
Lambek Categorial Grammars
as Abstract Categorial Grammars

Philippe de Groote

Inria Nancy - Grand Est
France

Abstract. This paper describes a construction that allows Lambek Categorial Gram-
mars to be represented as Abstract Categorial Grammars. This construction is based
upon a family of combinators that allows Lambek lexical entries to be interpreted as
linear λ-terms.

1 Introduction

Abstract Categorial Grammars [2] (ACG, for short) differ from classical categorial gram-
mars in an essential way: the ACG type system is based on a commutative logic (namely,
the implicative fragment of multiplicative linear logic [4]). For this reason, it has been ar-
gued that the way of encoding wh-extraction in an ACG corresponds to an uncontroled
form of extraction, which results in syntactic overgeneration. In particular, an ACG could
not accomodate left and right peripheral extractions like a Lambek categorial grammar [9]
(LG, for short) does.

This claim about ACG and LG is certainly not true at the level of the string languages.
Indeed, Pentus’ theorem [11, 12] states that every Lambek grammar can be transformed
into a context-free grammar, and there is a canonical way of representing a context-free
grammar as an ACG [3].

The claim is not quite true eiteher at the level of the derivations since Kanazawa and
Salvati have shown that Pentus’ construction preserve, in some sense, the derivations of
the original Lambek grammar [6]. As a consequence, given a Lambek grammar G, it is
possible to define an ACG that generates a set of λ-terms that correspond to the derivation
of G. What is then needed in order to turn these derivations into strings is an appropriate
way of interpreting the lexical entries of the original Lambek grammar as linear λ-terms.
The main goal of this paper is to devise such an interpretation.

2 Mathematical preliminaries

Let A be a set of atomic types. The set TA of the simple types (built upon A) is inductively
defined according to the following rules:

TA ::= A | (TA → TA)

The order of a simple type is inducively defined as follows:

1. ord(a) = 1, for a ∈ A;
2. ord(α→ β) = max{ord(α) + 1, ord(β)}

A finite set of typed constants is called a higher-order signature. More formally, such a
higher-order signature consists of a triple Σ = 〈A,C, τ〉, where:

1. A is a finite set of atomic types;
2. C is a finite set of constants;
3. τ : C → TA is a function that assigns to each constant in C a simple type in TA.

LetΣ = 〈A,C, τ〉 be a signature. The order ofΣ is defined to be max{ord(τ(c)) | c ∈ C}.
Let X be an infinite countable set of λ-variables. Given a higher-order signature Σ =

〈A,C, τ〉, the set Λ(Σ) of the linear λ-terms built uponΣ is inductively defined as follows:

1. if c ∈ C, then c ∈ Λ(Σ);
2. if x ∈ X , then x ∈ Λ(Σ);
3. if x ∈ X , t ∈ Λ(Σ), and x occurs free in t exactly once, then (λx. t) ∈ Λ(Σ);
4. if t, u ∈ Λ(Σ), and the sets of free variables of t and u are disjoint, then (t u) ∈ Λ(Σ).

Λ(Σ) is provided with the usual notion of capture-avoiding substitution, α-conversion,
β-reduction, and η-reduction [1]. we take the relation of βη-equivalence as the notion of
equality between λ-terms.

Each λ-terms in Λ(Σ) may be assigned a simple type according to the following type
system:

−Σ c : τ(c) x : α −Σ x : α

Γ, x : α −Σ t : β

Γ −Σ (λx. t) : (α→ β)

Γ −Σ t : (α→ β) ∆ −Σ u : α

Γ,∆ −Σ (t u) : β

Given two higher-order signatures Σ1 = 〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉, a mor-
phism Φ : Σ1 → Σ2 consists of an interpretation of the atomic types of Σ1 as types built
upon A2 together with an interpretation of the constants of Σ1 as linear λ-terms built upon
Σ2. These two interpretations must be such that their homomorphic extensions commute
with the typing relations. More formally, a morphism between higher-order signatures,
Φ : Σ1 → Σ2, is defined to be a pair Φ = 〈η, θ〉 such that:

1. η : A1 → T (A2) is a function that interprets the atomic types of Σ1 as simple types
built upon A2;

2. θ : C1 → Λ(Σ2) is a function that interprets the constants ofΣ1 as linear λ-terms built
upon Σ2;

3. the interpretation functions are compatible with the typing relation, i.e., for any c ∈ C1,
the following typing judgement is derivable:

−Σ2
θ(c) : η̂(τ1(c)),

where η̂ is the unique homomorphic extension of η.

Condition 3, in the above definition ensures that if x1 : α1, . . . , xn : αn −Σ1
t : α, then:

x1 : Φ(α1), . . . , xn : Φ(αn) −Σ2 Φ(t) : Φ(α)

where, according to the context, Φ(·) denotes either the homomorphic extension of η or the
homomorphic extension of η.

Let Φ : Σ1 → Σ2 be a morphism between signatures. The order of Φ is defined to be
max{ord(Φ(a)) | a ∈ A1}.

We end this section by introducing a few additional notations that will be useful in
the sequel of the paper. Let I = {i1, . . . , in} be a totally ordered finite set of indices,
and let (xi)i∈I (respectively, (αi)i∈I) be a sequence of λ-variables (respectively, simple
types) indexed by I . We write (xi:αi)i∈I for the typing environment xi1 :αi1 , . . . , xin :αin .
Similarly, we write t[xi:=ui]i∈I for the simultaneous substitution in the λ-term t of the
terms ui1 , . . . , uin for the free variables xi1 , . . . , xin . In this latter case, we assume that the
set of variables {xi | i ∈ I} corresponds exactly to the set of free variables of t.

Let Σ be an alphabet. As usual, we write Σ∗ for the set of strings generated by Σ.
We use ε to denote the empty string, and the infix operator ’+’ to denote string concate-
nation. Accordingly, given a sequence of strings (wi)i∈I , we write

∑
i∈I wi for the string

wi1 . . . win .

2

Lambek Grammar

man : n

woman : n

some : np /n

every : np /n

loves : (np \ s) /np
who : (n \n) /(np \ s)

whom : (n \n) /(s /np)

Fig. 1.

3 Lambek categorial grammars

The classical notion of a Lambek categorial grammar is based on a deductive system known
as the associative Lambek calculus [9]. This calculus may be seen as a non-commutative
fragment of implicative linear logic [4].

Let A be a set of atomic formulas. The syntax of the Lambek formulas (built upon A)
obeys the following formation rules:

FA ::= A | (FA \FA) | (FA /FA)

where formulas of the form α \β correspond to left-to-right implications (i.e., α implies
β), and formulas of the form α/β to right-to-left implications (i.e., α is implied by β).
Lambek formulas are also called syntactic types.

The deduction relation is then specified by means of the following sequent calculus.

α −L α

α, Γ −L β

Γ −L α \β
Γ, α −L β

Γ −L β /α

Γ −L α ∆, β,Θ −L γ

∆, Γ, α \β,Θ −L γ

Γ −L α ∆, β,Θ −L γ

∆, β /α, Γ,Θ −L γ

It should be stressed that the above system does not include any structural rule. In
particular, the non-commutativity of the systems is reflected by the absence of an exchange
rule. This, in turn, explains the presence of two different implications.

A Lambek categorial grammar (L-grammar, for short) is defined to be a quadruple
G = 〈Σ,A,L, s〉 such that:

1. Σ is a finite set of terminal symbols;
2. A is a finite set of atomic types;
3. L : Σ −→ 2FA is a lexicon that assigns to each terminal symbol a finite set of types

built upon A;
4. s ∈ A is a distinguished type, called the initial type of the grammar.

A word a0a1 . . . an ∈ Σ∗ belongs to the language generated by G if and only if there exist
α0 ∈ L(a0), α1 ∈ L(a1), . . . αn ∈ L(an) such that α0, α1, . . . αn −L s is derivable.

Figure 1 gives the lexicon of a Lambek categorial grammar that will serve as a running
example throughout this paper. According to this grammar, the sentence “every man who

3

Context-free Grammar

<np> → <np/n> <n>

<s> → <np> <(np\s) /np> <np>

<n> → <n> <(n\n)/(np\s)> <np\s>
<n> → <n> <(n\n)/(s/np)> <s/np>

<np\s> → <(np\s)/np> <np>

<s/np> → <np> <(np\s)/np>
<s/np> → <np> <(np\s) /np> <np/np>

<np/np> → <np/n> <n/np>

<n/np> → <n> <(n\n)/(np\s)> <(np\s)/np>
<(np\s)/np> → <(np\s)/np> <np/np>

<n> → man
<n> → woman

<np/n> → some
<np/n> → every

<(np\s)/np> → loves
<(n\n)/(np\s)> → who
<(n\n)/(s/np)> → whom

Fig. 2.

loves some woman loves every woman” is grammatical because the following sequent is
derivale:

np /n,n, (n \n) /(np \ s), (np \ s) /np,np /n,n, (np \ s) /np,np /n,n −L s

The above example illustrates that when dealing with a categorial grammar, parsing
corresponds to proof-search. Consequently, a categorial parse structure amounts to a for-
mal derivation. Then, using the Curry-Howard correspondance, it is possible to associate
a simply typed (actually, linear) λ-term to any derivation of the Lambek calculus. This is
realized by the following system:

x : α −λL x : α

x : α, Γ −λL t : β

Γ −λL λx. t : α \β
Γ, x : α −λL t : β

Γ −λL λx. t : β /α

Γ −λL u : α ∆ −λL t : α \β
Γ, ∆ −λL t u : β

Γ −λL t : β /α ∆ −λL u : α

Γ, ∆ −λL t u : β

According to Pentus’ theorem [11, 12], every Lambek grammar may be turned into an
equivalent context-free grammar. The context-free grammar of Figure 2, for instance, is a
grammar that generates the same language as the Lambek grammar of Figure 1.

In the grammar of Figure 2, in agreement with Pentus’ construction, types of the
Lambek calculus are used as non-terminal symbols. In addition, every production rule
<α> → <α1> . . .<αn> corresponds to a derivable sequent α1, . . . , αn −L α whose
derivation, in turn, corresponds to a λ-term. These sequents, together with the λ-terms en-
coding their derivations, are given in Figure 3.

4

Derivable sequents

x : np/n, y : n −λL x y : np

x : np, y : (np\s) /np, z : np −λL y z x : s

w : n, x : (n\n)/(np\s), y : np\s −λL x (λz. y z)w : n

w : n, x : (n\n)/(s/np), y : s/np −λL x (λz. y z)w : n

x : (np\s)/np, y : np −λL λz. x y z : np\s
x : np, y : (np\s)/np −λL λz. y z x : s/np

w : np, x : (np\s) /np, y : np/np −λL λz. x (y z)w : s/np

x : np/n, y : n/np −λL λz. x (y z) : np/np

v : n, w : (n\n)/(np\s), x : (np\s)/np −λL λy.w (λz. x y z) v : n/np

w : (np\s)/np, x : np/np −λL λyz. w (x y) z : (np\s)/np

Fig. 3.

In some sense, a context-free grammar resulting from Pentus’ construction preserves
the parse structures of the original Lambek grammar. Consider, for instance, a sentence S
belonging to the language generated by the Lambek grammar of Figure 1. Accordingly,
there exists a derivation of S using the rules of the context-free grammar of Figure 2. Now,
using this context-free derivation together with the λ-terms given in Figure 3 it is possible to
compute the λ-term corresponding to the original derivation of S in the Lambek grammar
of Figure 1. This has been shown by Kanazawa and Salvati [6].

4 Abstract categorial grammars

Abstract categorial grammars have been introduced in [2]. Contrarily to the case of most
other notions of categorial grammar, they are based on a fully commutative logic.

Formally, an abstract categorial grammar is a quadruple G = 〈Σ1, Σ2,L, s〉 where:

1. Σ1 andΣ2 are two higher-order signatures; they are called the abstract vovabulary and
the object vovabulary, respectively;

2. L : Σ1 → Σ2 is a morphism between the abstract vovabulary and the object vovabu-
lary; it is called the lexicon;

3. s is an atomic type of the abstract vocabulary; it is called the distinguished type of the
grammar.

The abstract language generated by G, A(G), is defined as follows:

A(G) = {t ∈ Λ(Σ1) | −Σ1
t : s is derivable}

In words, the abstract language generated by G is the set of closed linear λ-terms, built
upon the abstract vocabulary Σ1, whose type is the distinguished type s.

The object language generated by G, O(G), is then defined to be the image of the
abstract language by the lexicon L:

O(G) = {t ∈ Λ(Σ2) | ∃u ∈ A(G). t = L(u)}

The abstract language of an ACG may be thought of as its parse structures, and its object
language as the language it generates. Using this intuition, it is not difficult to show that

5

Abstract Vocabulary

PROD0 : <np/n>→ <n>→ <np>

PROD1 : <(np\s) /np>→ <np>→ <np>→ <s>

PROD2 : <(n\n)/(np\s)>→ <np\s>→ <n>→ <n>

PROD3 : <(n\n)/(s/np)>→ <s/np>→ <n>→ <n>

PROD4 : <(np\s)/np>→ <np>→ <np\s>
PROD5 : <(np\s)/np>→ <np>→ <s/np>

PROD6 : <(np\s) /np>→ <np/np>→ <np>→ <s/np>

PROD7 : <np/n>→ <n/np>→ <np/np>

PROD8 : <(n\n)/(np\s)>→ <(np\s)/np>→ <n>→ <n/np>

PROD9 : <(np\s)/np>→ <np/np>→ <(np\s)/np>
MAN : <n>

WOMAN : <n>

SOME : <np/n>

EVERY : <np/n>

LOVES : <(np\s)/np>
WHO : <(n\n)/(np\s)>

WHOM : <(n\n)/(s/np)>

Fig. 4.

Object Vocabulary

man : n

woman : n

some : n → np

every : n → np

loves : np → np → s

who : (np → s)→ n → n

whom : (np → s)→ n → n

Fig. 5.

every context-free grammar may be represented as an ACG [3]. Accordingly, the context-
free grammar of Figure 2 could be turned into an ACG. Now, using a similar construction
together with the result of Kanazawa and Salvati [6], one may take advantage of the λ-
terms given in Figure 3 in order to devise an ACG that generates the λ-terms that encodes
the derivations of the original Lambek grammar of Figure 1. Lets call this ACG LDER.
Its abstract vocabulary and its object vocabulary are respectively given in Figure 4 and
Figure 5. Its lexicon is defined by Figure 6 and Figure 7.

While every Lambek grammar is strongly lexicalized, LDER is not (in the sense that
some of its abstract constants are interpreted by pure combinators). In [7, 8], Kanazawa and
Yoshinaka show that every second-order ACG (i.e., an ACG whose abstract vocabulary is

6

Lexicon: type interpretation

<n> := n

<np> := np

<s> := s

<n/np> := np → n

<np/n> := n → np

<np/np> := np → np

<np\s> := np → s

<s/np> := np → s

<(np\s)/np> := np → np → s

<(n\n)/(np\s)> := (np → s)→ n → n

<(n\n)/(s/np)> := (np → s)→ n → n

Fig. 6.

Lexicon: term interpretation

PROD0 := λxy. x y

PROD1 := λxyz. x y z

PROD2 := λwxy.w (λz. x z) y

PROD3 := λwxy.w (λz. x z) y

PROD4 := λxyz. x y z

PROD5 := λxyz. x z y

PROD6 := λwxyz.w (x z) y

PROD7 := λxyz. x (y z)

PROD8 := λvwxy. v (λz.w y z)x

PROD9 := λwxyz.w (x y) z

MAN := man

WOMAN := woman

SOME := some

EVERY := every

LOVES := loves

WHO := who

WHOM := whom

Fig. 7.

second-order) can be lexicalized. As a matter of fact, LDER is a second-order ACG be-
cause it derives from a context-free grammar. We may therefore lexicalize it. The resulting
ACG, which we call LDERlex shares with LDER the same object vocabulary (Fig. 5), the
same set of abstract atomic types, and the same type interpretation (Fig. 6). As for the new

7

Abstract Vocabulary (lexicalized grammar)

MAN : <n>

WOMAN : <n>

SOME : <n>→ <np>

SOME0 : <n/np>→ <np/np>

EVERY : <n>→ <np>

EVERY0 : <n/np>→ <np/np>

LOVES : <np>→ <np>→ <s>

LOVES0 : <np>→ <np\s>
LOVES1 : <np>→ <s/np>

LOVES2 : <np/np>→ <np>→ <s/np>

LOVES3 : <np/np>→ <(np\s)/np>
LOVES4 : <(np\s)/np>

WHO : <np\s>→ <n>→ <n>

WHO0 : <(np\s)/np>→ <n>→ <n/np>

WHOM : <s/np>→ <n>→ <n>

Fig. 8.

Lexicon (lexicalized grammar)

SOME := λx. somex

EVERY := λx. every x

LOVES := λxy. lovesx y

WHO := λxy.who (λz. x z) y

WHOM := λxy.whom (λz. x z) y

LOVES0 := λxy. lovesx y

LOVES1 := λxy. loves y x

LOVES2 := λxyz. loves (x z) y

SOME0 := λxy. some (x y)

EVERY0 := λxy. every (x y)

WHO0 := λwxy.who (λz.w y z)x

LOVE3 := λxyz. loves (x y) z

MAN := man

WOMAN := woman

LOVES4 := λxy. lovesx y

Fig. 9.

abstract constants togheter with their lexicalized interpretations, they are given in Figure 8
and Figure 9.

8

5 From string to terms and vice versa

In the previous section, we have defined a lexicalized ACG that generates the λ-terms
corresponding to the derivations of a given Lambek grammar. It now remains to interpret
these λ-terms as strings. To this end, we first associate to each lambek type, α, a simple
type α, built over a type σ corresponding to a set of strings Σ∗:

a = σ, for a atomic

α \β = α→ β

β /α = α→ β

We then define two families of combinators, Eα :σ → α and Pα :α → σ, which allow to
transform a strings into a λ-terms and vice versa:

Ea w = w

Eα \ β w = λx.Eβ ((Pα x) + w)

Eβ /α w = λx.Eβ (w + (Pα x))

Pa t = t

Pα \ β t = Pβ (t (Eα ε))
Pβ /α t = Pβ (t (Eα ε))

We first state and prove two technical lemmas.

Lemma 1. For every string w and every type α, Pα (Eα t) = t.

Proof. By induction on α. ut

Lemma 2. Let t be a λ-term in normal form such that (xi : αi)i∈I −λL t : α. Then, for
every set of strings {wi | i ∈ I}, the following properties hold:

1. if t is a variable or an application, then t[xi := (Eαi wi)]i∈I = Eα (
∑
i∈I wi);

2. if t is an abstraction, then Pα t[xi := (Eαi
wi)]i∈I =

∑
i∈I wi.

Proof. By induction on t. ut

The following lemma is the main property of the operators Eα and Pα .

Lemma 3. Let t be a λ-term such that (xi : αi)i∈I −λL t : α. Then, for every set of
strings {wi | i ∈ I}, Pα t[xi := (Eαi wi)]i∈I =

∑
i∈I wi.

Proof. Let t′ be the normal form of t. The results follows from Lemma 2, Lemma 1, and
the fact that Pα t[xi := (Eαi

wi)]i∈I = Pα t′[xi := (Eαi
wi)]i∈I . ut

We then immediatelly obtain the following corollary.

Corollary 1. Let t be a λ-term such that (xi : αi)i∈I −λL t : a, where a is an atomic
type. Then, for every set of strings {wi | i ∈ I}, t[xi := (Eαi wi)]i∈I =

∑
i∈I wi. ut

9

Interpretation of the object constants

man := man
woman := woman
some := λx. some + x

every := λx. every + x

loves := λxy. y + loves + x

who := λxy. y + who + (x ε)

whom := λxy. y + whom + (x ε)

Fig. 10.

6 From LG to ACG

Consider the signature given in Figure 5. It has been used as the object vocabulary of both
the ACGs LDER and LDERlex . We now use it as the abstract vocabulary of another ACG
whose lexicon, which is given in Figure 10, is obtained by applying the operator Eα . Let
us call this new ACG GEN string .

The fact that the object vocabulary of LDERlex is, at the same time, the abstract vocab-
ulary of GEN string allows the two ACGs to be composed. Let us call the ACG resulting
from this composition CFGλ. The picture is then the following:

•

��
CFGλ

��

Abstract Vocabulary (Fig. 4)

LDERlex

•

��

Object vocabulary (Fig. 5)

GENstring

• Strings

Now, in order to define an ACG that is strongly equivalent (up to a relabelling) to the
original Lambek grammar, we need a last transformation. Consider the ACG CFGλ, which
has been obtained by omposition. It is a second-order ACG whose lexicon is third-order.1

In fact, it is always possible to transform such an ACG in an object-language-equivalent
third-order ACG whose lexicon is second order. Roughly speaking, the construction con-
sists in replacing each atomic abstract type α, whose interpretation is α := a→ b, by a type
α1 → α2 (where α1 and α2 are fresh symbols) together with the interpretations α1 := a
and α2 := b. Applying this transformation to CFGλ, we end up with a grammar whose ab-
stract vocabulary and lexicon are respectively given in Figure 11 and Figure 12. The object
language of this ACG corresponds to the language generated by the original Lambek gram-
mar. Its abstract language corresponds to the derivations of the original Lambek grammar
(up to a relabelling, i.e., a homomorphism that is sending constants to constants).

1 It is third-order because the type of the strings is defined to be the second-order type o→ o. Con-
sequently, an apparently second-order interpretation such as <n/np> := σ → σ corresponds,
in fact, to a third-order interpretation (namely, <n/np> := (o→ o)→ o→ o).

10

Abstract Vocabulary (final grammar)

MAN : n

WOMAN : n

SOME : n → np

SOME0 : (np0 → n0)→ np1 → np2

EVERY : n → np

EVERY0 : (np0 → n0)→ np1 → np2

LOVES : np → np → s

LOVES0 : np → np3 → s0

LOVES1 : np → np4 → s1

LOVES2 : (np1 → np2)→ np → np4 → s1

LOVES3 : (np1 → np2)→ np5 → np6 → s2

LOVES4 : np5 → np6 → s2

WHO : (np3 → s0)→ n → n

WHO0 : (np5 → np6 → s2)→ n → np0 → n0

WHOM : (np4 → s1)→ n → n

Fig. 11.

Lexicon (final Grammar)

MAN := man
WOMAN := woman

SOME := λx. some + x

SOME0 := λxy. some + (x y)

EVERY := λx. every + x

EVERY0 := λxy. every + (x y)

LOVES := λxy. y + loves + x

LOVES0 := λxy. y + loves + x

LOVES1 := λxy. x+ loves + y

LOVES2 := λxyz. y + loves + (x z)

LOVES3 := λxyz. z + loves + (x y)

LOVES4 := λxy. y + loves + x

WHO := λxy. y + who + (x ε)

WHO0 := λwxy. x+ who + (w y ε)

WHOM := λxy. y + whom + (x ε)

Fig. 12.

7 Conclusions and future work

We have demonstrated, on an example, how to represent a given Lambek grammar as an
ACG. The generality of our method is somehow ensured by the several mathematical results

11

on which it is based: weak equivalence between Lambek grammars and context-free gram-
mars (Pentus [11, 12]), representing context-free grammars as ACGs (Pogodalla and de
Groote [3]), lexicalization of second-order ACGs (Kanazawa and Yoshinaka [7, 8]), preser-
vation of the derivations (Kanazawa and Salvati [6]). In practice, however, it will not always
be the case that the resulting grammar will be strongly equivalent to the original Lambek
grammar. This potential problem is due to Pentus’ construction which produces highly re-
dundant grammars exhibiting all the spurious ambiguities related to the associativity of the
Lambek calculus.

In this paper, we circumvented the spurious ambiguity problem by implicitely using a
particular instantiation of Pentus’ construction. This more specific construction seems to
be less general than Pentus’. Consequently, we do not know whether it can be put at work
in every case. Investigating this question will be the subject of future work.

References

1. H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised edition,
1984.

2. Ph. de Groote. Towards abstract categorial grammars. In Association for Computational Lin-
guistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the
Conference, pages 148–155, 2001.

3. Ph. de Groote and S. Pogodalla. On the expressive power of abstract categorial grammars:
Representing context-free formalisms. Journal of Logic, Language and Information, 13(4):421–
438, 2004.

4. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
5. M. Kanazawa. Syntactic features for regular constraints and an approximation of directional

slashes in abstract categorial grammars. In Y. Kubota and R. Levine, editors, Proceedings for
ESSLLI 2015 Workshop ‘Empirical Advances in Categorial Grammars’ (CG 2015), pages 34–
70, 2015.

6. M. Kanazawa and S. Salvati. The string-meaning relations definable by lambek grammars and
context-free grammars. In G. Morrill and M.-J. Nederhof, editors, Formal Grammar - 17th and
18th International Conferences, FG 2012, Opole, Poland, August 2012, Revised Selected Papers,
FG 2013, Düsseldorf, Germany, August 2013, Proceedings, volume 8036 of Lecture Notes in
Computer Science, pages 191–208. Springer, 2013.

7. M. Kanazawa and R. Yoshinaka. The complexity and generative capacity of lexicalized ab-
stract categorial grammars. In Ph. Blache, E. Stabler, J. Busquets, and R. Moot, editors, Logical
Aspects of Computational Linguistics, LACL 2005, volume 3492 of Lecture Notes in Artificial
Intelligence, pages 330–346. Springer Verlag, 2005.

8. M. Kanazawa and R. Yoshinaka. Lexicalization of second-order acgs. Technical Report NII-
2005-012E, National Institute of Informatics, Tokyo, 2005.

9. J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–170, 1958.
10. J. Lambek. On the calculus of syntactic types. In Studies of Language and its Mathematical

Aspects, pages 166–178, Providence, 1961. Proc. of the 12th Symp. Appl. Math..
11. M. Pentus. Lambek grammars are context free. In Proceedings of the eigth annual IEEE sympo-

sium on logic in computer science, pages 429–433, 1993.
12. M. Pentus. Product-free Lambek calculus and context-free grammars. Journal of Symbolic

Logic, 62(2):648–660, 1997.
13. S. Pogodalla and F. Pompigne. Controlling extraction in abstract categorial grammars. In Ph.

de Groote and M.-J. Nederhof, editors, Formal Grammar - 15th and 16th International Con-
ferences, FG 2010, Copenhagen, Denmark, August 2010, FG 2011, Ljubljana, Slovenia, August
2011, Revised Selected Papers, volume 7395 of Lecture Notes in Computer Science, pages 162–
177. Springer, 2012.

14. C. Retoré and S. Salvati. A faithful representation of non-associative lambek grammars in ab-
stract categorial grammars. Journal of Logic, Language and Information, 19(2):185–200, 2010.

12

