On the Strong Normalisation of Intuitionistic
Natural Deduction with
Permutation-Conversions

Philippe de Groote

LORIA UMR n° 7503 — INRIA
Campus Scientifique, B.P. 239
54506 Vandceuvre les Nancy Cedex — France
e-mail: Philippe.de.Groote@loria.fr

Abstract. We present a modular proof of the strong normalisation of
intuitionistic logic with permutation-conversions. This proof is based on
the notions of negative translation and CPS-simulation.

1 Introduction

Natural deduction systems provide a notion of proof that is more compact (or,
quoting Girard [6], more primitive) than that of sequent calculi. In particu-
lar, natural deduction is better adapted to the study of proof-normalisation
procedures. This is true, at least, for the intuitionistic systems, where proof-
normalisation expresses the computational content of the logic. Nevertheless,
even in the intuitionistic case, the treatments of disjunction and existential
quantification are problematic. This is due to the fact that the elimination rules
of these connectives introduce arbitrary formulas as their conclusions. Conse-
quently, in order to satisfy the subformula property, the so-called permutation-
conversions are needed.

Strong normalisation proofs for intuitionistic logic [12] are more intricate
in the presence of permutation-conversions. For instance, the proofs given in
textbooks such as [6] and [14] do not take permutation-conversions into account.!
In this paper, we revisit this problem and present a simple proof of the strong
normalisation of intuitionistic logic with permutation-conversions. This proof,
which is inspired by a similar proof in [4], has several advantages:

— It is modular and, therefore, easily adaptable to other systems. Indeed,
the problem related to the interaction between permutation- and detour-
conversions is avoided (see Lemma 7, in Section 5).

— It is based on a continuation-passing-style interpretation of intuitionistic
logic, which sheds light on the computational content of the several con-
version rules. In particular, it shows that the computational content of
permutation-conversions is nil.

' In [6], extending the proof to permutation-conversions is left to the reader while
in [14], the technique that is used is not adapted to the case of permutation-
conversions.



— It is based on an arithmetisable translation of intuitionistic logic into the
simply typed A-calculus. Consequently, when combined with an arithmetis-
able proof of strong normalisation of the simply typed A-calculus (see [3], for
instance), it yields a completely arithmetisable proof of the strong normali-
sation of intuitionistic logic. This must be contrasted with the proof in [14],
which is based on an interpretation into higher-order Heyting arithmetic.

The paper is organised as follows.

Section 2 is an introduction to the proof-theory of intuitionistic positive
propositional logic (IPPL). In particular, we define the notions of detour- and
permutation-conversions by means of an associated A-calculus (A~"V). Our pre-
sentation is essentially inspired by [14].

In Section 3, we establish the strong normalisation of IPPL with respect
to permutation-conversions. The proof consists simply in assigning a norm to
the untyped terms of A=V, and showing that this norm strictly decreases by
permutation conversion.

Section 4 provides a negative translation of IPPL into the implicative frag-
ment of intuitionistic logic. At the level of the proofs, this negative translation
corresponds to a CPS-simulation of A~V into the simply typed A-calculus. We
show that this CPS-simulation (slightly modified) commutes with the relations
of detour-conversion and [-reduction, from which we conclude that A~V is
strongly normalisable with respect to detour-conversions.

In Section 5, we collect the results of the two previous sections in order to
show that A~V is strongly normalisable with respect to detour- and permu-
tation-conversions mixed together. To this end, we show that the modified CPS-
translation of Section 4 interprets the relation of permutation-conversion as
equality. This means that we have found a negative translation commuting with
the permutation-conversions, answering a problem raised by Mints [9].

In Section 6 and 7, we extend our proof, respectively, to positive first-order
intuitionistic logic (by adding quantifiers), and then to full first-order intuition-
istic logic (by adding negation).

2 Intuitionistic positive propositional logic

2.1 Natural deduction

The formulas of intuitionistic positive propositional logic (IPPL) are built up
from an alphabet of atomic propositions A and the connectives —, A, and V
according to the following grammar:

F = A|F—F | FAF|FVF

Following Gentzen [5], the meaning of the connectives is specified by the intro-
duction and elimination rules of the following natural deduction system (where
a bracketed formula corresponds to a hypothesis that may be discarded when
applying the rule).
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As observed by Prawitz [11], an introduction immediately followed by an
elimination corresponds to a detour that can be (locally) eliminated. Consider,
for instance, the case of implication:

[a]
1L

(Intro.) L
@b ¢ (Elim.)
3 .

II, is a proof of § under the hypothesis a. On the other hand, II> is a proof
of a.. Consequently, one may obtain a direct proof of 3 by grafting Il5 at every
place where « occurs in II; as a hypothesis discarded by Rule (Elim.):

When such local reduction steps allow any proof to be transformed into a proof
without detour, one says that the given natural deduction system satisfies the
normalisation property. Moreover, when this property holds independently of the
strategy that is used in applying the reduction steps, one says that the system
satisfies the strong normalisation property.

2.2 Natural deduction as a term calculus

As well-known, there exists a correspondence between natural deduction sys-
tems and typed A-calculi, namely, the Curry-Howard isomorphism [2,7]. This
correspondence, which is described in the table below, allows natural deduction
proofs to be denoted by terms.



Natural deduction \ A-calculus ‘

propositions types
connectives type constructors
proofs terms
introduction rules term constructors
elimination rules term destructors
active hypothesis free variables
discarded hypothesis bound variables

In the case of IPPL, the corresponding term calculus is the simply typed
A-calculus with product and coproduct, which we will call A=V, In particular,
introduction and elimination rules for conjunction correspond to pairing and
projection functions, while introduction and elimination rules for disjunction
correspond to injection and case analysis functions. The syntax is described by
the following grammar, where X is a set of variables:

Ti= X | AT [(TT)|p(T.T) | p, T | p,T |1 T | ko T | D (7.7, 7)

and the typing rules are as follows:

[z:«]
M:pj3 M:a—fp N:«a
e M:a—f MN :(

M:a N:§ M:aNp M:aNp
POM,N):aAB  pM:ia  p,M:J

[z:a] [y:8]
M:« M:p M:avVB N:v O:y
klM:a\/ﬁ kgM:O&\/ﬂ DLy(M,N,O)Z’Y

2.3 Detour-conversion rules

The Curry-Howard isomorphism is not only a simple matter of notation. Its
deep meaning lies in the relation existing between proof normalisation and A-
term evaluation. Indeed an introduction immediately followed by an elimination
corresponds to a term destructor applied to term constructor. Consequently,
Prawitz’s detour elimination steps amount to evaluation steps. For instance, the
detour elimination step for implication corresponds exactly to the familiar notion
of B-reduction:

[z:«a]
- I o
. . o Al
_Ms Nia
. M:oa—p N:o L
(Ax.M)N : 8 Mx:=N]:f



It is therefore possible to specify the detour elimination steps as simple rewrit-
ing rules between A-terms. Following [14], these rules are called detour-conversion
rules. We use “—p” to denote the corresponding one-step reduction relation be-
tween A-terms and, following [1], we use “« 57 and “—p” to denote, repectively,
the transitive closure and the transitive, reflexive closure of “—p”.

Definition 1. (Detour-conversions of A=V )

1. Ax. M)N —p M|[x:=N]

2. pyp(M,N) —-p M

3. poP(M,N) —p N

4. Dw,y(kl M, N, O) —D N[.’E:M]

5. Dy y(ka M,N,0) —p Oly:=M]| ]

It must be clear that the Curry-Howard isomorphism allows one to reduce
proof normalisation problems to A-term normalisation problems. In particular,
the strong normalisation of intuitionistic implicative logic corresponds to the
strong normalisation of the simply typed A-calculus [1] (which is, by the way,
the only normalisation result we assume in this paper). There is, however, a
slight difference that must be stressed. The grammar given in Section 2.2 de-
fines untyped A-terms, some of which do not correspond to natural deduction
proofs. Consequently, the question whether the untyped A-terms satisfy some
normalisation property has no direct equivalent in the logical setting.

2.4 Permutation-conversion rules

In the disjunction free fragment of IPPL, the normal proofs (i.e., the proofs
without detour) satisfy the subformula property. This means that if IT is a
normal proof of a formula a under a set of hypotheses I', then each formula
occurring in I7 is a subformula of a formula in {«} U I" [11]. In the presence
of disjunction, the detour-conversions of Definition 1 are no longer sufficient to
guarantee the subformula property. Consider the following example:

[, 7] [8,7]
- IL - I
1) é
. —— (Intro.) —— (Intro.)
aVvp vy—906 v =9 .
< 1T
)
1 : 7 (Elim.)

A priori there is no reason why v and v — ¢ would be subformulas of § or
of any hypothesis from which ¢ is derived. This is due to the fact that there
are introduction rules followed by an elimination rule. Indeed, one would like to



reduce the above example as follows:

However, such a reduction is not possible by applying only the detour-conversion
rules of Definition 1 because, in the above example, the elimination rule does not
immediately follow the introduction rules. For this reason, some other conversion
rules are needed, the so-called permutation-conversion. For instance, to reduce
the above example, we need the following rule:

la] (8] [a] 1]
: : : : - I : i
aVp v—8§ 496 7 y—=0d y—34 v
) 4

The above conversion, which concerns the implication elimination rule, obeys a
general scheme:

T By e 2O
é 1
All the permutation-conversions may be obtained, from the above scheme, by
replacing Rule (Elim.) by the different elimination rules of IPPL. Of course,
it is also possible to express these permutation-conversions as rewriting rules
between A-terms. This is achieved in the following definition.

Definition 2. (Permutation-conversions of A"V

1. D, ,(M,N,0)P —p D, ,(M,NP,OP)

2. | 851 Dl’,y(M7 N»O) —P Dm,y(Mv P: Nv P: O)

3. pyDsy(M,N,0) —p D, y(M,py N, py O)

4- Du,v(Dx,y(Ma NaO)7P7 Q) —Pp Dm,y(My Du,v(Ny P7 Q)aDu,v(prv Q)) u

We are now in a position to state precisely the question addressed by the
present paper: how can we give a modular proof of the strong normalisation
of IPPL with respect to both the detour- and permutation-conversions? or,
equivalently, how can we prove that the typed A-terms of Section 2.2 satisfy the
strong normalisation property with respect to the reduction relation induced by
the union of the rewriting systems of definitions 1 and 2?7



3 Strong Normalisation of permutation-conversions

In this section, we establish the strong normalisation of A"V with respect to
permutation-conversions. The proof consists simply in assigning a norm to the
A-terms and then in proving that this norm (which we call the permutation
degree) is decreasing under the reduction relation — p.

Definition 3. (Permutation degree for A\="Y)

1. Jz|=1

2. |Ax. M| = |M]

3. |M N|=|M|+#M x |N|
4- [p(M,N)| = [M]|+ |N|
5. |py M| = [M|+ #M

6. [py M| = [M|+ #M

7. |k M| = |M|

8. ko M| = |M|

9. |Dgy(M,N,0)| = M|+ #M x (|N| + [O])
where:

10. #z =1

11, # . M = 1
12. #M N = #M
13. #p(M,N) =1
14. #py M = #M
15. #p, M = #M

16. #k; M =1
17, #ko M =1
18. #Dy (M, N,0) =2 x #M x (#N + #0) N

Lemma 1. Let M and N be two A-terms of A=Y such that M —p N. Then
UM — #N.

Proof. Let C[] be any context, i.e., a A-term with a hole. It is straightforward
that #C[M] = #C|[N] whenever #M = #N. Hence it remains to show that #
is invariant under each rewriting rule of Definition 2.

4D, ,(M,N,0) P = #D, ,(M,N,0)
=2 x #M x (#N + #0)
=2X #M x (#N P + #0O P)
= #D,,(M,NP,0P)

#pi Dm,y(Ma N7 O) = #Dx,y(Mu Nu O)
=2 x #M x (#N + #0)
=2 x#M x (#p; N + #p,; O)



#D, (D, (M,N,0),P,Q)
=2x #Dz,y(M’N’O) X (#P+#Q)
=4 X #M x (#N + #0) x (#P + #Q)
=2XH#M X (2X #N x (#P +#Q) +2 x #0 x (#P + #Q))
=2xX #M X (#Du,v(Nv PaQ) + #Du,v(ovpv Q))
= #Dﬂ?’y(Mv Du,U(Nv Pv Q)aDu,v(O7Pv Q)) O

Lemma 2. Let M and N be two A-terms of A=Y such that M —p N. Then
|M| > |N|.

Proof. The proof is similar to that of the previous lemma. We show that the
permutation degree is strictly decreasing under the rewriting rules of Definition 2.

‘Dx,y(M,N,O)P|
= ‘Dm’y(MJVvO)‘ +#D$7y(M7N70) X |P|
[M| 4+ #M x (|N| +|0]) + 2 x #M x (#N + #0) x |P|
[M|+ #M x (|N| +|0]) + #M x (#N + #0) x |P|
|M| 4+ #M x (|[N| +#N x |P| + |O] + #0 x |P|)
= [M|+#M x (I[N P| + |0 P|)
= ‘DLy(M,NP,OPM

‘pi Dw,y<M7N7 O)I = |Da:,y(M7N7 O)‘ + #D%y(Mv N, O)
= |M|+#M x (|[N|+|O|) +2 x #M x (#N + #0O)
> |M|+#M x (IN|+|0]) + #M x (#N + #0)
= [M] +#M x (IN| + #N +|0| + #0)
[M|+#M x (|p; N| + [p; O)
= |D$7y(M7piN’piO)|

‘Du,v(Dzvy(M,N,O),P,Q”
= Dy (M, N, O)| + #Da (M, N,O) x (|P| +]Q])
= | M|+ #M X (IN| +[O]) + 2 x #M x (#N + #0) x (|P| +|Ql)
> | M|+ #M x (|N| +[O]) + #M x (#N + #0) x (|P| + |QI)
= |M|+#M x (IN| + #N x (|P|+|Q|) + [O] + #0 x (|P| +1QI))
[M| + #M x (Do (N, P, Q)| + Duv (0, P,Q)|)
- |Dm,y(M7 Du,v(Nv Pa Q)?Du,v(Ov-Pv Q))|

IV

O

We immediately obtain the expected strong normalisation result from the
above lemma.

Proposition 1. A"V is strongly normalisable with respect to permutation-
CONVErsions. a

Remark that this proposition also holds for the untyped terms. This fact
confirms that the permutation-conversions do not have a real computational
meaning. The fact that they are needed to obtain the subformula property may
be seen as a defect of the syntax.



4 Negative translation and CPS-simulation

We now establish the strong normalisation of A"V with respect to detour-con-
versions. To this end we interpret IPPL into intuitionistic implicative logic by
means of a negative translation. This corresponds to a translation of A~V into
the simply typed A-calculus. This translation must satisfy two requirements. On
the one hand, it must provide a simulation of the detour-conversions. On the
other hand it must be compatible with the permutation-conversions in a sense
that will be explained. In order to satisfy the first requirement, the negative
translation we use is a generalisation of the one used by Meyer and Wand in the
implicative case [8], i.e., a generalisation of the translation induced by Plotkin’s
call-by-name CPS-translation [10].

Definition 4. (Negative translation of IPPL) The negative translation @ of
any formula o« of IPPL is defined as:

O = ~~Qy

where
~O=Q — 0

for some distinguished atomic proposition o (that is not used elsewhere), and
where:

1. a°=a B

2. (a—=p)r=a—p

5. (a AB)° = ~(@— ~B)

4. (@VP)° =n~a — ~f u

Then we accomodate Plotkin’s call-by-name simulation to the case of A=V,

Definition 5. (CPS-translation of \="V)

1.

2. .

3. (M N) = \k. M(/\m mN k)

4. POM,N) = MNe.k (\p.p M N)

5. py M = Xk. M (Ap.p(Xi. M\j.ik))

6. Py M = Mk. M (\p.p (Ni. \j.jk))

7. ko M = M.k (Mi. Aj.i M)

8. ko M = M.k (Xi. Aj. j M)

9. D, (M,N,0) = M. M (Am.m (Az. N k) (\y. O k))

where k, m, p, © and j are fresh variables. [ |

We now prove that the translations of Definition 4 and 5 commute with the
typing relation.

Proposition 2. Let M be a A-term of ATV typable with type o under a set of
declarations I'. Then M is a A-term of the simply typed A-calculus, typable with
type @ under the set of declarations I.



Proof. See Appendixz A. O

The translation of Definition 5 does not map normal forms to normal forms.
This is due to the so-called administrative redexes that are introduced by the
translation. The modified translation below circumvents this problem.

Definition 6. (Modified CPS-translation of A=) The modified CPS-transla-
tion M of any A-term M of A"V is defined as:

M = \k. (M : k)
where k is a fresh variable, and where the infix operator “:” obeys the following
definition:
1.x: K=zK _
2. . M: K=Kz M)
3. (MN):K:M:/\m.mEL(
4. p(M,N): K=K (Ap.pMN)
5. pyM:K=M:Mp.pAi.N.iK)
6. poM:K=M:\p.p(Ni.\j.jK)
7. kiM: K= K()\i)\j.i@)
8 koM : K=K (X\i.\j.j M)
9. Dy y(M,N,0): K =M : dm.m(Az. (N : K)) (\y. (O : K))

where m, p, i and j are fresh variables, and where, in Clause 9, x and y do not
occur free in K. Remark that this last condition is not restrictive since it may
always be satisfied by renaming. [ ]

As expected, the modified translation is a G-reduced form of the CPS-trans-
lation.

Lemma 3. Let M and K be terms of A\™""V. Then:

1. M—»ﬁﬁ,
2. MK —3 M : K.

Proof. We proceed by induction on the structure of M. Property 1 is the property
of interest, while Property 2 is needed to make the induction work. O

From this lemma, we get the analogue of Proposition 2 for the modified
translation.

Proposition 3. Let M be a A-term of A=V typable with type o under a set of

declarations I'. Then M is a A-term of the simply typed A-calculus, typable with
type @ under the set of declarations I'.

Proof. The proposition follows from Proposition 2, Lemma 3, and the subject
reduction property of the simply typed A-calculus. ad

10



The modified CPS-translation allows the detour-conversions of A="V to be
simulated by (-reduction. This is established by the next lemmas.

Lemma 4. Let M and N be M-terms of A" and K be a simple \-term in
which there is no free occurrence of x. Then:

(71\4 Kl[ z:=N| =5 (M[z:=N]) : K,
2. Mlz:=N| —5 M[az:=N].

Proof. Property 2 is a direct consequence of Property 1, which is established by
a straightforward induction on the structure of M. a

Lemma 5. Let K and L be simple A-terms such that K i>g L. Then, for any
A-term M of \™"N, M : K S5 M : L.

Proof. By a straightforward induction on the structure of M. a

Lemma 6. Let M and N be two A-terms of X~V such that M —p N. Then:

1. M: K i> N : K, for any simple A\-term K,
2. N

EH
2

Proof. Property 2 may be established as a direct consequence of Property 1. Then
proving that C[M] : K 55 C[N] : K (for any K) whenever M : K 55 N : K
(for any K ) consists in a straightforward induction on the structure of the context
Cl], using Lemma 5 in some cases. Hence it remains to establish Property 1 for
the five rewriting rules of Definition 1.

(M. M)N): K = (Ax.M):  m. mN K
= (Am.mN K) (\z. M)

5( . MYNK

—5 M[z:=N| K

ﬁM[ =N]K

—pg (M[z:=N]) : K

(p;P(M,N)): K = p(My, M) : Ap.p(Nj1- Nja. ji K)
Ap-p (M- Aje- ji K)) (Ap.p M1 M)
5 (Ap.p M1 Mz) (Mji- M. ji K)

—>ﬁ (M1 Nja.ji K) My Mo

—>5 M K

—»5 M K

—~

11



D, 0, (ki M, Ny, No) : K

= (k; M) : dm.m(Az1. (Ny : K)) (Aza. (N2 : K)) o
(Am.m (Az1. (N1 : K)) (Azg. (N2 @ K))) (Aj1- Nja- ji M)
(Mj1. N2 i M) (Az1. (N7 : K)) (Aza. (Ns : K))
(
(
(

_>B

S5 (i (N; = K) M
—5 (N; : K)[z;:=M]
—g (Nij[z;:=M]) : K

O

The above lemma allows any sequence of detour-conversion steps to be sim-
ulated by a longer sequence of B-reduction steps in the simply typed A-calculus.
Therefore, since the simply typed A-calculus is strongly B-normalisable, we im-
mediately obtain the following proposition.

Proposition 4. \™"V is strongly normalisable with respect to the detour-con-
VETsSions. O

5 Strong normalisation
In this section we prove that A~V is strongly normalisable with respect to both
the detour- and permutation-conversions. This is not a direct consequence of
Propositions 1 and 4 because detour-conversions can create permutation-redexes
and, conversely, permutation conversions can create detour-redexes.
Therefore we first show that the modified CPS-translation maps the relation
of permutation-conversion to syntactic equality.

Lemma 7. Let M and N be two A-terms of A\™"V such that M —p N. Then:

1. M : K= N:K, for any simple A-term K,
2. M=N.

Proof. Property 2 is a direct consequence of Property 1. To show that C[M] :
K = C[N] : K whenever M : K = N : K consists in a routine induction on
the structure of the context C[]. It remains to establish Property 1 for the four
rewriting rules of Definition 2.

(Dzy(M,N,0O)P) : K
=D, ,(M,N,0): \m.mPK
=M :dm.m(Ax. (N : Am.mf[()) (Ay. (O : /\m.me))
=M:dm.mAx.(NP:K))(A\y.(OP: K))
—D,,(M,NP,OP): K

(pi Dm,y(Ma NvO)) K = Dz,y(Ma NaO) : )‘p~p(/\j1~ >\]2J2 K)
=M : dm.m (Az. (N : Ap.p (Mj1. Ma. ji K)))
(Ay- (O : Ap.p (Aj1- Aj2. ji K)))
=M: dm.mAz. (p;, N: K))(Ay.(p; 0 : K))
= Dx,y(Ma P; Napi O) i K

12



Dyv(Dgy(M,N,0),P,Q) : K
=D, (M,N,0) : \m.m (Au. (P : K)) (M. (Q : K))
=M : dm.m(Ax. (N : dm.m (Au. (P K)) (\v. (Q K))))
(Ay. (O : Am.m (Au. (P : K)) (Av. (@ : K))))
=15 (D (N 2.0) - ) O (D (0.P.Q) : K))
:Dziy(M’D u,v N7 ) ( P,Q)) K
O

We may now prove the main result.

Theorem 1. A\~ is strongly normalisable with respect to the reduction rela-
tion induced by the union of the detour- and permutation-conversions.

Proof. Suppose it is not the case. Then there would exist an infinite sequence
of detour- and permutation-conversion steps starting from a typable term (say,
M ) of \=NV.If this infinite sequence contains infinitely many detour-conversion
steps, there must exist, by Lemmas 6 and 7 an infinite sequence of B-reduction
steps starting from M. But this, by Proposition 3, would contradict the strong
normalisation of the simply typed \-calculus. Hence the infinite sequence may
contain only a finite number of detour conversion steps. But then, it would con-
tain an infinite sequence of consecutive permutation-conversion steps, which con-
tradicts Proposition 1. a

6 First-order quantification

As we stressed in the introduction, our proof of the strong normalisation of
ATV (with the permuation-conversions) is modular. Consequently, it has the
advantage of being easily adaptable. We illustrate this fact by taking into account
intuitionistic positive first-order logic (IPFOL, for short), i.e., IPPL + universal
and existential quantification. We first complete the grammar of terms with
new constructors corresponding to the introduction and elimination of the two
quantifiers:?

The typing rules of these new constructions correspond to the introduction and
elimination rules of V and 3:
M : ale] M :Ve.alg] M : alf] [z : al]]

: M:3al¢] N:p
AL M :Véal(]  AgM:aft] iM:3.a E,(M,N): 3

)\*»/\\/VH)

The resulting system ( features two additional detour-conversion rules.

2 We have simplified the syntax with respect to [14]. The reason is that we are not
interested in a complete coding of the proofs, but only in a coding that simulates
proof normalisation. Consequently, there is no need for encoding the management
of first-order terms.

13



Definition 7. (Detour-conversions of A~"VV3) The detour-conversions of
ATAVY3 consists of the five conversion rules of Definition 1, together with the
two following rules:

6. AgArM —p M
7. By(iM,N) —p N[z:=M] n

We must also add to the system two permutation-conversion rules obeying
the general scheme of Section 2.4.

Definition 8. (Permutation-conversions of A\="V¥2) The permutation-conver-
sions of A\™\VY3 consists of the four conversion rules of Definition 2, together
with the two following rules:

. AE Dxﬁy(M, N, O) —Pp D:r,'q(MyAE ]V7 AE O)
6. E.(D;,(M,N,0),P) —p D, ,(M,E,(N, P),E.(O, P)) ]

These four additional conversion rules are not sufficient to guarantee that
the normal proofs satisfy the subformula property. Indeed the elimination rule
for the existential quantifier presents the same peculiarity as the elimination
rule for disjunction: its conclusion is not a subformula of the formula to be
eliminated. Consequently, we must also allow all the elimination rules to permute
with the existential elimination rule. This gives rise to the following existential
permutation-conversions.

Definition 9. (Ezistential permutation-conversions of A="\V¥3)

. E.(M,N)O —p, E,(M,NO)

- p1E(M,N) —p, E;(M,p, N)

p2EI(M7N) —Ps EI(M’p2N)

. D,.(E.(M,N),0,P) —p, E,(M,D,.(N,O, P))

. AEEI(M,N) — P3 EI(M,AEN)

. E,(E,(M,N),0) —p, E,(M,E,(N,0)) n

D G Lo o =

In order to prove that A="\V¥3 satisfies the strong normalisation property
with respect to the reduction relation induced by —p, —p and— p,, it suffices
to adapt the different propositions of the previous sections. To this end, we gen-
eralise the notions of permutation degree, negative translation, CPS-translation,
and modified CPS-translation.

Definition 10. (Permutation degree for A\="V¥3) The notion of permutation
degree is adapted to X~V by adding the following clauses to Definition 3.

19. |A; M| = |M]|
20. |Ag M| = |M|+ #M

21. |iM| = |M|
22. |Ey(M,N)| = [M|+ #M x |N|
23. #A1 M =1

2). #Ag M = #M

14



25 #iM =1
26. #E,(M,N) =2 x #M x #N N

Lemma 8. Let M and N be two A-terms of \="VY3 such that M —p N. Then
UM — #N.

Proof. We extend the proof of Lemma 1 by showing that # is invariant under
the additional rewriting rule of Definition 8.

#Ag D, (M,N,0) = #D, ,(M,N,O)
=2X #M x (#N + #0)
= #D. (M, A N,Ag O)

#Ez(Dz,y(M, N,O),P) =2X #Dx,y(M, N,O) X #P
=4 X #M x (#N + #0) x #P
=2XH#M X (2X #N X #P +2x #0 x #P)
= #DLy(Msz(Na P)aEz(O7P))
O

Lemma 9. Let M and N be two A-terms of A\="VY3 such that M —p N. Then
|M| > |N.

Proof. We extend the proof of Lemma 2 as follows:

‘AEDJC,Q(M’ Na0)| = |D:C7y(Mv Na O)| + #Dx,y(Ma NaO)

= |[M| +#M x (IN|+[0]) + 2 x #M x (#N + #0)

> M|+ #M x (|[N| 4+ |0]|) + #M x (#N + #0)

= |M|+#M x (IN|+ #N + |M| + #M)
|E.(Dgy (M, N,0), P)|

- |DT,y(Ma Na0)| JF#Dry(Ma N,O) X #P

|M| + #M x (|N|+ [O]) + 2 x #M x (#N + #0)) x #P
|M|+#M x (IN| +|O]) + #M x (#N + #0)) x #P
M|+ #M x (N| + #N x #P + O] + #0 x #P)
= |[M|+ #M x (|[E.(N, P)| + |E.(O, P)|)
= |Dx7y(M,EZ(N,P),EZ(O,P))|

v I

O

Lemma 10. Let M and N be two A-terms of \="V¥3 such that M —p, N.
Then #M = #N.

Proof. The proof is similar to that of Lemma 1. We show that # is invariant
under the six rules of Definition 9:

=2 X #M X #N
=2X#M X #NO

15



#p; Eo(M,N) = #E, (M, N)
=2 X #M x #N
=2 X #M x #p; N

#Dy,z(Ez(MaN)7O’P) =2x #Ew(M>N) X (#O+#P)
=4 X #M X #N x (#0 + #P)
=2 x #M x #D, (N, O, P)
- #Em(MaDy,z( 7P)

#AEEJJ(M7N) :#E:v(MvN)
=2XH#M X #N
=2XH#M X #Ag N
= #E.(M,AgN)

#Ey(Ex(M, N),0) = 2 x #E;(M, N) x #0
=4 X #M X #N x #0
=2 x#M X #Ey(Na O)#Er(MaEy(NaO))

Lemma 11. Let M and N be two A-terms of \="V¥3 such that M —p, N.
Then |M| > |NJ.

Proof. The proof is similar to that of Lemma 2:

M|+ #M x |[N|+2x #M x #N x |O|
M|+ #M x |N|+#M x #N x |O|
M|+ #M x (|N|+#N x |0|)
:|M\+#M>< |N O|

= |E;(M,N O)|

vl

Ip; Eo(M, N)| = |E;(M,N)| + #E;(M,N)

M|+ #M X |[N|+2 x #M X #N
> |M|+ #M x |[N|+#M x #N
|M| + #M x (|[N|+ #N)

= |M|+#M x |p; N|

= |Ew(M7pzN)|

Dy,-(Ex(M,N),0, P)| = [Eg(M,N)| + #E;(M,N) x (|O| + |P|)
= |M|+#M x |[N|+2x #M x #N x (|O] + |P|)
> |M|+#M x |[N|+#M x #N x (|O] +|P))
|M|+#M x (|N| +#N x (|O| + |P]))
= |M|+#M x |D, .(N, O, P)|
:|E:E(M7Dy,z(NaOvP))|
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M|+ #M x |[N|+2x #M x #N
|M|+#M x [N| +#M x #N
|M| +#M x (IN| + #N)

= |M|+ #M x |Ag N|

= |E-(M, Ag N)|

M|+ #M x |[N|+2x #M x #N x |O|
M|+ #M x |N|+#M x #N x |O|
|M|+#M x (IN|+ #N x |0])

= |M|+ #M x |E,(N,O)|
:|E1(M7Ey(NvO))|

vl

vl

a

As an immediate consequence of Lemmas 9 and 11, We obtain the following
proposition.

Proposition 5. A\~"VY3 is strongly normalisable with respect to the reduction

relation induced by the permutation-, and existential permutation-conversions.
O

The next step in establishing the strong normalisation of A"VV3 with respect

to all the rduction relations is to generalise the translations of Definitions 4
and 5. To this end, we let ¢ be a distinguished atomic simple type, and x be a
distinguished variable of type ¢.

Definition 11. (Negative translation of IPFOL) The definition of the negative
translation @ of any formula o of IPFOL is obtained by adding the following
equations to Definition 4:

5 al&,...,&)° =a
6. (Vo) =1—a
7. (F.a)® = ~(1 — (~a))

Definition 12. (CPS-translation of \="V¥3) The CPS-translation of Defini-
tion 5 is extended to \™"\VY3 by adding the following equations:

10. A1 M = Mk. k (\e. M), where & is a fresh variable.

11. Ag M = Xk. M (Am.m*k)

12. iM = M.k (Ma.a x M)

18. Ex(M,N) = k. M (Am.m (M. Mz N k)), where € is a fresh variable. |

The commutation property established by Proposition 2 still holds with the
extended definitions.

Proposition 6. Let M be a A-term of A7AVY3 typable with type o under a set
of declarations I'. Then M is a A-term of the simply typed A-calculus, typable
with type @ under the set of declarations I.

17



Proof. See Appendixz A. O

The definition of the modified CPS-translation is generalised as follows.

Definition 13. (Modified CPS-translation of \"\VY3) The modified CPS-translation

M of any M\-term M of X="\VY3 is defined by adding the following equations to
Definition 6:

10. A M : K = K (\&. M), where € is a fresh variable.
11. Ag M K =M : dm.mxK
12. iM : K = K (MAa.a x M)
13. E;(M,N): K =M : dm.m (X Ax. (N : K)), where £ is a fresh variable.
|

Showing that M —» 4 M for any A-term M of A~/\V¥7 is a matter of routine.
From this, we get that the negative translation of Definition 11 and the modified
CPS-translation of Definition 13 commute with the typing relation.

Proposition 7. Let M be a A-term of A=V typable with type o under a set

of declarations I'. Then M is a M-term of the simply typed A-calculus, typable
with type @ under the set of declarations I'. a

It remains to prove that that the modified CPS-translation allows the detour-
conversion to be simulated by g-reduction, and the other reduction relations to
be simulated by equality. We state the main lemmas for the sake of completeness.

Lemma 12. Let M and N be two \-terms of A\="VY3 such that M —p N.
Then:

1. M: K—>5N K, for any simple A\-term K,
2. M—>5N

Proof. We extend the proof of Lemma 6 as follows:

|l
QQA
=

(AEAIM): K AIM):)\m.m*i(
/\ *x K) (\e. M)

)*K

3

==z
=

él

' K
E,(iM,N): K M): xm.m (A& Ax. (N K))
)\m.m(& Az. (N : K))) (Aa.a x M)
Aa.a x M) (M. Az (N : K))

YDA (N K)) » M

Az. (N : K)) M

—»g (N : K)[x =M]
[z:=M] : K

!

Ll
w @ @

o T D

&3
=



Lemma 13. Let M and N be two A-terms of \~"VY3 such that M —p N.
Then:

1. M : K= N:K, for any simple A\-term K,
2. M =N.

Proof. We extend the proof of Lemma 7.

(Ap Dy, (M,N,0)): K = D, ,(M,N,0) : m.m » K
=M : dm.m(Az. (N : dm.m * K))
Ay. (O : dm.m * K))
=M : ) dm.m(Azx. ((Ag N) K)) (\y.
=D, ,(M,AgN,Ag0): K

E.(D,,(M,N,0),P): K =Dy, ,(M,N,0) : km.m (. \z. (P : K))
:M:)\m.m(( z. (N : dm.m (X Az, (P : K))))
(
(

(Ag0): K))

Ay. (O : dm.m (M. Az. (P : K))))
Az. (Ez(N,P): K))
Ay. (E. (O, P) ))

E

=M: m.m ,
:Dm,y(MaEz( 7P)7 Z(O,P))

O

Lemma 14. Let M and N be two A-terms of A\="VY3 such that M —p, N.
Then:

1. M : K= N:K, for any simple A\-term K,
2. M =N.

Proof. We show that Property 1 holds for the sixz rewriting rules of Definition 9.

E,(M,N)O): K =E,(M,N): Am.mOK
= M : Am.m (A& Az (N : Am.m O K))
=M : dm.m (X Azx. (NO) : K))
—E,(M,NO): K

(piEm(M7N)) (K = Ew(M7N) : )‘pp(/\.h)‘]sz K)
=M : dm.m (X Az (N : Ap.p (Aj1. Mo ji K)))
*M Am.m (M. Az. ((p; N) : K))
E;(M,p; N) : K

D,.(E,(M,N),0,P): K = E,(M,N) : km.m (\y. (O : K)) (Az. (P : K))
=M : dm.m (AN Az. (N : Aim.m (\y. (O : K))
(Az.(P: K))))
=M : dm.m (A Az. (D, (N,O,P) : K))
= E,(M,D,.(N,0,P)): K
(AR E.(M,N)): K = E,(M,N) : m.mK
=M : dm.m (AN Az. (N : Aim.m* K))
=M :dm.m (X Az. (A N) : K))
—E,(M,AgN): K
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E,(E,(M,N),0) : K = E,(M,N) : Am.m (A& M\y. (O : K))
=M : dm.m (A Az (N : dm.m (A My. (O : K))))
=M : dm.m (A Az. (Ey(N,0) : K))
=E,(M,E,(N,0)): K
O

Propositions 5, 7, and Lemmas 12, 13, and 14 allow one to replay the proof
of Theorem 1. Hence, we obtain the following theorem.

Theorem 2. A~"VY3 is strongly normalisable with respect to the reduction re-
lation induced by the union of the detour-, permutation-, and existential permu-
tation-conversions. a

7 Absurdity and _L-conversions

We now show how to extend our proof to full intuitionistic first-order logic
(IFOL, for short), i.e., IPFOL + negation. Following Prawitz, we consider the
negation as a defined connective:

a=o— L

where | is a constant standing for absurdity that obeys the following elimination

rule:
1

@
Consequently, we extend the grammar of terms by the following clause:

T = ... | L(T)
and we add the following typing rule to the system:
M: 1
L(M):a
We call the resulting system A\~"VY3L_ Since there is no introduction rule for

L, there is no detour-conversion either. On the other hand, we must take into
account new permutation-conversion rules.

Definition 14. (Permutation-conversions of \=\V¥31) The permutation-con-
versions of \"NVYIL consists of the siz conversion rules of Definition 8, together
with the following rule:

7. L(Dyy(M,N,0)) —=p D, (M, L(N), L(O)) [ ]

Definition 15. (Ezistential permutation-conversions of \="\VV3L) The existen-
tial permutation-conversions of X™\VY3L consists of the siz conversion rules of
Definition 9, together with the following Tule:
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7. L(Eo(M,N)) —p, E,(M, L(N)) N

To adapt our strong normalisation proof to A™"VY3+ we first complete the
definition of permutation degree, and show that it is decreasing under the re-
duction relations of Definition 14 and 15.

Definition 16. (Permutation degree for \="\VV3+) The notion of permutation
degree is adapted to \™"VY3L by adding the following clauses to Definition 10.

27. |L(M)| = |M| + #M
28. #L(M)=#M n

Lemma 15. Let M and N be two \-terms of X~"VV3L such that M —p N.
Then #M = #N.

Proof. We extend the proof of Lemma 8 by showing that # is invariant under
the additional rewriting rule of Definition 14.

#L<Dz,y(M’ N, O)) = #Dmy(Mv Nvo)
=2 X #M x (#N + #0)
=2 x #M x (#L(N) +#1(0))
= #Day (M, L(N), L(P)) .

Lemma 16. Let M and N be two \-terms of A~"VY3L such that M —p N.
Then |M| > |NJ.

Proof. We extend the proof of Lemma 9 as follows:

‘J-(Dny(Mv Na O))| = |DT,y(Ma Na O)| + #DLy(Ma NaO)

|M| 4+ #M x (IN| 4+ |0|) + 2 x #M x (#N + #0)
|M|+#M x (|N|+[0]) + #M x (#N + #0)
|M| +#M x (|[N|+ #N + O] + #0)

= [M|+#M x (|L(N)| + | L(O)])

= D, (M, L(N), L(O))|

v I

O

Lemma 17. Let M and N be two A-terms of A~V such that M —p, N.
Then #M = #N.

Proof. We extend the proof of Lemma 10 as follows:

#L(Eq(M,N)) = #E. (M, N)
=2 X #M X #N
=2X #M x #L(N)
= #E; (M, L(N)) -

Lemma 18. Let M and N be two \-terms of A\="VY3+ such that M —p, N.
Then |M| > |NJ.
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Proof. We extend the proof of Lemma 11 as follows:

‘L(EI(M’N)” = |E93(M’N)|+#E1(M’N)

M|+ #M x |[N|4+2 x #M X #N
M|+ #M x |N| +#M x #N
|M|+#M x (|N| + #N)

= |M|+#M x |LN|

= |Eo(M, L(N))|

IAVANT

Lemmas 16 and 18 immediately yield the following proposition.

Proposition 8. A~V s strongly normalisable with respect to the reduction
relation induced by both the permutation- and existential permutation-conver-
S50MS. a

We now extend the negative translation of Definition 11 to IFOL, and the
CPS-translation of Definition 12 to A~"VY3L,

Definition 17. (Negative translation of IFOL) The definition of the negative
translation @ of any formula o of IFOL is obtained by adding the following
equation to Definition 11:

8 1°=o0 [ |

Definition 18. (CPS-translation of A\="V¥3L) The CPS-translation of Defini-
tion 12 is extended to X~V by adding the following equation:

14. L(M) = Xe. M ((A\z. My y) k) |

It might be surprising that the above clause introduces explicitly a (-redex,
namely, (A\z. A\y.y) k. We will come back to this point later on.

Proposition 9. Let M be a A-term of ATAVYEL tunable with type a under a set
of declarations I'. Then M is a A-term of the simply typed A-calculus, typable
with type & under the set of declarations I.

Proof. See Appendiz A. a
The definition of modified CPS-translation is then adapted as follows.

Definition 19. (Modified CPS-translation of \"NVY3L) The modified CPS-trans-
lation M of any \-term M of A\="\VY3L is defined by adding the following equa-
tion to Definition 13:

Y. L(M):K=M:((Ax.)\y.y) K) |

Definitions 18 and 19 are such that M —3 ﬁ, from which we derive the
following proposition.
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Proposition 10. Let M be a A-term of ATAVYEL wnable with type o under a

set of declarations I'. Then M is a A-term of the simply typed A-calculus, typable
with type @ under the set of declarations I. O

It remains to prove that that the modified CPS-translation maps any two
terms that are P- or P3-convertible to the same simple A-term.

Lemma 19. Let M and N be two \-terms of X~"VV3L such that M —p N.
Then:

1. M : K= N:K, for any simple A-term K,
2. M =N.

Proof. The proof is adapted from that of Lemma 13. The additional case is han-
dled as follows:

1(Dyy(M,N,0)): K
:Da:,y(MvN’O) (/\ Y. y)K
=M:dm.mAz. (N : (Az. \y.y) K)) (Ay. (O : (Az. \y.y) K))
=M :dm.m(Az. (L(N): K))(A\y. (L(O) : K))
= (Day(M, L(N), L(0))) : K

~—

a

Lemma 20. Let M and N be two A-terms of A=Y+ such that M —p, N.
Then:

1. M : K=N:K, for any simple A\-term K,
2. M =N.

Proof. The proof is adapted from that of Lemma 14. The additional case is han-
dled as follows:

LEL(M, N)) : K = BL (M, N) : (. M) K
=M: /\m m(AE Az, (N : (Az. \y.y) K))
=M: /\mm(M)\x( (N) : K))

O

In order to conclude, it remains to prove that Lemma 12 is still valid. Since
there is no new detour-conversion rule, we only have to check that C[M] : K Lﬁ
C[N] : K (for any K) whenever M : K 55 N : K (for any K). In order to
prove this, we need Lemma 5, which indeed still holds because the infix operator
“” is strict in K. It is to be noted that the strictness of “:” is due to the redex
(Az. Ay.y) K introduced by Definition 19. This explains why both Definitions 18
and 19 introduce explicitly [-redices. Finally, Lemma 12 being still valid, the
following theorem holds.

Theorem 3. A\~"V3L s strongly normalisable with respect to the reduction
relation induced by the union of the detour-, permutation- and existential per-
mutation-conversions. O
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The above theorem is sufficient to ensure that the normal proofs satisfy the
subformula property provided that all the formulas introduced by 1-elimination
are atomic. This may be assumed without loss of generality because any non-
atomic instance of the |-elimination rule may be replaced by atomic ones. For
example, in the case of a conjunctive formula, one may apply the following
transformation:

S I
i L4
1 a B
aAp alp

The use of such transformations is not completely satisfactory. On the one
hand, it corresponds to a preprocessing of the proofs, which goes against the
spirit of strong normalization. On the other hand, these transformations, when
expressed in an untyped setting, do not normalize. For instance, the above trans-
formation gives rise to the following non-terminating rewriting rule:

L(M) — p(L(M), L(M)).

These problems may be circumvented by taking into account conversion rules
that are proper to L. These rules allow proofs to be simplified when the principal
premise of an elimination rule is obtained as the conclusion of a 1-elimination.
For instance:

- I

+ LI, - 1L
a—f « il
— (Elim.) — -—

B

From a computational point of view, these rules correspond to the propagation
of a raised exception [4]. They are the following.

Definition 20. (L-conversions of A\="VV31)

. L(M)N =, L(M)

. py L(M) =1 L(M)

py L(M) —, L(M

. D, (L(M),N,0) —, L(M)

Ag L(M) =, L(M)

- Eu(L(M),N) -, L(M)

CL(L(M)) —. L(M) n

LD G A W e =

It is possible to show that the permutation degree of Definition 16 is strictly
decreasing under the above reduction rules. Unfortunately, it is not the case
that the modified CPS-translation of Definition 19 maps two twerms that are
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L-convertible to the same simply typed A-term.? Hence, it is not possible to take
the L-conversions into account by just replaying the proof of Theorem 1 (as we
did for Theorems 2 and 3). Consequently, in order to show A~"V¥3L is strongly
normalisable with respect to the reduction relation induced by the union of the
detour-, permutation-, existential permutation-, and 1-conversions, we adopt
another simple strategy: we show that the 1-conversions may be postponed.

First, note that the lengths of left-hand sides of the rewriting rules of Defi-
nition 20 are strictly less that the lengths of the corresponding right-hand sides.
This simple observation immediately yields the following result.

Proposition 11. A\="VY3L s strongly normalisable with respect to the reduc-

tion relation induced by the 1 -conversions. a

In order to establish the postponement of the | -conversions, the two following
lemmas are needed.

Lemma 21. Let M, N and O be three A-terms of A\™"VV3L such that M — | N.
Then, M[x:=0] —_ N[xz:=0].

Proof. By a straightforward induction on the derivation of M — | N. a

Lemma 22. Let M, N and O be three A-terms of A\="VV3+ such that N — | O.
Then, M[z:=N] — M[z:=0].

Proof. By a straightforward induction on the structure of M. O
We are now in a position of stating and proving the postponement lemma.

Lemma 23. Let R € {D,P,P3}, and let L, M and N be three A-terms of
ATAVYEL such that L — | M —g N. Then, there exists a A-term O of A\~/\VV3+
such that L 5 O — | N.

Proof. The proof is done by induction on the structure of M, distinguishing
between several subcases according to the way L reduces to M, and M reduces to
N. Among these numerous subcases, the only ones that are not straightforward
are these where L is a 1-redex and where M, which is the contractum of L, is a
R-redex whose contractum is N. In other words, the only non-trivial cases are
these that result from a critical pair between the right-hand side of a rewriting
rule of Definition 20 with the left-hand side of a rewriting rule of Definition 7,
14 or 15. All the right-hand sides of the rules of Definition 20 have the same
shape, namely, L(M"). These right-hand sides match with the left-hand sides of
two rules: Rule 7 of Definition 14, and Rules 7 of Definition 15. Consequently,
there are fourteen subcases resulting from these critical pairs. We only give the
first one, all the others being similar. Let L, M, and N be such that:

3 In fact, it would have been the case if we had defined L (M) : K to be M : (\z.x).
But then, the infix operator “:” would no longer be strict in K, which implies the
failure of Lemma 5 and, consequently, of Lemma 12.
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L = J_(Dm’y(Ml,Mg,Mg))Ll
—1 L(Dgy(My, My, M3)) = M
—PpP DL,y(M17J-(M2)7J-(M3)) =

Then, we have:

1L (Dgy(My, Mz, M3)) Ly —p Dy (M, L(My), L(Ms)) L
—pD, y(Ml,J_(Mg)Ll,J_(Mg)Ll)
—1 D, y(M17 (M2)7J-(M3) )
—1 Dy, y(Mh (MQ)aJ-(M3))
)-

And we take O = Dy, ,, (M1, L(My) Ly, L(M3) Ly O
The above lemma, together with Theorem 3 and Proposition 11, allows the
last result of this paper to be established.

Theorem 4. \~"VV3L is strongly normalisable with respect to the reduction
relation induced by the union of the detour-, permutation-, existential permuta-
tion-, and 1 -conversions.

Proof. Suppose that there exists an infinite sequence of detour-, permutation-,
existential permutation-, or L-conversions. If this infinite sequence contains in-
finitely many detour-, permutation-, or existential permutation-conversion steps,
one would construct, by applying repeatedly Lemma 23, an infinite sequence of
such conversion steps. But this contradicts Theorem 3. Therefore, the infinite se-
quence may contain only a finite number of detour-, permutation-, or existential
permutation-conversion steps. But then, it would contain an infinite sequence of
consecutive 1 -conversion steps, which contradicts Proposition 11. a
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A Proof of Propositions 2, 6 and 9

Variable
T :~~a k:~a
zk:o
Ne.xk:~~a
Abstraction
[z: @]
M:3
ki~n(@—pB) Xe.M:a—f
k(Ax.M):o
M.k (Ax. M) : ~~(a — B)
Application




Pairing o
p:a—~F M:a

pM:~p N:p
pMN :o
k(@ — ~f) Ap.p M N : ~(@ — ~f)
kE(Ap.pMN) : o
Me.k(Ap.p M N) : ~~ono(@ — ~f3)
Left projection
i:a k:~al
—

Nj.ik:~3
pi~(@—~p) M. \jik:a — ~f
p(Ni.Nj.ik) o
Ap.p (Ni Nj.ik) i ~~(@ — ~f)

M i nnn(a — ~)
M (Ap.p(Ni.\j.ik)):o

MNe. M (Ap.p(Ni-Nj.ik)) @

Right projection B
j:B k:~p°
jk:o
Nj.jk:~B

pi~(@— ~B) N.Aj.jk:a—~B
p(Ni.Nj.jk):0
Ap.p(Ni. Mj. j k) 1 ~~ (@ — ~)

M : ~~o~(@ — ~fB)
M (Ap-p(Ni. Mj.jk)):o
Me. M (Ap.p(MNi.Nj.jk)): B

~
o)

Left injection
i
iM:o

MNj.i M : ~~(3
Ni. Nj.i M : ~a — ~~f3

=)

k(Xi.Mj.iM) : o
M.k (Ai. Aj. i M) 1 ~omv(~a — ~nf)
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Right injection

S

ji~B M:p
Mo
Xj.j M i~
k:n(~a— ~~B) N JM : ~a — ~~f3
k(Ni.Xj.jM):o
Nk (M. Mj. j M) : o~ — o)

Case analysis
[z: @]

- [y: 8]
N:57  k:~r° :

Nk:o O o k:i~nC
m:~a — ~~f M. Nk:~a Ok:o
m(A\z. Nk): ~~3 My. Ok :~f
m(\z. Nk)(\y.Ok): o
M : ~~(~a — ~~f) dm.m (Az. N k) (\y. Ok) : ~(~a@ — ~~f)
M (Adm.m(Az.Nk)(\y.Ok)):o
Me. M (Am.m (A\z. Nk) (A\y.Ok)) : 5

V-introduction

M:a
ki~m(t—a@) M.M:i—a
k(MM : o
Mok (M. M) i ~~(1— @)

where £ is a fresh variable of type ¢.

V-elimination




J-introduction
a:lL—~Q K*:l

ax: ~a M:@a
a*xM:o
k:~~(t— ~a) Aa.a x M : ~(1 — ~a)

k(Ma.a x M) :o
M.k (MNa.a x M) : ~roro(L — ~a)

J-elimination

m:~(—~a) M. Nk:i— ~a
m(A\Ax. Nk):o
M : ~rono(L — ~a) Am.m (A Az. N k) : ~~(1 — ~a)
M (Am.m (M x. Nk)) :o
Me. M (dm.m (M. Az. N k)) : 8

| -elimination
y:o

AY.y:0—0

Az \y.y i ~a® — (0 —0) k:~a®

M:(0o—o0)—o Az dy.y)k:0—0
M ((Ax. My.y)k): o
Me. M ((Az. \y.y) k) - @

where z is of type ~a°
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