
Stochastic Categorial Grammars
— Abstract —

Philippe de Groote, Guillaume Bonfante

1 Introduction

Statistical methods have turned out to be quite successful in natural language
processing. During the recent years, several models of stochastic grammars have
been proposed, including models based on lexicalised context-free grammars [3],
tree adjoining grammars [15], or dependency grammars [2, 5].

In this exploratory paper, we propose a new model of stochastic grammar,
whose originality derives from being based on Lambek categorial grammars [8].
This model presents interesting properties:

– Probabilities are attached to syntactic dependencies and not to derivation
rules. Moreover, they are expressed at the level of the lexicon. As a conse-
quence, our model is fully lexicalised.

– A treatment of lexical ambiguities is provided. This treatment is based on un-
resolved dependencies. Consequently, long distance dependencies are taken
into account.

– The probabilities attached to the lexical entries are not used to approximate
correct parsings by highly probable parsings, but just act as guidelines during
the categorial deduction. Consequently, the rigourous discipline of categorial
type logics is not lost.

2 Lambek calculus and proofnets

We assume that the reader is familiar with Lambek categorial grammars as
presented, for instance, in [1, 9–11], and focus on the relation existing between
the Lambek calculus [8] and Girard linear logic [6].

Remember that the formulas (or types) of the Lambek calculus are built upon
a set of atomic types A by means of the connectives \ (direct implication, or left
division), / (retro-implication, or right division), • (conjunction, or product),
and that the deduction relation is specified by an intuitionistic sequent calculus
without any structural rules.

It is possible to translate the formulas of the Lambek calculus into formulas
of multiplicative linear logic in such a way that a sequent of the Lambek calculus
is valid if and only if its translation is a valid sequent of Girard-Yetter cyclic
linear logic [16].

The formulas of multiplicative linear logic obey the following grammar:

F ::= A | A⊥ | F ⊗ F | F � F

where the unary connective ⊥ denotes the linear negation, and the binary con-
nectives ⊗ (tensor) and � (par) correspond to multiplicative conjunction and
disjunction respectively.

The deduction relation of cyclic linear logic is specified by means of a classical
one-sided sequent calculus, and the translation [[·]] of a Lambek sequent into such
a classical sequent is defined as follows:

[[A0, . . . , An − A]] = −[[A0]]
−

, . . . , [[An]]−, [[A]]+

where:

1. [[A]]− = A⊥, for A an atomic type,
2. [[A •B]]− = [[A]]− � [[B]]−

3. [[A \B]]− = [[A]]+ ⊗ [[B]]−

4. [[A/B]]− = [[A]]− ⊗ [[B]]+

5. [[A]]+ = A, for A an atomic type
6. [[A •B]]+ = [[B]]+ ⊗ [[A]]+

7. [[A \B]]+ = [[B]]+ � [[A]]−

8. [[A/B]]+ = [[B]]− � [[A]]+

The above translation allows proof-nets for the Lambek calculus to be defined
[7, 13, 14].

Let A0, . . . , An − A be a sequent of the Lambek calculus. The proof-frame
corresponding to this sequent is defined to be the sequence of formula trees
[[A0]]

−
, . . . , [[An]]−, [[A]]+.

Given a proof-frame, an axiom link is an edge between two leaves of the
proof-frame such that the literals decorating these leaves are dual of each other
(i.e., A and A⊥). The two leaves connected by such an axiom link are called the
conclusions of the axiom link. A proof-frame being a sequence of trees (rather
than a multiset), one distinguishes between the left and the right conclusion of
an axiom link.

A proof-structure consist of a proof-frame and a set of axiom links such that:

1. each leaf of the proof-frame is the conclusion of exactly one axiom link;
2. the axiom links do not cross; more precisely, for any two axiom links A and

B, with left and right conclusions Al, Ar and Bl, Br respectively, it is not
the case that Al < Bl < Ar < Br, where < is the order in which the literals
occur in the yield of the proof-frame.

It is not the case that any proof-structure may be interpreted as a proof of the
sequent corresponding to the proof-frame. A proof-structure that corresponds to
an actual proof is called a proof-net. There are several correctness conditions,
in the literature, that allow the proof-nets to be distinguished from the other
proof-structures. Girard’s long trip condition [6] and Danos-Regnier criterion [4]
are such correctness conditions.

Proof-nets may be considered as the categorial equivalent of parse trees. For
instance, according to the following type assignment:

le: sn/n, lit: (np \ s)/np, livre: n, Pierre: np, que: (n \ n)/(s/np),

parsing the french noun phrase le livre que Pierre lit (the book that Pierre reads)
yields the following proof-net:

n n⊥ np⊥

GF ED

s

GF ED
np s⊥

np⊥ n

GF ED

⊗

777 ���
�

;;; ���
⊗

;;; ���
np

np

GFED

⊗
;;; ���

n⊥

GFED

⊗

JJJJJ
qqqqqq

np⊥

GFED

⊗

888 ���

le livre que Pierre lit

3 Stochastic Categorial Grammars

Consider a lexical entry ω whose assigned type is A/B. The rough intuition
behind such a type assignment is that ω is a word that takes a constituent of type
B on its right in order to form a constituent of type A. It does not mean, however,
that in any grammatical sentence involving ω there is necessarily a constituent
of type B on the right side of ω. At the proof-net level, it means that an atomic
type B occurring in a type A/B is not necessarily the left conclusion of an axiom
link. As a counterexample, consider the proof-net given in the previous section.
While the word lit is assigned the type (np \ s)/np, the second occurrence of np
in this type is the right conclusion of an axiom link.

The quite simple idea behind the stochastic model we propose is to assign to
each leaf of a proof-frame the probability that this leaf be the left conclusion of
an axiom link. Clearly this probability does not depend only of the literal that
is attached to the leaf, but on the whole context. In order to obtain a lexicalized
model, we make the simplifying hypothesis that the probability assigned to a leaf
depends only on the word whose type contains this leaf. In spite of its simplicity,
this hypothesis is sufficient to allow interesting word order constraints to be ex-
pressed. For instance, the verb which serves as a head for the relative introduced
by a relative pronoun such as que occurs necessarily after the pronoun. On the
other hand, the noun or the noun phrase that is modified by the relative occurs
necessarily before the pronoun. Consequently, in the type assigned to que, which
is (n \ n)/(s/np), the first occurrence of n will be assigned probability 0 and s
and np will be assigned probability 1.

4 Operational interpretation of the parameters

As observed by Morrill [12], the structure of the proof-nets suggests a left-to-
right incremental parsing procedure. This procedure may be implemented by a

non-deterministic pushdown automata that takes a proof-frame as input, and
scans the yield of this proof-frame from left to right. Two moves are possible:

1. push the current literal and read the next literal from the yield;
2. erase the top of the stack provided it is the dual of the current literal, and

read the next literal from the yield.

The second type of move, which amounts to creating an axiom link, is submitted
to a correctness condition, akin to Danos-Regnier, that ensures that the possible
proof-structures resulting from machine runs are indeed proof-nets.

Now, consider some machine run that successfully produces a proof-net. It is
easy to see that this resulting proof-net is such that a leaf of its proof-frame is
the left conclusion of an axiom link if and only if the corresponding literal was
pushed on the stack during the machine run. Consequently, the probability we
attach to a literal may be interpreted as the probability that a move of the first
type acting on this literal leads to a successful parsing.

5 Taking into account lexical ambiguity

It is often assumed, in the literature, that a parser takes a tagged sentence as
input and, consequently, that lexical ambiguity is handled by a part of speech
tagger. We do not make this assumption and incorporate a stochastic treatment
of lexical ambiguity within our model. Consider the two following sentences in
which the french word le occurs with two different types. In the first sentence,
it is used as a determiner, and is assigned the type np/n. In the second sentence
it is used as a clitic pronoun, and is assigned the type (np \ s)/((np \ s)/np).

s

GF ED
np⊥
GF ED

(np ⊗ s⊥)⊗ np
GF ED

np⊥ ⊗ n
GF ED

n⊥

Pierre lit le livre

Pierre reads the book

s

GF ED
np⊥
GF ED

(np ⊗ s⊥)⊗ (np⊥

GF ED

� (s

GF ED
� np⊥))

GF ED
(np ⊗ s⊥)⊗ np

Pierre le lit

Pierre it reads

(Pierre reads it)

Now consider the content of the stack of the automaton described in Section 4,
just before scanning the word le. In the first case, the stack contains [np] while, in
the second case, it contains [snp⊥]. This information, which corresponds to the

unresolved dependencies, may be used to predict the type that must be chosen
for le. Remark that this proposal allows long distance dependencies to be taken
into account, which is not the case with taggers based on n-grams or on hidden
Markov models.

We are now in a position of giving a formal definition of our model of stochas-
tic categorial grammar. Let A be a set of atomic types. The set WT (A) of
weighed types is inductively defined as follows:

1. (A, ρ) ∈ WT (A) whenever A ∈ A and ρ ∈ [0, 1];
2. A •B,A \B,A/B ∈ WT (A) whenever A,B ∈ WT (A).

A stochastic Lambek grammar is then defined to be 5-tuple 〈A, Σ,L, (ασ)σ∈Σ , S〉
where:

1. A is a finite set of atomic types;
2. Σ is a finite set of terminal symbols.
3. L : Σ → 2WT (A) is a function that assigns to each terminal symbol a non-

empty finite set of weighed types.
4. (ασ)σ∈Σ is an indexed family of functions ασ : (A∪A⊥)×L(σ) → [0, 1] such

that for any σ ∈ Σ and any A ∈ (A ∪A⊥)∑
T∈L(σ)

ασ(A, T) = 1.

The interpretation of these probability functions is as follows: ασ(A, T) gives
the probability that σ has type T when the top of the stack is A.

5. S ∈ A is the distinguished type of the grammar.

6 Conclusions

This paper reports first steps towards the definition of stochastic categorial gram-
mars. The simple model we have presented is based on the associative Lambek
calculus, which is non commutative. As well known (see for instance [10]), there
are several phenomena (crossed dependencies, medial extraction,...) that can-
not be accomodated in a purely non commutative setting. On might adapt the
model in order to allow for partial commutativity. The idea is to provide the
abstract machine described in Section 4 with new types of moves. For instance,
one could define a move that would consist in poping a non-top element of the
stack. Several variations are possible, the tuning of which requires real size ex-
perimentation. To this end, we are currently developping parsing procedures and
parameter estimation techniques. These algorithms run in polynomial time pro-
vided that the depth of the stack of the abstract machine is bounded, which is
a sound hypothesis after Morrill’s analysis of acceptability [12].

References

1. B. Carpenter. Type-Logical Semantics. MIT Press, Cambridge, Massachussetts
and London England, 1996.

2. M. J. Collins. A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th Annual Meeting of the ACL and the 8th Conference of the
EACL, 1996.

3. M. J. Collins. Three generative, lexicalised models for statistical parsing. In Pro-
ceedings of the 35th Annual Meeting of the ACL, 1997.

4. V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathemat-
ical Logic, 28:181–203, 1989.

5. J. Eisner. Three new probabilistic models for dependency parsing: An exploration.
In Proceedings of the 16th International Conference on Computational Linguistic,
pages pp. 340–345, 1996.

6. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
7. F. Lamarche and C. Retoré. Proof nets for the Lambek calculus. In M. Abrusci

and C. Casadio, editors, Proofs and Linguistic Categories, Proceedings 1996 Roma
Workshop. Cooperativa Libraria Universitaria Editrice Bologna, 1996.

8. J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–
170, 1958.

9. M. Moortgat. Categorial Investigations: logical and linguistic aspects of the Lambek
calculus. Foris Publications, 1988.

10. M. Moortgat. Categorial type logic. In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language, chapter 2. Elsevier, 1997.

11. G. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, Dordrecht, 1994.

12. G. Morrill. Combinatory reduction systems: introduction and survey. Computa-
tional Linguistics, 26(3):319–338, 2000.

13. C. Retoré. Calcul de Lambek et logique linéaire. Traitement Automatique des
Langues, 37(2):39–70, 1997.

14. D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, University
of Amsterdam, 1991.

15. Y. Schabes. Stochastic lexicalised tree-adjoining grammars. In Proceedings of the
14th International Conference on Computational Linguistic, pages pp. 426–432,
1992.

16. D. N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic
Logic, 55:41–64, 1990.

