
Constructing different phonological bracketings
from a proof-net

Denis Bechet and Philippe de Groote

Projet Calligramme
INRIA-Lorraine – CRIN – CNRS

615, rue du Jardin Botanique - B.P. 101
54602 Villers-lès-Nancy Cedex – FRANCE
e-mail: bechet@loria.fr, degroote@loria.fr

Abstract. We state and prove Roorda’s interpolation theorem in the
framework of proof-net theory. This allows us to transform any proof-
net into some other proof-net that matches some given (phonological or
prosodic) bracketing.

1 Introduction

Almost a decade ago, Girard invented linear logic together with the notion of
proof-net [7]. Girard’s proof-nets have been subsequently adapted to the Lam-
bek calculus by Roorda [16] and, since then, many authors have advocated the
notion of proof-net as the right parsing structure in the framework of categorial
grammars [11, 13, 14, 16]. Nevertheless, if one wants to take this proposal seri-
ously, one must be able to perform, on the proof-nets, all the computations that
one usually performs on Gentzen’s sequential derivations.

From a theoretical standpoint, the above possible objection is actually not
a problem. Indeed, by Girard’s sequentialisation theorem, one may always as-
sociate to any proof-net some corresponding sequential derivation. Therefore,
any piece of information that can be computed from a sequential derivation may
be computed from a proof-net. From a methodological and algorithmic point
of view, however, one does not want to make the détour of sequentialising the
proof-nets: one wants to compute information directly from the proof-nets.

In a recent paper [5], Retoré and one of the authors of the present paper
have shown how to get semantic readings directly from proof-nets. In the same
spirit, we show, in this paper, how to assign a phonological term to any proof-net
(using Moortgat’s phonological algebra), and how to transform a given proof-
net in order to get different phonological bracketings. Technically, the main
difficulty consists of stating and proving, in the framework of the proof-nets,
Roorda’s interpolation theorem [16]. This problem is solved in Section 7.

The paper is organised as follows. The next section is a short review of the
Lambek calculus. Section 3 introduces Moortgat’s phonological algebra together
with a sequent calculus that assigns some bracketing to any derivation of a given
sequent. Section 4 shows how to transform a derivation in order to stick to some
given bracketing. Section 5 is a brief introduction to proof-net theory. Section 6

explains how to read the phonological bracketing associated with a proof directly
from the corresponding proof-net. Finally, in Section 7, we state and prove our
main technical result, i.e., Roorda’s interpolation theorem in the framework of
proof-net theory.

2 The Lambek calculus

The Lambek calculus, introduced as a logical basis for categorial grammars al-
most four decades ago [9], may be defined as the non-commutative intuitionistic
multiplicative fragment of linear logic.1

The formulas (or types) of the Lambek calculus are built from an alphabet
of atomic formulas (A) according to the following grammar:

F ::= A | F • F | F \ F | F/F

where formulas of the form A • B correspond to conjunctions (or products),
formulas of the form A \B correspond to direct implications (i.e., A implies B),
and formulas of the form A/B to retro-implications (i.e., A is implied by B).

The deduction relation of the calculus is defined by means of the following
system:

Identity rules

A − A (ident)
Γ − A ∆1, A, ∆2 − B

(cut)
∆1,Γ,∆2 − B

Logical rules

Γ, A, B,∆ − C
(• left)

Γ, A •B,∆ − C

Γ − A ∆ − B
(• right)

Γ,∆ − A •B

Γ − A ∆1, B, ∆2 − C
(\ left)

∆1,Γ, A \B,∆2 − C

A,Γ − B
(\ right)

Γ − A \B

Γ − A ∆1, B, ∆2 − C
(/ left)

∆1, B/A,Γ,∆2 − C

Γ, A − B
(/ right)

Γ − B/A

where Greek uppercases range over sequences of formulas.
It is to be noted that the above system does not include any structural

rule. In particular, the absence of the exchange rule is responsible for the non-
commutativity of the connectives. This, in turn, explains the presence of two
different implications.
1 This is not entirely true because empty sequences of hypotheses are not allowed in the

sequents of the original Lambek calculus. We do not insist on this restriction since
the results presented in this paper hold in both system (i.e., the Lambek calculus
with or without the empty sequence).

3 Moortgat’s phonological algebra

Following Moortgat [12], one defines the phonological algebra associated with a
set of tokens V as the structure freely generated from V by a binary operation
“+”, and one adds to this structure an identity element ε such that for any
a ∈ V, (a + ε) = a and (ε + a) = a. Notice that, apart from these identity
laws, the phonological algebra does not obey any law. In particular, “+” is not
associative.

The purpose of the phonological algebra is to associate with any Gentzen
derivation a phonological term that would reflect some prosodic phrasing [10, 12].
This may be achieved by decorating sequents with phonological terms:

a : A − a : A (Id)
Γ − t : A ∆, a : A,Θ − u : B

(Cut)
∆,Γ,Θ − u[a:=t] : B

Γ − t : A ∆, b : B,Θ − u : C
(\L)

∆,Γ, a : A \B,Θ − u[b:=(t + a)] : C

a : A,Γ − t : B
(\R)

Γ − t[a:=ε] : A \B

Γ − t : A ∆, b : B,Θ − u : C
(/L)

∆, a : B/A, Γ,Θ − u[b:=(a + t)] : C

Γ, a : A − t : B
(/R)

Γ − t[a:=ε] : B/A

where a and b range over tokens; t and u range over the terms of the phonological
algebra; t[a:=u] denotes the term obtained by substituting u for a, in t; in
Rules (\R) and (/R), the token a is fresh.

4 Rebracketing by interpolation

Because of Rule (Cut), the phonological bracketing associated to a given deriva-
tion is not invariant under cut-elimination. This is due to the following fact: the
Lambek calculus is associative whereas the phonological algebra is not. This ap-
parent mismatch is actually not a drawback but entails the property of structural
completeness [2], which may be used, for instance, to settle conflicts between in-
tonational and syntactic phrasing.

Example 4.1 Syntactic phrasing: (pierre + (écoute + (marie + chanter))) (1)

m:SN −m:SN

x:SV − x:SV

p:SN − p:SN z:P − z:P

p:SN, y:SN\P − (p+y):P

p:SN, e:(SN\P)/SV, x:SV − (p+(e+x)):P

p:SN, e:(SN\P)/SV, m:SN, c:SN\SV − (p+(e+(m+c))):P

Intonational phrasing: ((pierre + écoute) + (marie + chanter)) (2)

y:SV − y:SV

p:SN − p:SN w:P −w:P

p:SN, z:SN\P − (p+z):P

p:SN, e:(SN\P)/SV, y:SV − (p+(e+y)):P

p:SN, e:(SN\P)/SV − (p+e):P/SV

m:SN −m:SN

y:SV − y:SV z:P − z:P

x:P/SV, y:SV − (x+y):P

x:P/SV, m:SN, c:SN\SV − (x+(m+c)):P
(cut)

p:SN, e:(SN\P)/SV, m:SN, c:SN\SV − ((p+e)+(m+c)):P

The difficulty in finding a derivation that corresponds to a given prosodic
phrasing such as (2) consists in guessing the needed cut formulas—P/SV , in our
simple example—[10]. When working in the Lambek calculus with product, the
problem of guessing the cut formulas may be circumvented by using Roorda’s
interpolation theorem [16]. This lemma, however, is stated in the framework
of the sequent calculus. Therefore, if one wants to stick to the formalism of
proof-nets, one has to answer the two following questions:

– how to assign phonological terms to proof-nets;
– how to compute interpolants from proof-nets.

Sections 6 and 7 are devoted to these two questions while the next section is a
crash review of proof-net theory.

5 Proof-nets for the Lambek calculus

Proof-nets, which have been introduced by Girard [7] as an appropriate way of
representing proofs in linear logic, are defined as a special class of graph whose
nodes are decorated with formulas.

In this section, we review the usual notion of multiplicative proof-net (i.e.,
the notion of proof-net that fits classical multiplicative linear logic). Then we
explain briefly how this notion may be adapted to the Lambek calculus (i.e.,
how to take intuitionism and non-commutativity into account). The reader who
would like to know more details on the subject is referred to [15, 16].

We first introduce the formulas of multiplicative linear logic. They obey
the following grammar:

F ::= A+ | A− | F ⊗ F | F � F

Where the connectives “⊗” and “�” are respectively called tensor and par.
Then, we consider the following links that are respectively called axiom,

⊗-link, �-link, and cut:

A− A+

J
J
J

A

⊗

A⊗B

B

J
J
J

A

�

A�B

B A+

CUT

A−

where

– the formulas A− and A+ are defined to be the conclusions of the axiom;
– the formula A ⊗ B is defined to be the conclusion of the ⊗-link while the

formulas A and B are defined to be its left and right premises;
– the formula A � B is defined to be the conclusion of the �-link while the

formulas A and B are defined to be its left and right premises;
– the formulas A+ and A− are defined to be the premises of the cut;
– when A is not an atomic formula, the formula A+ is simply defined to be

A itself while the formula A− is defines according to the following inductive
clauses:

(A⊗B)− = A− �B−

(A�B)− = A− ⊗B−

Note that we distinguish between the left and the right premise only for the
⊗-link and the �-link. There is no notion of left and right premise for a cut.
Similarly, There is no notion of left and right conclusion for an axiom.

The notion of link allows the notion of proof-structure to be defined.
A proof-structure is a set of (occurrences of) formulas connected by links,

such that every (occurrence of a) formula is a conclusion of exactly one link and
is a premise of at most one link. The (occurrences of) formulas that are not the
premise of any link are called the conclusions of the proof-structure.

Given a proof-structure, the graph obtained by removing all the axioms
is called a proof-frame. In fact such a proof-frame is nothing but a forest of
syntactic trees of formulas.

Proofs in linear logic will be represented by proof-structures. It is not the
case, however, that every proof-structure corresponds to some actual proof in
the sequent calculus. In fact, the proof-structures that correspond to actual
proofs are defined to be the proof-nets. Now, the keystone of proof-net theory is
that these proof-nets may be globally characterised by giving some correctness
criterion that allows them to be discriminated from the other proof-structures
(therefore the notion of proof-net may be defined without making any explicit
reference to the sequent calculus). In order to introduce such a correctness
criterion, which is due to Danos and Regnier [4], we must define the notion of
switching.

A switching of a proof-structure is a selection for every �-link between the
left or the right position. The graph underlying such a switching is obtained by
replacing each �-link by a single edge as follows:

J
J
J

�

left position

→ J
J
J

J
J
J

�

right position

 →

We are now in a position to define formally the notion of multiplicative
proof-net: a proof-structure is a proof-net if and only if for every possible switch-
ing the underlying graph is connected and acyclic.

As we said, we must take intuitionism and non-commutativity into account
in order to accommodate the above notion of proof-net to the Lambek calculus.
To this end, the following positive and negative translations are introduced:

1. (A)+ = A+, if A+ is atomic,
2. (A \B)+ = B+ �A−,
3. (A/B)+ = B− �A+,
4. (A •B)+ = B+ ⊗A+,
5. (A)− = A−, if A+ is atomic,
6. (A \B)− = A+ ⊗B−,
7. (A/B)− = A− ⊗B+,
8. (A •B)− = A− �B−.

These translations allow us to transform any intuitionistic sequent A0, · · · , An −
B of the Lambek calculus into a sequence A−

0 , · · · , A−
n , B+ of formulas of multi-

plicative linear logic. Then, to allow for non-commutativity amounts to specify-
ing some planarity constraints. This leads to the following definition.

A non-commutative intuitionistic multiplicative proof-net associated to a
sequent A0, · · · , An − B is a multiplicative proof-net whose conclusions are
A−

0 , · · · , A−
n , B+ and that may be represented by a topological planar graph [1,

p. 16] such that:

1. the topological planar representation respects the notion of left and right
premise;

2. all the conclusions appear on the external boundary of the representation;
3. when following the external boundary counterclockwise one meets the con-

clusions in the order A−
0 , · · · , A−

n , B+ (up to a circular permutation);
4. the contour of each (bounded) face contains exactly one �-link (this last

condition, which is redundant for the cut-free proof-nets, is mandatory in
the presence of cuts).

Note that such proof-nets are intuitionistic because they have only one positive
conclusion (B+). This conclusion will be called the output conclusion while the
other ones (A−

0 , · · · , A−
n) will be called the input conclusions.

In fact we may incorporate the above positive and negative translations
within the proof-nets in order to make explicit the notion of link for the Lambek
calculus. This leads to the �-links and ⊗-links given by Fig. 1. The signs (+

J
J
J

B+

�

(A \B)+

A−

J
J
J

B−

�

(A/B)+

A+

J
J
J

A−

�

(A •B)−

B−

J
J
J

A+

⊗

(A \B)−

B−

J
J
J

A−

⊗

(A/B)−

B+

J
J
J

B+

⊗

(A •B)+

A+

Fig. 1. �-links and ⊗-links for the Lambek calculus

and −) that appear at the level of the premises and conclusions of these links
are called positive and negative polarities (or, respectively, output and input
polarities). Note that the polarities assigned to the premises of a link determine
unequivocally the polarity assigned to its conclusion. A priori, there are four
different ways of assigning polarities to the two premises of a link. However,
some of these possible configurations are forbidden, namely the +/+ assignment
for the �-link and the −/− assignment for the ⊗-link. This is due to the
intuitionistic nature of the Lambek calculus.

From now on, we will say proof-net for non-commutative intuitionistic mul-
tiplicative proof-net.

The above notion of proof-net satisfies the following property that justifies
that non-commutative intuitionistic multiplicative proof-nets correspond to the
proof-nets of the Lambek calculus.

Proposition 5.1 A sequent Γ − B is provable in the Lambek calculus if and
only if there exists an associated proof-net.

The only-if-part of this proposition may be easily established by induction

on the derivations of the sequent calculus. The if-part, which corresponds to Gi-
rard’s sequentialisation theorem, can be proven using the splitting �-link method
due to Danos [3].

A �-link occurring in a proof-net is called splitting if its removal splits
the proof-net in two parts, one connected to the two premises and one to the
conclusion of the link (see Fig. 2).

�
�

�
�

��A
A

A
A

AA
�

P1

P2

Fig. 2. A splitting �

The splitting-� method is based on the following lemma.

Lemma 5.2 Any proof-net that contains at least one �-link contains a split-
ting �-link on the external boundary of its topological planar representation.

This lemma is proven in [3] for classical multiplicative linear logic. The
proof is similar in the intuitionistic, non-commutative case. The only novelty,
which is due to our non-commutative setting, is that the splitting � must be on
the external boundary of the proof-net [6].

Given a splitting � (see Fig. 2), the two parts P1 and P2 induce two smaller
proof-nets. The part connected to the two premises (i.e., P1) is directly a proof-
net. The part connected to the conclusion (i.e., P2) with an additional axiom
is a proof-net. This fact allows the sequentialisation theorem to be proven by
induction on the size of the proof-nets.

6 Reading the phonological bracketing from a proof-net

In [16, pp. 39-40], Roorda defines a procedure that assigns a string to each node
of a proof-net. This procedure may be adapted (actually simplified) in order to
compute the phonological term associated to a given proof-net.

Technically, we work with the phonological algebra generated by a set
V = P ∪ X , where P and X are two disjoint sets, respectively called the set
of parameters and the set of variables. The terms that do not contain variables
will be called proper terms.

The computation of the proper phonological term associated to a proof-net
goes as follows:

1. Assign to each input conclusion (negative conclusion) of the proof-net a dif-
ferent parameter (In practice, the atomic constituents of the phrase); assign
to the output conclusion (positive conclusion) of the proof-net a variable
(say x).

2. Assign to each node of the proof-net a term (or a variable) according to the
unfolding described in Fig. 3.

3. Consider the unification problem made of the constraints associated to some
of the links, and of the equations “variable = term” resulting from the ax-
iomatic links. By solving this unification problem, one finds a proper term
for the variable x. This term is the phonological term associated to the
proof-net.

Roorda’s results [16] ensure that the unification problem involved in the
computation of a phonological term always admits a solution. Moreover, it is
easy to show that the phonological term associated to a proof-net (according to
our procedure) is the same as the one that would be obtained by considering some
corresponding sequential proof. Notice that the unfolding procedure that we give
is actually a simplification of Roorda’s: in particular, associative unification is
not needed.

7 Interpolation on proof-nets

Roughly speaking, Roorda’s interpolation theorem says that whenever a sequent
Γ, Ψ, ∆ − A is provable, there exists a formula I (called an interpolant) such
that the two sequents Ψ − I and Γ, I, ∆ − A are provable. In addition,
the atomic subformulas of I must obey some occurrence conditions (see [16] for
details).

Now consider a proof-net, say Π, with n input conclusions C−
i (1 ≤ i ≤ n)

and one output conclusion C+. In order to state an interpolation problem for
this proof-net, one must distinguish some consecutive input conclusions, say
C−

j , C−
j+1, . . . , C

−
j+k. Then a solution to this interpolation problem consists of

one formula I and two proof-nets Π1 and Π2 such that:

1. the input conclusions of Π1 are C−
j , C−

j+1, . . . , C
−
j+k, and its output conclu-

sion is I+;

J
J
J

y:B+ ε:A−

�

y:(A \B)+

J
J
J

ε:B− y:A+

�

y:(A/B)+

J
J
J

(t + x):A− x:B+

⊗

t:(A/B)−

J
J
J

x:A+ (x + t):B−

⊗

t:(A \B)−

x:A+ x:A−

CUTJ
J
J

x1:B
+ x2:A

+

⊗

y:(A •B)+

Constraint:
(x2 + x1) = y.

J
J
J

x1:A
− x2:B

−

�

t:(A •B)−

Constraint:
(x1 + x2) = t.

where t is a phonological term; x, x1, x2, y range over variables; for each link,
the variables x, x1, x2 are chosen to be fresh.

Fig. 3. unfolding

2. the input conclusions of Π2 are C−
1 , C−

j−1, I
−, C−

j+k+1, . . . , C
−
n , and its output

conclusion is C;
3. in Π1 (resp. Π2), there is no axiomatic link both conclusions of which would

belong to the proof-frame associated to I+ (resp. I−);
4. in Π1 (resp. Π2), all the axiomatic links no conclusion of which belong to

the proof-frame associated to I+ (resp. I−) were already existing in Π.

More abstractly, but equivalently, an interpolation problem consists of a proof-
net Π together with a set of n axiomatic links whose removal splits the proof-net
Π into two disconnected parts M1 and M2 (see Fig.4). These parts, which are
not proof-nets, will be called modules. Without lost of generality, consider that
the output conclusion of Π is a conclusion of M2. Then, a solution to this
interpolation problem consists of a formula I of length n such that the proof-
structure obtained by

1. linking the module M1 to the proof-frame I+ using n axioms,
2. linking the conclusions of the proof-frames I+ and I− by a cut,
3. linking the proof-frame I− to the module M2 using n axioms,

is a proof-net (see Fig. 5).

M1 M2

n axioms

. . .

Fig. 4. Interpolation problem

M2

�
�

�
�

��A
A

A
A

AA �
�

�
�

��A
A

A
A

AA

M1 I+ I−

.

n axioms n axioms

cut

Fig. 5. Solution to the interpolation problem

In order to show that any interpolation problem admit a solution, we es-
tablish two key lemmas.

Lemma 7.1 Consider a proof-net containing a set of n cuts (n > 1) whose
removal splits the proof-net into two disconnected modules (see Fig.6). Then,
there exist, among these n cuts, two cuts and one of the two modules M1 or
M2 (say Mi) such that for any switching, the two corresponding conclusions are
always connected by a path belonging to Mi. Moreover, one may always find two
such cuts that are adjacent.

Proof. The second part of the proposition, which concerns the fact that the
cuts may be found adjacent, is rather involved and quite long because of nu-
merous cases and subcases. The difficulty arises from the fact that one must
use planarity arguments that cannot be easily formalised. For this reason, we
reserve the complete proof for a long paper and establish only the first part of
the proposition.2

2 Consequently, in the present paper, our proof of the interpolation theorem is only
complete for the (intuitionistic) commutative case.

M1 M2

n cuts

Fig. 6.

The proof is by induction on the number of �-links in the proof-net.
If the proof-net does not contain any �-link, it has only axioms, cuts and

⊗-links. Therefore, there is only one possible switching (the empty one). Then,
because any proof-net is connected, there exist two cuts that are connected inside
the same module (M1 or M2).

If the proof-net P has at least one �-link, there exists, by Lemma 5.2, a
splitting �-link that induces two proof-nets P1 and P2. The n initial cuts are
then divided in two sets A and B belonging respectively to the proof-nets P1

and P2 (see Fig. 7). There are three cases:

– The number of cuts in A is greater or equal to 2. Then we are done by
applying the induction hypothesis to the proof-net P1.

– The number of cuts in B is greater or equal to 2. Then we apply the induction
hypothesis on the proof-net P2.

– The numbers of cuts in A and B are exactly one in both cases. Then the
two cuts may not be connected within the module that does not contain the
splitting � (see Fig. 7). This implies that they must be connected, for any
switching, by a path belonging to the other module.

The above lemma, which provides the most important part of the interpo-
lation theorem, yields the next lemma as an almost direct consequence.

Lemma 7.2 Consider a proof-net containing a set of n cuts whose removal
splits the proof-net into two disconnected modules (see Fig. 6). Then, there exist,
among these n cuts, two adjacent cuts that may be replaced by a single cut
between a “⊗” and a “�” in such a way that the resulting proof-structure is a
proof-net (see Fig. 8).

Proof. This proposition is a consequence of the previous lemma. For the
configuration of Fig. 6, we can apply the previous lemma and find two adjacent
cuts connected, for any switching, by a path belonging to one of the modules
(say Mi). Now, we can add a �-link on the side of Mi and a ⊗-link on the other
side as is shown on Fig. 8.

�
�

�
��A

A
A

AA
�

B

A

P1

P2

P2P1

Fig. 7.

Now, it remains to prove: firstly, that this construction is always possible
(it could be impossible for polarity reasons); secondly, that it yields a proof-net
(i.e., a correct proof-structure).

Regarding the polarity problem, we must decide which sort of �-link we
add: +/−, −/+, or −/− (this determines the sort of ⊗-link to add, by duality).
In fact, there is no degree of freedom here because we must respect the polari-
ties of the initial proof-net. However, we must prove that the polarities of the
premises of the new �-link are not both output (because that corresponds to
the configuration +/+ which is forbidden in the intuitionistic proof-nets).

Consider a switching such that all the +/− �-links are switched on the left
and all the −/+ �-links are switched on the right. The graph underlying this
switching is a tree whose root is the output conclusion of the original proof-net
and whose edges (starting from the root) “go up” through positive formulas,
cross the axioms in the output/input direction, “go down” through negative
formulas, and cross the cuts in the input/output direction. Therefore, there
exist two paths from the root of the tree to the two negative premises of the two
cuts of interest. On the other hand, there also exists, for this switching, a path
between the two premises of the �-link we are going to add. Therefore, if these
two premises were positive, there would exist a path between the two positive
premises of the two cuts. This would make a cycle, which is a contradiction.

It remains to prove that the construction is correct. Any switching of the
new proof-structure is determined by a switching of the initial proof-net together

J
J

J

J
J

J

M1 M2

X Y
n− 1 cuts

where X is a ⊗ and Y is a �, or conversely.

Fig. 8.

with a switch for the additional �-link. For the initial proof-net, we know that
the graph has no cycle and is connected. We know that there exists a path
between the two selected cuts in Mi. This path remains in the new proof-
structure. So the additional ⊗-link does not create a new cycle in the graph.
For the same reason, because the initial proof-net is connected for any switching,
the new one is also connected. Thus the new proof-structure is correct and is,
by definition, a proof-net.

We are now in a position to prove the interpolation theorem.

Theorem 7.3 Any interpolation problem admits a solution.

Proof. Given a proof-net such as the one in Fig. 4, one easily obtains a proof-
net such as the one in Fig. 5 by replacing each of the n axioms by a path made
of one axiom, one cut, and one axiom. Then, one may obtain an interpolant by
iterating the key lemma.

The proof of this theorem gives an algorithm to compute interpolants. The
method is as follows:

1. Let n be the number of axioms that splits the given proof-net in two discon-
nected modules. Replace each of these axioms by a path axiom-cut-axiom.

2. If n = 1 then stop. (the interpolation problem is already solved)
3. Otherwise, find two adjacent cuts that obey the property described in Lemma

7.2. This corresponds to finding, in a module, two conclusions that are
connected for any switching [4]. This last property is reminiscent of the
notion of empire and may be checked using Girard’s closure conditions on
empires [8].

4. Replace the two adjacent cuts by a single cut as specified in Lemma 7.2.
5. Decrease n by 1 and go to step 2.

This algorithm, which works on proof-nets, does not use any sequentialisation of
the proof-nets. Its complexity is at most m∗n2, where m is the size of the proof-
net and n is the number of axioms that splits the proof-net in two parts. This
cubic complexity corresponds actually to a rough estimate. Using tabularisation
techniques, we could obtain a sub-quadratic algorithm.

8 Concluding remarks

We said, in Section 3, that the difficulty in finding a derivation corresponding
to a given prosodic phrasing consists in guessing the cut formulas. In fact, this
difficulty is not a technical one. Indeed, when working in the Lambek calculus
with product, one may always group together two constituents of type A and
B by assigning them the type (A •B). Such a trivial solution, of course, is not
satisfactory.

The real problem in guessing the cut formulas is to provide the prosodic
constituents with categorial types that make sense. With respect to this, the
use of interpolation seems promising. Indeed, an interpolant may be interpreted
as a type whose every atomic subtype specifies an actual interaction with the
external world. This means, in our case, interactions between the constituent
(to which the interpolant is assigned as a type) and the rest of the phrase.

Nevertheless, working with interpolants does not settle the problem com-
pletely because, in general, an interpolation problem admits several solutions.
Therefore, what is now needed is a mathematical classification of these different
solutions that would allow some canonical choice to be made.

References

1. C. Berge. Graphs. North-Holland, second revised edition edition, 1985.

2. W. Buszkowski. Generative power of categorial grammars. In R. T. Oehrle,
E. Bach, and D. Wheeler, editors, Categorial Grammars and Natural Languages
Structures, pages 69–94. Reidel, 1988.

3. V. Danos. Une application de la logique linéaire à l’étude des processus de normal-
isation et principalement du lambda calcul. Thèse de doctorat, Université de Paris
VII, 1990.

4. V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathemat-
ical Logic, 28:181–203, 1989.

5. Ph. de Groote and C. Retoré. On the semantic readings of proof-nets. In G.-J.
Kruijff, G. Morrill, and D. Oehrle, editors, Formal Grammar, pages 57–70. Eighth
European Summer School in Logic Language and Information, August 1996.

6. A. Fleury. Private communication.

7. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

8. J.-Y. Girard. Quantifiers in linear logic II. Technical Report 19, Equipe de Logique
Mathématique, Université de Paris VII, 1991.

9. J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–
170, 1958.

10. A. Lecomte. Prosodie et stratégie de calcul. Communication à la journée ATALA
“Interaction prosodie-syntaxe”, Février 1996.

11. A. Lecomte and C. Retoré. Pomset logic as an alternative categorial grammar. In
Proceedings of the Conference of the European Summer School in Logic, Language
and Information, Barcelona, 1995.

12. M. Moortgat. Categorial Investigations: logical and linguistic aspects of the lambek
calculus. Foris Publications, 1988.

13. M. Moortgat. Categorial type logic. In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language, chapter two. Elsevier, to appear.

14. G. Morrill. Memoisation of categorial proof nets: parallelism in categorial process-
ing. In V. M. Abrusci and C. Casadio, editors, Proofs and Linguistic Categories,
Proceedings 1996 Roma Workshop. CLUEB, 1996.

15. C. Retoré. Calcul de lambek et logique linéaire. Traitement Automatique de
Langues, 37(2):39–70, 1997.

16. D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, Univer-
sity of Amsterdam, 1991.

