
Deriving formal semantic representations
from dependency structures

— extended abstract —

Philippe de Groote

LORIA, UMR 7503, Université de Lorraine, CNRS, Inria, 54000 Nancy, France

1 introduction

Dependency grammars provide an interesting alternative to phrase structure grammars.
They derive from a long linguistic tradition [3], and are gaining more and more interest
in the computational linguistic international community [6]. One of their advantages is
that dependency parsing appears to be more robust than constituency parsing. Indeed,
while parsing an agrammatical sentence with a phrase structure grammar usually leads to
a failure, parsing it with a dependency grammar can result in an incomplete dependency
structure that nevertheless carries some semantic information.

Dependency grammars, however, do not seem suitable for a formal semantic treat-
ment, in the tradition of Montague [5]. Formal semantics [2], being compositional, relies
heavily on the notion of constituent, a notion that does not appear explicitly within de-
pendency structures.

A possible remedy to this this situation is to normalize the dependency structures in
order to recover an implicite notion of constituent (see [7], for instance). This approach,
however, is not robust in the sense that it does not allow for the interpretation of partial
dependency structures. The goal of this paper is to remedy this problem by laying the
grounds for a new formal theory of dependency semantics, in the spirit of Montague.

2 The basic concept

Consider the following simple sentence:

(1) Michael smiles

Parsing it with a phrase structure grammar would yield a constituency parse tree akin to
the following one1:

1 All the parse trees and the constituency structures occurring in this abstract have been obtained using the Stanford
parser

87



S

NP

NNP
Michael

VP

VBZ
smiles

Following Montague [4], one may take advantage of the above parse tree in order to
derive the truth-conditional meaning of sentence (1). To this end, let us write S, NP, and
VP for the semantic interpretations of the syntactic categories S, NP, and VP. As usual,
one posits:

S = t
VP = e ! t
NP = VP ! S = (e ! t) ! t

Then, one assigns the following lexical semantic recipes to Michael and smiles:

MICHAEL = �p. pm : VP ! S
SMILE = �x. smilex : VP

This allows one to compute the the truth-conditional semantics of sentence (1) by reducing
the corresponding �-term:

(2) MICHAEL SMILE !!� smilem

Now, we want to apply the same kind of technique to dependency grammars, i.e, to derive
the truth-conditional semantics of sentence (1) form the following dependency structure:

NNP VBZ
Michael smiles

nsubj

The solution we develop in this paper is based on a simple idea, which consists in as-
signing a semantic role to the dependency relations, and computing the desired semantics
from a term akin to nsubj (SMILE, MICHAEL) (or simply, nsubj SMILE MICHAEL, using
the �-calculus notation). For our current example, it suffices to let nsubj = �vn. n v.
However, as we will see, this interpretation is too simple.

3 The coherence requirement

In pursuing the basic idea we sketched in the previous section, we soon run into an obsta-
cle. There is indeed no canonical way of representing a dependency structure as a term.
Consider, for instance, the following sentence together with its dependency structure:

88



(3) Michael praises Samuel

NNP VBZ NNP
Michael praises Samuel

nsubj obj

There is in fact two ways of encoding the above dependency structure as a term:

(4) a. nsubj (obj PRAISE SAMUEL) MICHAEL
b. obj (nsubj PRAISE MICHAEL) SAMUEL

One could try to circumvent this difficulty by preferring one of these representations to
the other, but such a choice would be arbitrary. Moreover, the resulting solution would not
be robust in the sense that it would not allow for the interpretation of partial dependency
structures. Consequently, we require the coherence condition that both terms (4-a) and
(4-b) must yield the same semantic interpretation.

In order to satisfy this coherence condition, we adopt a Neo-Davisdsonian event se-
mantics, and interpet a sentence as a set of sets of events, as suggested by Champolion [1].
This gives rise to the following semantic interpretation:

GS = (v ! t) ! t

MICHAEL = �p. pm : NP
SAMUEL = �p. p s : NP
PRAISES = �p. 9e. (praise e) ^ (p e) : GS

nsubj = �vn.�p. n (�x. v (�e. (agent e x) ^ (p e))) : GS ! NP ! GS
obj = �vn.�p. n (�x. v (�e. (theme e x) ^ (p e))) : GS ! NP ! GS

4 Interpreting the noun phrases

Montagovian semantics assigns to the (common) nouns the semantic category N = e ! t.
It assigns to the adnominal modifiers, such as the adjectives, the category ADJ = N ! N,
and to the determiners, the category DET = N ! NP. This approach is not directly
transferable to the case of dependency structures. Consider indeed the folowing noun
phrase and its associated dependency structure:

(5) a red car

DT JJ NN
a red car

amod

det

89



As a consequence of the coherence condition, the following expressions must be assigned
the same semantic type:

(6) a. CAR
b. amod CAR RED
c. det CAR A
d. det (amod CAR RED) A
e. amod (det CAR A) RED

More generally, if dep is the semantic recipe associated to a dependency edge
⌥⌃ ⌅⇧dep , we

must have:
dep : ↵ ! � ! ↵

where ↵ is the semantic type assigned to the source of the edge, and �, the semantic type
assigned to its target.

A way of satisfying the above requirement is to parametrize the type assigned to the
head of a dependency relation with the types assigned to all its possible dependents. In
the case of the expressions listed in (6), this type is then the following one:

GNP = DET ! ADJ ! NP

Accordingly, the semantic recipes associated to the lexical items and dependency relations
are as follows:

A = �pq. 9x. (p x) ^ (q x) : DET
RED = �nx. (nx) ^ (redx) : ADJ
CAR = �da. d (a car) : GNP

amod = �na.�db. n d (�z. b (a z)) : GNP ! ADJ ! GNP
det = �nd.�ea. n d a : GNP ! DET ! GNP

5 Revisiting the subject and object dependencies
The typing principle we posited in the previous section must be propagated throughout the
grammar. Therefore, the type assigned to nsubj and obj should no longer be GS ! NP !
GS but GS ! GNP ! GS. Similarly, the semantic type assigned to a proper name should
be GNP rather than NP. let us illustrate this with a last example. Consider the following
sentence:

(7) Michael drives a red car

NNP VBZ DT JJ NN
Michael drives a red car

nsubj amod

det

obj

90



This example can be handled using the following semantic recipes, which implement the
principles we have discussed in this abstract:

A = SOME = �pq. 9x. (p x) ^ (q x) : DET
RED =�nx. (nx) ^ (redx) : ADJ
CAR =�da. d (a car) : GNP

MICHEL =�dap. pm : GNP
DRIVE =�p. 9e. (drive e) ^ (p e) : GS

amod=�na.�db. n d (�z. b (a z)) : GNP ! ADJ ! GNP
det=�nd.�ea. n d a : GNP ! DET ! GNP

nsubj=�vn.�p. n SOME (�x. x) (�x. v (�e. (agent e x) ^ (p e))) : GS ! NP ! GS
obj=�vn.�p. n SOME (�x. x) (�x. v (�e. (theme e x) ^ (p e))) : GS ! NP ! GS

The reader may then check that the four possible expressions that encode the above de-
pendency structure yield all the same semantic interpretation2 of sentence (7), namely:

�f. 9x. (car x) ^ (redx) ^ (9e. (drive e) ^ (agent em) ^ (theme e x) ^ (f e))

6 Conclusions

We have discussed and elaborated some principles that provide the basis for a formal the-
ory of dependency semantics. The resulting system satisfies several interesting properties
that the format of this extended abstract does not allow us to illustrate further. In particular,
the toy semantic grammar that supports our last example allows incomplete dependency
structures to be assigned semantic interpretations, showing therefore some robustness. It
also provides an effective treatment of scope ambiguities.

References
1. L. Champollion. The interaction of compositional semantics and event semantics. Linguistic & Philosophy,

38(1):31–66, 2015.
2. I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell Publishing, 1998.
3. Igor Mel’čuk. Dependency Syntax: Theory and Practice. State University of New York Press, 1988.
4. R. Montague. The proper treatment of quantification in ordinary english. In J. Hintikka, J. Moravcsik, and P. Suppes,

editors, Approaches to natural language: proceedings of the 1970 Stanford workshop on Grammar and Semantics,
Dordrecht, 1973. Reidel. Reprinted: [5, pages 247–270].

5. R. Montague. Formal Philosophy: selected papers of Richard Montague, edited and with an introduction by Rich-
mond Thomason. Yale University Press, 1974.

6. J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajič, C. D. Manning, R. McDonald, S. Petrov, S. Pyysalo,
N. Silveira, R. Tsarfaty, and D. Zeman. Universal Dependencies v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 1659–1666,
Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).

7. S Reddy, O. Täckström, M. Collins, T. Kwiatkowski, D. Das, M. Steedman, and M. Lapata. Transforming de-
pendency structures to logical forms for semantic parsing. Transactions of the Association for Computational
Linguistics, 4:127–140, 2016.

2 up to conjunction commutativity

91


	Preface.pdf
	papers
	LENLS19_paper_8462
	LENLS19_paper_1932
	LENLS19_paper_3686
	LENLS19_paper_9315
	LENLS19_paper_3718
	LENLS19_paper_1700
	LENLS19_paper_9803
	LENLS19_paper_7984
	LENLS19_paper_1424
	invited_michael
	LENLS19_paper_627
	LENLS19_paper_8314
	LENLS19_paper_9805
	LENLS19_paper_3022
	LENLS19_paper_4104
	LENLS19_paper_4775
	LENLS19_paper_5912
	LENLS19_paper_5976
	Logic Operators and Quantifiers in Type-Theory of Algorithms

	LENLS19_paper_6652
	invited_kishida
	LENLS19_paper_9853
	LENLS19_paper_6278
	LENLS19_paper_4538
	LENLS19_paper_6003
	Reviewing Literature on the Dative Alternation
	Method and Result
	The Syntax of the Dative Alternation
	Explaining The Dative Alternation – Where Cognitive Linguistics and Generative Grammar Meet

	LENLS19_paper_6660
	LENLS19_paper_2996
	LENLS19_paper_7861
	LENLS19_paper_2478
	LENLS19_paper_520
	invited_miki


