
Lexical selection, coercion, and record types

William Babonnaud and Philippe de Groote

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy,

Abstract. This paper introduces a simply-typed λ-calculus dedicated to
the treatment of the lexical phenomena of restrictive selection and type co-
ercion. This calculus features records and record types, subtyping through
explicit coercion, and bounded polymorphism. We show that coercion infer-
ence is decidable and discuss the canonicity of the inferred solutions.

1 Introduction

The use of records and record types in computational linguistics (especially in se-
mantics) has been widely advocated and acknowledged. A possible reason for this
is that records resemble feature structures, and allow numerous linguistic concepts
to be formalized in a type-theoretic way (see [6] for instance).

In this paper, we propose to use records and record types to accommodate, in a
compositional way, the lexical phenomena of restrictive selection and type coercion.
The literature on lexical semantics, in general, and on lexical selection and type
coercion, in particular, is very large. Our purpose here is not to propose a new
lexical semantics theory, or a new organisation of the lexicon. We rather want to
show how existing proposals can be expressed using records and record types. In
particular, the solution we propose relies on some of the analyses made in [15].

In order to illustrate the kind of problem we want to solve, consider the following
sentence, which will serve as a running example:

John bought a book which is voluminous but interesting (1)

Now, suppose that the semantics of the word “voluminous” is expressed by means of
a predicate voluminous that only applies to physical objects (p). Similarly, suppose
that the semantics of “interesting” and of “bought” are respectively expressed using
the predicate interesting and the binary relation buy. The former only applies to
informational contents (i), while the later takes a human being (h) as first argument,
and a commodity (c) as second argument. The questions we want to answer are then
the following ones:

– how can one allow a book to be at the same time a commodity, a physical
object, and an informational content?

– according to these three cases, how does one select the corresponding meaning
of the word “book”?

What is needed here is an object that would feature both aspects of a book (its
physical aspect and its informational one). Such an object, in fact, is known in the
literature under the name of dot-object [14]. But then, the question becomes: what
could be an appropriate type-theoretic model of dot-objects, and how could one
implement it?

The nature of dot-objects suggests that dot-types should feature introduction
and elimination rules of the following form:

e1 : A e2 : B

Intro(e1, e2) : A •B
e : A •B

Elim1(e) : A
e : A •B

Elim2(e) : B

These rules are reminiscent of two well-known type-theoretic constructs: inter-
section types and cartesian products (and also record types, which are cartesian
products under disguise). In [1], Asher argues against the use of intersection types
or cartesian products as a model of dot-types. He then proposes a categorical for-
malisation of the dot-types that essentially amounts to a pullback (see [2] for a
discussion). Pullbacks are in fact a kind of product. In set-theoretic terms, they are
known as fibrated products. In some sense, it is precisely those pullbacks that we
want to implement using records and record types.

2 Record types and inheritance

The object language we use to express semantic recipes is the simply typed λ-
calculus provided with a standard notion of record, that is, a finite association of
labels and values. Accordingly, a record type is a finite set of labels together with
their types. For instance, for the purpose of our running example, we define the
type book as follows

book = {object : a ; content : i} (2)

where a and i stands for the type of artifacts and the type of informational contents,
respectively.

More precisely, the notion of type we use is given in the following definition.

Definition 1. Let A be a set of atomic types (containing the Montagovian types e
and t), and let L be a set of labels. The set of types is inductively defined as follows:

1. every a ∈ A is a type;
2. if α and β are types, so is (α→ β);
3. if α1, . . . , αn are types, and l1, . . . ln ∈ L, then {l1 :α1 ; . . . ; ln :αn} is a type.

The notion of term is defined accordingly.

Definition 2. Let X be a set of λ-variables, and let L be a set of labels. The set of
λ-terms is inductively defined as follows:

1. every x ∈ X is a λ-term;
2. if t is a λ-term, and x ∈ X , then (λx. t) is a λ-term;
3. if t and u are λ-terms, so is (t u);
4. if t1, . . . , tn are λ-terms, and l1, . . . ln ∈ L, then {l1 = t1 ; . . . ; ln = tn} is a λ-

term;
5. if t is a λ-term, and l ∈ L, then t• l is a λ-term.

In a record (resp., a record type), the order in which the labels and their associated
terms (resp., associated types) are listed is not relevant. We sometimes use a vector-
like notation to denote records or record types. For instance, we write:{

li :αi

}
n

for {l1 :α1 ; . . . ; ln :αn}

The set A \ {t} is provided with a partial order relation O, such that for every
a ∈ A, a ≤ e. This order induces a subtyping relation that obeys the following rules.

λx. x : α ≤ α λx. x : p ≤ q, for (p, q) ∈ O

c1 : α ≤ β c2 : β ≤ γ
λx. c2 (c1 x) : α ≤ γ

c1 : α1 ≤ β1 c2 : α2 ≤ β2
λfx. c2 (f (c1 x)) : β1 → α2 ≤ α1 → β2

2

λx. x : {l1 :α1 ; . . . ; ln :αn} ≤ {l1 :α1 ; . . . ; ln−1 :αn−1}

c1 : α1 ≤ β1 · · · cn : αn ≤ βn
λr.
{
li = ci (r• li)

}
n

:
{
li :αi

}
n
≤
{
li :βi

}
n

The above rules, which are quite standard [3, 10], allows one to derive judgements
of the form f : α ≤ β, where α and β are types, and f is a function that coerces a
value of type α into a value of type β. If one does not consider any additional rule,
computing the coercion function is not quite interesting because it always amount
to identity. We therefore add, to the above set of rules, the following inequation:

λr. r• l : {ρ ; l :α} ≤ α (3)

In order to complete the definition of our object language we should specify the
typing rules. For reasons that will become clear later, we delay this question to the
next section. In the meantime, let us illustrate how the coercion calculus works by
considering an example. Remember that we have defined the type book as follows:

book = {object : a ; content : i}

where a stands for the type of artifacts, and i for the type of informational contents.
Assume that the predicate voluminous, which only applies to physical objects, is
of type (p → t), and that a is a subtype of p. Then, using the following coercion
rule:

− t : α c : α ≤ β
− c t : β

we may coerce voluminous to be of type (book→ t):

− voluminous : p→ t

λr. r•object : book ≤ a λx. x : a ≤ p

λr. r•object : book ≤ p λx. x : t ≤ t

λfr. f (r•object) : p→ t ≤ book→ t

− λr.voluminous (r•object) : book→ t

where
λr. r•object : book ≤ a

is an instance of inequation (3).
The above derivation allows one to coerce the semantic recipe assigned to “vo-

luminous” to be of type book→ t:

voluminous := λr.voluminous (r•object) : book→ t (4)

Similarly, one can obtain:

interesting := λr. interesting (r•content) : book→ t (5)

3 Bounded polymorphism

The next step is to coordinate “voluminous” and “interesting” using the conjunction
“but”. We interpret the latter as a logical conjunction:

but := λpqx. (p x) ∧ (q x)

The Montagovian type assigned to the above λ-term is (e→ t)→ (e→ t)→ e→ t.
This type, unfortunately, does not subsume (book→ t)→ (book→ t)→ book→ t

3

because e occurs both positively and negatively in it. What is needed here is a
kind of polymorphism, as suggested in [15]. We do not wish, however, to enhance
the type system with system F full polymorphism [8, 9] because we would loose
decidability. We could use prenex polymorphism à la ML, but it would allow to
instantiate but with any two terms of type (α → t), whatever α is. This is not
either what we want. What we need, in fact, is instantiating but with terms of type
(α → t) where α is a subtype of e. Consequently, we extend our type system with
bounded polymorphism [4, 5], or more precisely, prenex bounded polymorphism (in
order to keep decidability). To this end, we consider a set of type variables V, and
we extend the definition of a type as follows.

Definition 3. Let A be a set of atomic types (containing the Montagovian types e
and t), let V be a set of type variables, and let L be a set of labels. The set of types,
and the set of type schemes are inductively defined as follows:

1. every a ∈ A is a type;
2. every a ∈ V is a type;
3. if α and β are types, so is (α→ β);
4. if α1, . . . , αn are types, and l1, . . . ln ∈ L, then {l1 :α1 ; . . . ; ln :αn} is a type.
5. every type is a type scheme;
6. if a ∈ V, α is a type, and β is a type scheme, then ∀a ≤ α. β is a type scheme.

Because we are dealing with a notion of bounded polymorphism, the typing rules
will depend of subtyping assumptions of the form “a ≤ α”, where a is a type variable
and α a type. In addition, because we are using explicit coercions, these subtyping
assumptions will be associated to coercion-variables by means of declarations of the
following shape: “c : a ≤ α”, where c is such a coercion-variable. This notion of
coercion variable also play a part in the new definition of a λ-term.

Definition 4. Let X be a set of λ-variables, C be a set of coercion-variables, and
L be a set of labels. The set of λ-terms and of schematic λ-terms are inductively
defined as follows:

1. every x ∈ X is a λ-term;
2. if t is a λ-term, and x ∈ X , then (λx. t) is a λ-term;
3. if t and u are λ-terms, so is (t u);
4. if t1, . . . , tn are λ-terms, and l1, . . . ln ∈ L, then {l1 = t1 ; . . . ; ln = tn} is a λ-

term;
5. if t is a λ-term, and l ∈ L, then t• l is a λ-term.
6. if t is λ-term, and c ∈ C, then (c t) is a λ-term;
7. every λ-term is a schematic λ-term;
8. if t is a schematic λ-term, and c ∈ C, then (Λc. t) is a schematic λ-term.

We are now in a position of giving the typing system of our calculus. It is
specified by means of the five following kinds of judgements:

Γ Cenv (Γ is a well-formed coercion environment)

Γ − ∆ env (∆ is a well-formed typing environment)

Γ − α type (α is a well-formed type)

Γ − s : α ≤ β (s is a coercion from type α into type β)

Γ ;∆ − t : α (t is a term of type α)

The inference rules that allow these different judgement to be derived are listed
here below.

4

Coercion-environment formation rules

∅ Cenv
(Cempty)

Γ Cenv Γ − α type

(Γ, c : a ≤ α) Cenv
(Ccons)

Typing-environment formation rules

Γ − ∅ env
(empty)

Γ − ∆ env Γ − α type

Γ − (∆,x : α) env
(cons)

Type formation rules
a ∈ A

Γ − a type
(Tconst)

Γ, c : a ≤ α − a type
(Tvar)

Γ − a type b 6= a

Γ, c : b ≤ α − a type
(Tweak)

Γ − α type Γ − β type

Γ − (α→ β) type
(Tfun)

Γ − α1 type · · · Γ − αn type

Γ −
{
li :αi

}
n

type
(Trec)

Coercion rules
(p, q) ∈ O

Γ − λx. x : p ≤ q
(Cconst)

Γ, c : a ≤ α − c : a ≤ α (Cvar)
Γ − c2 : a ≤ α b 6= a

Γ, c1 : b ≤ α − c2 : a ≤ α (Cweak)

Γ − λx. x : α ≤ α (refl)
Γ − s1 : α ≤ β Γ − s2 : β ≤ γ

Γ − λx. s2 (s1 x) : α ≤ γ
(trans)

Γ − s1 : α1 ≤ β1 Γ − s2 : α2 ≤ β2
Γ − λfx. s2 (f (s1 x)) : (β1 → α2) ≤ (α1 → β2)

(Cfun)

Γ − λx. x :
{
li :αi

}
n
≤
{
li :αi

}
n−1

(Crec1)

Γ − s1 : α1 ≤ β1 · · · Γ − sn : αn ≤ βn
Γ − λr.

{
li = si (r• li)

}
n

:
{
li :αi

}
n
≤
{
li :βi

}
n

(Crec2)

Γ − λr. r• lk :
{
li :αi

}
n
≤ αk

(Csel)

Typing rules

Γ ; ∆,x : α − x : α
(var)

Γ ; ∆ − x : β y 6= x

Γ ; ∆, y : α − x : β
(weak)

5

Γ ; ∆,x : α − t : β

Γ ; ∆ − λx. t : α→ β
(abs)

Γ ; ∆ − t : α→ β Γ ; ∆ − u : α

Γ ; ∆ − t u : β
(app)

Γ ; ∆ − t1 : α1 · · · Γ ; ∆ − tn : αn

Γ ; ∆ −
{
li = ti

}
n

:
{
li :αi

}
n

(rec)
Γ ; ∆ − t :

{
li :αi

}
n

Γ ; ∆ − t• li : αi
(sel)

Γ, c : a ≤ α ; − t : β

Γ ; − Λc. t : ∀a ≤ α. β (gen)
Γ ; − Λc. t : ∀a ≤ α. β Γ − s : γ ≤ α

Γ ; − t[c := s] : β[a := γ]
(inst)

Γ ;∆ − t : α Γ − s : α ≤ β
Γ ; ∆ − s t : β

(coer)

The above rules are necessary because of the presence of type variables and coer-
cion variables. In particular, the type formation rules (see Rule (Tvar)) ensure that
all the type variables occurring in a type are declared in the coercion environment,
and that they may eventually be bound by using Rule (gen). Similarly, the coercion
rules (see Rule (Cvar)) ensure that all the coercion variables occurring in a term
are declared, and that they may eventually be bound by using Rule (gen). In order
to ensure these properties, the above rules obey the following conventions:

– In the typing-environment formation rules, in the type formation rules, in the
coercion rules, and in the typing rules, all the coercion environments that are
used are implicitly considered to be well-formed.

– In the typing rules, all the typing environments that are used are implicitly
considered to be well-formed.

– In the coercion rules and in the typing rules, all the types that are used are
implicitly considered to be well-formed.

Let us now illustrate the way this type system works by presenting a few deriva-
tions. Consider the following coercion environment, and typing environments:

Γ ≡ c : a ≤ e

∆1 ≡ p : a→ t

∆2 ≡ p : a→ t, q : a→ t

∆3 ≡ p : a→ t, q : a→ t, x : a

Let us start by establishing that Γ is a well-formed coercion environment:

∅ Cenv
(Cempty)

e ∈ A
− e type

(Tconst)

c : a ≤ e Cenv
(Ccons)

Similarly, we can show that ∆1, ∆2, and ∆3 are well-formed typing environments:

Γ − ∅ env
(empty)

Γ − a type
(Tvar)

t ∈ A
Γ − t type

(Tconst)

Γ − (a→ t) type
(Tfun)

Γ − ∆1 env
(cons)

Γ − ∆1 env

Γ − a type
(Tvar)

t ∈ A
Γ − t type

(Tconst)

Γ − (a→ t) type
(Tfun)

Γ − ∆2 env
(cons)

6

Γ − ∆2 env Γ − a type
(Tvar)

Γ − ∆3 env
(cons)

Finally, let us show how the term λpqx. (p x)∧ (q x) may be assigned a polymorphic
type:

Γ ; ∆1 − p : a→ t
(var)

q 6= p

Γ ; ∆2 − p : a→ t
(weak)

x 6= p

Γ ; ∆3 − p : a→ t
(weak)

Γ ; ∆3 − x : a
(var)

Γ ; ∆3 − p x : t
(app)

 (1)

Γ ; ∆2 − q : a→ t
(var)

x 6= q

Γ ; ∆3 − q : a→ t
(weak)

Γ ; ∆3 − x : a
(var)

Γ ; ∆3 − q x : t
(app)

 (2)

Γ ; ∆3 − and : t→ t→ t

...

Γ ; ∆3 − p x : t

}
(1)

Γ ; ∆3 − and (p x) : t→ t
(app)

...

Γ ; ∆3 − q x : t

}
(2)

Γ ; ∆3 − and (p x) (q x) : t
(app)

Γ ; ∆2 − λx.and (p x) (q x) : a→ t
(abs)

Γ ; ∆1 − λqx.and (p x) (q x) : (a→ t)→ a→ t
(abs)

Γ ; − λpqx.and (p x) (q x) : (a→ t)→ (a→ t)→ a→ t
(abs)

− Λc. λpqx.and (p x) (q x) : ∀a ≤ e. (a→ t)→ (a→ t)→ a→ t
(gen)

This derivation allows us to assign to but the expected type scheme:

but := Λc. λpqx. (p x) ∧ (q x) : ∀a ≤ e. (a→ t)→ (a→ t)→ a→ t

Then, book being a subtype of e, one may instantiate the above type scheme as
follows:

but := λpqx. (p x) ∧ (q x) : (book→ t)→ (book→ t)→ book→ t (6)

One may now apply (5) to (4) and (3), which yields the following equation (after
β-reduction):

but voluminous interesting =
λr. (voluminous (r•object)) ∧ (interesting (r•content)) : book→ t

Bounded polymorphism is also used to provide a semantics to the indefinite
determiner “a”, or to the relative pronoun “which”. We give in appendix a complete
grammar that allows example (1) to be treated.

4 Coercion inference

An attentive reader might argue that coercions are just a particular case of λ-terms
and that they are not needed. For instance, the derivation given at the end of

7

Section 2 can be replaced by a derivation that uses only a trivial coercion:

r : book − voluminous : p→ t

r : book − r : book
(var)

r : book − r•object : a
(sel)

(a, p) ∈ O
− λx. x : a ≤ p

(Cconst)

r : book − r•object : p
(coer)

r : book − voluminous (r•object) : e
(app)

− λr.voluminous (r•object) : book→ e
(abs)

It is indeed a fact that every coercion s : α ≤ β may be shown to be a λ-term of
type (α → β). But this is not a defect of the system. Indeed, explicite coercions
have not been introduced in order to increase the power of the calculus. They have
been introduced them with the purpose of inferring them automatically. This can
be done by deriving judgements of the form:

∆ − t : α | C

where ∆ is a typing environment, t is a λ-term, α is a type, and C is a set of
collected constraints to be solved. The inference rules are the following ones.

− t : α | ∅
(start)

− Λc. t : ∀a ≤ α. β | C
− t : β | C ∪ {c : a ≤ α}

(i-inst)

∆1, x : α1, ∆2 − c x : α2 | {c : α1 ≤ α2}
(i-var)

∆,x : α − t : β | C
∆ − λx. t : α→ β | C

(i-abs)

∆1 − t : α1 → β | C1 ∆2 − u : α2 | C2

∆1, ∆2 − t (c u) : β | C1 ∪ C2 ∪ {c : α2 ≤ α1}
(i-app)

∆ − t1 : α1 | C1 · · · ∆ − tn : αn | Cn

∆ −
{
li = ti

}
n

:
{
li :αi

}
n
|
⋃n

i=1 Ci

(i-rec)

∆ − t :
{
li :αi

}
n
| C

∆ − t• li : αi | C
(i-sel)

The above typing system relies on a few assumptions that need to be made
explicit. First, the typing environments that are used are finite sets of declarations
such that every declared variable is declared only once. Consequently, in a rule such
as (i-app), ∆1 and ∆2 must be compatible in the sense such that every variable
which is declared in both environments must be declared with the same type in
both environments. In addition, the coercion variables that are introduced by Rules
(i-inst), (i-var), (i-app) must be fresh. Similarly, the type variables that are intro-
duced by Rule (i-inst), and possibly by Rule (i-var), must also be fresh. This means
that when taking the union of sets of constraints (in Rules (i-app) or (i-rec)) the
set of coercion variables and type variables occurring in these sets of constraints
must be disjoint. All these assumptions are not constraining because they may be
easily satisfied by variable renaming without any loss of generality.

8

Let us now illustrate how the above rules can be used to compute the semantic
representation of the phrase

a book which is voluminous but interesting (7)

The abstract syntax of this phrase (see the grammar given in appendix) is expressed
by the following term:

some (which (is (butvoluminous interesting))book) (8)

Let us start with the subterm (butvoluminous interesting) that we abbreviate
as (bv i) for the sake of conciseness.

− b : ∀a ≤ e. (a→ t)→ (a→ t)→ a→ t | ∅
− b : (a1 → t)→ (a1 → t)→ a1 → t | C1 − v : p→ t | ∅

− b (c2 v) : (a1 → t)→ a1 → t | C2 − i : i→ t | ∅
− b (c2 v) (c3 i) : a1 → t | C3

where
C1 = {c1 : a1 ≤ e}
C2 = C1 ∪ {c2 : (p→ t) ≤ (a1 → t)}
C3 = C2 ∪ {c3 : (i→ t) ≤ (a1 → t)}

By continuing to apply this typing process to term (8), we end up with the
following typing judgement:

− s (c10 (w (c7 (is (c5 (b (c2 v) (c3 i))))) (c8 bk))) : (a4 → t)→ t | C (9)

where
C =

{
c1 : a1 ≤ e,

c2 : (p→ t) ≤ (a1 → t),

c3 : (i→ t) ≤ (a1 → t),

c4 : a2 ≤ e,

c5 : (a1 → t) ≤ (a2 → t),

c6 : a3 ≤ e,

c7 : (((a2 → t)→ t)→ t) ≤ (((a3 → t)→ t)→ t),

c8 : (book→ t) ≤ (a3 → t),

c9 : a4 ≤ e,

c10 : (a3 → t) ≤ (a4 → t)
}

In order to infer the coerced type of term (8), we must solve the above con-
straints. A solution to such a set of constraints C consists of two substitutions ρ
and σ such that:

1. ρ is a substitution that assigns a closed coercion to each coercion variable oc-
curring in C;

2. σ is a substitution that assigns a ground type to each type variable occurring
in C;

3. for every constraint (c : α ≤ β) ∈ C the coercion judgement:

− ρ(c) : σ(α) ≤ σ(β)

is derivable.

9

In the present case, one easily checks that the following pair of substitutions
provides a solution to C:

c1←λx. x a1← book

c2←λfr. f (r•object) a2← book

c3←λfr. f (r•content) a3← book

c4←λx. x a4← book

c5←λfx. f x

c6←λx. x

c7←λfg. f (λh. g (λx. h x))

c8←λfx. f x

c9←λx. x

c10←λfx. f x

Applying these substitutions to the term obtained in (9) yields the following term:

some
(which

(is (but (λr.voluminous (r•object)) (λr. interesting (r•content))))
book) (10)

which is of type (book→ t)→ t.
Finally, by replacing in (10) each defined constant by its definition (see the

grammar given in appendix) and then β-reducing the resulting term, we obtained
the following semantic interpretation for phrase (7):

λq.∃x. (bookx) ∧ (voluminous (x•object)) ∧ (interesting (x•content)) ∧ (q x)

5 Decidability and canonicity

In spirit, our proposal is similar to the approach presented in [15]. The formal
framework we use, however, is rather different. In fact, it is weaker because it relies
only on a fragment of second-order λ-calculus. The reason for this choice is that
we want the operations of selection and coercion to be performed automatically. To
achieve this aim, two key properties are needed:

– the decidability of constraint solving;
– the canonicity of the computed coercions.

The first property ensures that the coercion functions may be computed automati-
cally. The second one guarantees that selectional restriction by type coercion does
not result in erroneous interpretations, or in fallacious semantic ambiguities.

Decidability does not present any real difficulty. A constraint system can be
solved by reducing it to a closed system of atomic constraints [7]. This can be done
by applying type decomposition rules. Typically, in the case of a functional type,
the decomposition rules are as follows:

c : (α1 → α2) ≤ (β1 → β2) −→

c1 : β1 ≤ α1

c2 : α2 ≤ β2

c← λfx. c2 (f (c1 x))

Remark that the above rule does not only decompose the constraint. It also con-
tributes to the construction of the solution by generating a substitution. Then,

10

decidability of constraint solving relies on the decidability of the subtyping relation
(which is not difficult to establish in our case).

Canonicity, on the other hand, is more problematic. The simplest form of canon-
icity would be ensured by a unicity property: given two types α and β such that
α ≤ β, there is a unique coercion function such that f : α ≤ β. This property
however, does not hold because of inequation (2). There are several ways out of this
failure. For instance, one could restrict inequation (2) to the case of atomic types
(different from e) , and impose that any two atomic types occurring in a record
type do not have any supertype but e. Remark that such a solution constrains the
structure of the lexicon. To our mind, this is not surprising because we think that
canonicity should not be a property of the underlying mathematical framework, but
must derive from the organisation of the lexicon. In particular, the solutions that
are proposed in [15] are adaptable to our framework. Remark also that the unicity
of the coercion is not always a desirable property. For instance, a sentence such as
“Mary began a novel” presumably means that Mary began reading a novel, but in
case Mary is a writer, it might means that Mary began writing a novel.

A final note should be added on the adaptability of our proposal to creative
uses of language as illustrated in the case of metonymy or metaphor. A well-known
example of such a situation is the possible use of “the sandwich” to mean “the
customer who ordered a sandwich” in the context of a restaurant. It is doubtful
that one may want to encode the possibility of such a use directly into the lexicon,
since only a few sandwiches may have an obvious relation to some customer. But
our system of inference is able, to some extent, to account for such phenomena in an
explicit way: in the typing judgement of a term involving polymorphism, the type
mismatch between food and customer is likely to arise in the form of constraints
reducible to some c1 : a ≤ food and c2 : a ≤ customer. Then, even if no type
satisfying those constraints is to be found in our grammar, the typing-environment
formation rules allows for the introduction of a new record type capturing both
aspects, which appears in the term as a new variable encoding a relation between
the food and the customer. The very nature of this relation will not be explained by
the system, but it leaves open the way for inference by subsequent analyses using
world knowledge and context knowledge. Moreover, if we apply the restrictions
on record types described above, the new record type introduced can be uniquely
defined as the greatest record type which satisfies the constraints.

However a few cases, especially when no polymorphic term is involved, may not
be covered by such an analysis, and will require some additional treatment. Yet
the examples described in this paper show that the use of records and record types
can be adapted to account for restrictive selection and type coercion similarly to
existing proposal, while enabling dynamic inference of types and coercion where
needed.

References

1. N. Asher. Lexical Meaning in Context: A Web of Words. Cambridge University Press,
2011.

2. William Babonnaud. A topos-based approach to building language ontologies. In
Raffaella Bernardi, Greg Kobele, and Sylvain Pogodalla, editors, Formal Grammar -
24th International Conference, FG 2019, Riga, Latvia, August 11, 2019, Proceedings,
volume 11668 of Lecture Notes in Computer Science, pages 18–34. Springer, 2019.

3. L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138–164, 1988.

4. L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of system f with
subtyping. Information and Computation, 109(1):4 – 56, 1994.

5. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471–523, December 1985.

11

6. R. Cooper. Records and Record Types in Semantic Theory. Journal of Logic and
Computation, 15(2):99–112, 2005.

7. J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types
and its application to oop. Electronic Notes in Theoretical Computer Science, 1:132 –
153, 1995. MFPS XI, Mathematical Foundations of Programming Semantics, Eleventh
Annual Conference.

8. J-Y. Girard. Une extension de l’interprétation de gödel à l’analyse et son application
à l’élimination des coupures dans l’analyse et la théorie des types. In Proceedings
of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the
Foundations of Mathematics, pages 63–92. North-Holland, 1971.

9. J.-Y. Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45:159–192, 1986.

10. Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: Theory and implementation.
Information and Computation, 223:18–42, 2013.

11. R. Montague. The proper treatment of quantification in ordinary english. In J. Hin-
tikka, J. Moravcsik, and P. Suppes, editors, Approaches to natural language: proceed-
ings of the 1970 Stanford workshop on Grammar and Semantics, Dordrecht, 1973.
Reidel. Reprinted: [12, pages 247–270].

12. R. Montague. Formal Philosophy: selected papers of Richard Montague, edited and
with an introduction by Richmond Thomason. Yale University Press, 1974.

13. J. Pustejovsky. Type coercion and lexical selection. In J. Pustejovsky, editor, Seman-
tics and the Lexicon, volume 49 of Studies in Linguistics and Philosophy. Springer,
Dordrecht, 1993.

14. J. Pustejovsky. The Generative Lexicon. The MIT Press, 1995.
15. C. Retoré. The montagovian generative lexicon ΛTyn: a type theoretical framework

for natural language semantics. In Ralph Matthes and Aleksy Schubert, editors, 19th
International Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz International Proceedings in Informatics (LIPIcs), pages 202–229. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

Appendix

This appendix provides a toy grammar made of an abstract syntax and its semantic
interpretation.

Abstract syntax

John : NP

book : N

voluminous : Adj

interesting : Adj

is : Adj → NP → S

bought : NP → NP → S

some : N → NP

but : Adj → Adj → Adj

which : (NP → S)→ N → N

12

Semantic interpretation

1 Atomic types

t (truth value)
e (entities)
h (human beings)
i (informational contents)
c (commodities)
p (physical object)
a (artifacts)

e

h i c p

a

2 Non logical constants

book : book→ t, where book = {object : a ; content : i}
buy : h→ c→ t

interesting : i→ t

j : h

voluminous : p→ t

3 Semantic interpretation

John := λk. k j : (h→ t)→ t

book := λx.bookx : book→ t

voluminous := λx.voluminousx : p→ t

interesting := λx. interestingx : i→ t

is := Λc. λes. s e : ∀a ≤ e. (a→ t)→ ((a→ t)→ t)→ t

bought := λos. s (λx. o (λy.P (buyx y))) :
((c→ t)→ t)→ ((h→ t)→ t)→ t

some := Λc. λpq.∃x. (p x) ∧ (q x) : ∀a ≤ e. (a→ t)→ (a→ t)→ t

but := Λc. λpqx. (p x) ∧ (q x) : ∀a ≤ e. (a→ t)→ (a→ t)→ a→ t

which := Λc. λrnx. (nx) ∧ (r (λk. k x)) :
∀a ≤ e. (((a→ t)→ t)→ t)→ (a→ t)→ a→ t

13

