, strictly speaking, the n-ary weakening-box in the lefthand side of the second rule
correspond to n nested ordinary weakening-boxes.

4.4 Encoding simply-typed λ-terms

The intuitionistic implicative logic corresponds, through the Curry-Howard isomorphism,
to the simply-typed λ-calculus. Hence, the simply-typed λ-terms may be encoded into the
IIELL proof-nets.

The translation is very similar to the one described in section 2. The main difference is
that a λ-term whose free variables are of type Ai is now translated into a proof-net whose
input conclusions are of type !Ai. This allows different input conclusions of the same type to
be contracted, which is a way of taking the non-linearity of the terms into account. Then, the
translation has to be adapted by using contraction-links, dereliction-links, weakening-boxes,
and promotion-boxes when needed.

Conversely, the traversal algorithm that provides the λ-term corresponding to a proof-
net is almost the same as the one described in Section 3. The only difference is during the



descending phase: after having crossed a bunch of tensor-links, one may cross a dereliction-
link followed by several contraction-links before reaching the head-variable.

For more details on this topic, see [2, 4, 19].

5 Semantic Recipes as Proof-Nets

In this section we provide an example of the use of proof-nets as a uniform framework that
allows syntactic and semantic analysis to be unified. This example, which is more elaborate
that those of Section 3, is in the spirit of Montague PTQ Grammar[14].

On the syntactic side, we use the Lambek calculus together with three basic types: n,
sn, and s.

On the semantic side, we use IIELL with the two Montagovian basic types e and t. For
the purpose of our example, we also assume the existence of the following typed constants
(with their obvious intended meanings):

∀ : ((e−◦ t)−◦ t), ⊃ : (t−◦ (t−◦ t)), barber : (e−◦ t), shave : (e−◦ (e−◦ t)).

Technically, these constants will be handled as free variables: they will decorate input
conclusions of proof-nets.

We also assume that the following homomorpism H between syntactic and semantic
types is given:

H(n) = (!e−◦ t) H(sn) = !e H(s) = t
H(A\B) = H(A)−◦H(B) H(A/B) = H(B)−◦H(A)

Then, we consider a lexicon made of words to which syntactic types and semantic proof-
nets are attached. Each of these semantic proof-nets is such that:

1. the type of its unique output conclusion is the semantic type of the corresponding word,
i.e., the homomorphic image of the the associated syntactic type;

2. its input conclusions (if any) are decorated with constants.

LEXICON
Word Syntactic Category Semantic Category Semantic Proof-Net

barber n (!e−◦ t) Πbarber

every (s/(np\s))/n (!e−◦ t)−◦ ((!e−◦ t)−◦ t) Πevery

himself ((np\s)/np)\(np\s) (!e−◦ (!e−◦ t))−◦ (!e−◦ t) Πhimself

shaves np\(s/np) (!e−◦ (!e−◦ t)) Πshaves

where the proof-nets Πbarber, Πevery, Πhimself , Πshaves are respectively the following:

Πbarber

r j b
b

@@ ��
�r

rb j��@@⊗

rjd

barber

Πevery

j b
b

r
@@ ��
�

jr r
@@ ��

c

j
r
��@@⊗

r b
r

r
��@@⊗j

b j r
��@@⊗

b
r

r
��@@⊗j

b
r

r
��@@⊗j

bj
b

@@ ��
�

j
b

HHH
���

�

∀ ⊃



Πhimself j
b

b j j b
b

jb j

r
r

r r r
r

PPPP
����

��@@ @@ ��

@@ ����@@

�

⊗

c

�

⊗

Πshaves

r j b
b

@@ ��
�

rjd

rjr j b
@@ ��

d

�

r
rb j��@@⊗

rb j��@@⊗

shave

These semantic proof-nets correspond to semantic recipes. For instance, by applying the
reading algorithm of Sections 3 and 4 on Πevery, one obtains the following λ-term:

λP.λQ.∀ (λx.⊃ (P x) (Qx))

or, using a more usual notation for the connectives ∀ and ⊃:

λP.λQ.∀x.(P x) ⊃ (Qx)

Now, consider the non-commutative proof-net resulting from the syntactic analysis of
the sentence “every barber shaves himself”:

br j@@ ��⊗

br j@@ ��⊗

b rj��@@
�

r
(s/(np\s))/n−

every

r
n−

barber

b rj��@@⊗

br j@@ ��⊗

r
np\(s/np)−

shaves

br j@@ ��
�

b rj��@@
� b rj��@@⊗

b rj
r

aaa
!!!⊗

((np\s)/np)\(np\s)−

himself

b
s+

If one does not take the orientation of the links into account (identifying both \ and /
with −◦), we may think of the above proof-net as a proof-net of IILL or even IIELL. Then,
replacing each syntactic type by the corresponding semantic type does not affect the well-
typedness of the proof-net because H is a homomorphism. This allows the semantic recipes
to be plugged by means of cuts, the resulting proof-net being still well-typed:



br j@@ ��⊗

br j@@ ��⊗

b rj��@@
�

rr
b rj��@@⊗

br j@@ ��⊗

r

br j@@ ��
�

b rj��@@
� b rj��@@⊗

b rj
r

aaa
!!!⊗

b

Πbarber

Πevery

Πshaves

Πhimself

b bbb
t

Then, by cut elimination, one gets the semantic proof-net associated to the whole sen-
tence:

b rj��@@⊗

r

br j@@ ��
� b rj��@@⊗

r

b rj��@@⊗

b rj��@@⊗

r

b rj��@@⊗

b rj��@@⊗

r

rjr
��@@

c

rjr
��@@

c

j
r
dj

r
d

j
r
d

b
shavebarber⊃∀

whose semantic reading provides: ∀x.(barber x) ⊃ (shave x x).
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