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1 Introduction

We consider intuitionistic fragments of multiplicative linear logic for which we
define appropriate notions of proof-nets.

Intuitionistic proof-nets may be easily defined by first introducing intuition-
istic (or polarised) proof-structures [1, 5] and then by using any usual correctness
criterion [2, 3]. Nevertheless, when using a criterion such as Girard’s or Danos-
Regnier’s, one does not take any advantage of the intuitionistic nature of the
polarised proof-nets. Indeed, the aforementioned criteria have been formulated
in the classical framework.

In this paper, we formulate a new criterion, which is intrinsically intuition-
istic. This criterion consists in decorating the proof-structures with algebraic
terms that must obey some constraints reminiscent of phase semantics. These
constraints are defined according to the polarities of the proof-structure, which
explains the intuitionistic nature of our criterion.

We first state our criterion for intuitionistic implicative multiplicative linear
logic (that is the fragment of linear logic whose only connective is “—”). Then
we explain how to accommodate the multiplicative conjunction “®”. Finally, we
adapt our criterion to the non-commutative case, i.e., the Lambek calculus [§].
In this last case, the criterion is particularly interesting, as we explain at the
end of the paper.

2 Implicative linear logic

We first consider the intuitionistic implicative multiplicative fragment of lin-
ear logic (which we call implicative linear logic, for short). This fragment, which
concerns the only connective “—o” (linear implication), obeys the following gram-
mar:

F o= A| F—oF

where A is the alphabet of atomic formulas.
The deduction rules are specified by the sequent calculus that follows.



Identity rules

'-A AAwB
Awr A (ident) AL (cut)
A -

Logical rules

'-A BAwC AT+ B
(—o left) ——  (—oright)
A—-o B T'Aw C ' A—oB
Structural rule
A, B Aw C
——  (Exchange)
B AAwC

3 Intuitionistic proof-structures

In order to define a notion of proof-structure for implicative linear logic, we first
introduce the notion of polarised multiplicative formula. Let At and A~ stand
respectively for A x {+} and A x {—}. For any a € A, we write a¥ (respectively,
a~) for {(a,+) (respectively, {a,—)). Polarised formulas (PA') are defined as
follows:
PN = P | N
P = AT | NBP
N = A | PoN

where P and N are respectively called positive and negative formulas.

In fact, by interpreting a~ as a~ (and a™ as a itself), the polarised formu-
las form a proper subset of the formulas of classical multiplicative linear logic,
and the notion of positive and negative polarities correspond to Danos’ notion
of output and input formulas [1]. Hence, by translating the formulas of implica-
tive linear logic into polarised formulas, we will get a notion of proof-structure
adapted to implicative linear logic.

Consider the following positive and negative translations:

a)t = at (when a is atomic)

A—oB)* = A~ 3B+

a)” = a (when a is atomic)

A—OB)_ = A+®B_

These translations allow each intuitionistic sequent “I' + A” to be transformed
into the sequence of polarised formulas “(T')~, (4)*”. Then, by combining Gi-
rard’s notion of link with the above translations, one obtains the polarised links
given in Figure 1, where negative and positive polarities are emphasised by black
and white circles, respectively.
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A~ AT (A—o B)*t (A— B)~

Figure 1: Links for implicative linear logic

The above links are respectively called axtom-link, heterogeneous par-link
and heterogeneous tensor-link. The formulas A~ and At are defined to be the
conclusions of the axiom-link; the formula (A —o B)* is defined to be the conclu-
sion of the par-link while the formulas A~ and Bt are defined to be its premises;
one defines the conclusion and the premises of the tensor-link similarly.

Finally, an intuitionistic proof-structure is defined to be a set of (occurrences
of) polarised formulas connected by polarised links, such that:

1. every (occurrence of a) formula is a conclusion of exactly one link and is a
premise of at most one link;

2. the resulting graph is connected;

3. the resulting graph as exactly one positive conclusion (i.e., exactly one oc-
currence of a positive formula that is not the premise of any link).

Remark that condition 3, in the above definition, corresponds to the fact that the
succedent of any positive intuitionistic sequent is made of exactly one formula.
Proof-structures corresponding to graphs whose vertices are (occurrences of)
formulas, we will freely use the terminology of graph theory in the sequel. In
particular, we will write P = (V, E) for a proof-structure P whose set of vertices
1s V, and set of edges is E.

Given an intuitionistic proof-structure, we define its principal inputs to be
its negative conclusions (i.e., the negative vertices that are not the premises of
any link) together with those vertices that appear as the negative premises of its
heterogeneous par-links. This notion of principal input correspond to the notion
of (free or bound) variable in the A-calculus.

4 An algebraic correctness criterion

Let M = (M, -, 1) be some freely generated commutative monoid with sufficiently
many generators (in a technical sense that will be made precise in the sequel).

We define a proof-net to be an intuitionistic proof-structure (V| E') together
with an application p : V' — M such that:

1. the values assigned by p to the principal inputs are pairwise coprime (i.e.,
do not have any common factor);
2. the values assigned by p obey the constraints given in Figure 2, i.e.:
(a) the values assigned to the two conclusions of an axiom-link must be
equal,



(b) the value assigned to the positive premise of a par-link must be equal to
the product of the value assigned to its negative premise with the value
assigned to its conclusion

(c) the value assigned to the negative premise of a tensor-link must be equal
to the product of the value assigned to its positive premise with the value
assigned to its conclusion;

3. the value assigned to the positive conclusion of the proof-structure is equal
to the product of the values assigned to its negative conclusions.

A~ BT At B~
n n-min n-m
b &
n m n m m
A= AT (A— B)* (A— B)~
Figure 2: Algebraic constraints on the links

Condition 1, in the above definition of a proof-net, cannot be satisfied if the con-
sidered monoid does not have, at least, as many generators as there are principal
inputs in the proof-structure. This explains what we meant by sufficiently many
generators. Practically we will work with the strictly positive integers and the
usual multiplication.

As an example, consider the proof-structure given in Figure 3:

42
(A— B)~ (B—oC)” ((A—o(C)—o D)~ Dt

Figure 3: A proof-net

This proof-structure is a proof-net: the values assigned to the principal inputs
(2,3,5,7) are pairwise coprime; the algebraic constraints of Figure 2 are satisfied
for each link; it is the case that 2-3 -7 = 42.

In order to show that our definition of an intuitionistic proof-net makes
sense, we must prove that:

1. any formal derivation of a sequent I' = A may be transformed into a proof-
net whose conclusions are (T')~, (4)*;



2. any proof-net whose conclusions are (T')~, (A)T may be sequentialised into
a formal derivation of the sequent I' — A.

Establishing Property 1 consists of a routine induction whose details are left
to the reader. Property 2, which amounts to Girard’s sequentialisation theorem,
will be proven in Section 6.

5 A dynamic view of the criterion

Given some proof-structure how can we check whether it is (or is not) a proof-
net? In other words, how can we prove that there exist, for that proof-structure,
a valuation p satisfying the constraints in which our criterion consists?

Consider again Figure 3 and try to figure out how the given valuation could
have been found. Here is a possible solution:

— assign pairwise coprime numbers (2,3,5,7) to the principal inputs of the
proof-structure;

— propagate 5 along the axiom link;

— knowing the values assigned to the positive premise (5) and to the conclusion
(2) of the left-most tensor-link, assign 10 =5 - 2 to its negative premise;

— by steps similar to the previous ones, assign 30 = 10 - 3 to the negative
premise of the second tensor-link, and propagate this value along the axiom;

— check that 30 is divisible by 5 and, consequently, assign 6 to the conclusion
of the par-link;

— this allows the value assigned to the premise of the last tensor-link to be
computed as 42 =6 - T;

— propagate 42 along the axiom-link and check that 42 =2-3-7.
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(A— B)~ (B—oC)” ((A—o(C)—o D)~ Dt
Figure 4: The dynamic graph underlying a proof-net

It can be proven that the above procedure obeys a general algorithm. Any
proof-net may be assigned a valuation p by propagating the values assigned to
its principal inputs. This propagation follows the paths of a directed graph that



we call the dynamic graph underlying the proof-net. Figure 4 exemplifies this
concept.

The notion of dynamic graph may be easily defined by introducing a notion
of switch:

A= BT At B~

° /0 o=@
b &
e L | ¢ J
- Af (A— B)* (A— B)~
Figure 5: Switches

The dynamic graph underlying a proof-net (or a proof-structure) is defined to
be the directed graph obtained by replacing each link of the proof-net by the
corresponding switch.

Our dynamic graphs correspond (up to their orientation) to the paths of
Lamarche in [5], which he derives from his game semantics [6].

Important properties of the dynamic graphs are given by the following
lemmas.

Lemma 5.1 Let P = (V. E), p) be a proof-net, and let {Ay, ... Ap) € V™ be a
path in the dynamic graph underlying P such that:

1. Ay is a principal input of P;
2. in the case that Ay is the input premise of a heterogeneous par-link, the path
does not go through the corresponding output premise.

Then, p(A1) divides p(A;) for any i < n.
Proof (sketch). A straightforward induction on the length of the path. O

Lemma 5.2 The dynamic graph underlying a proof-net is acyclic.

Proof (sketch). By induction on the number of links. The cases of a single axiom
and of a conclusive par are immediate. For the case of a conclusive tensor, one
uses Lemma 5.1 to derive a contradiction. O

The acyclicity of the dynamic graphs allows the following property to be
established.

Lemma 5.3 Let P = ({V, E), p) be a proof-net, and let A, B € V be such that
p(A) and p(B) are not coprime. Then, there exists a path connecting A and B
wmn the dynamic graph underlying P.

Proof (sketch). Because p(A) and p(B) are not coprime, there exist a principal
input I such that p(I) divides both p(A4) and p(B). Tt is easy to prove that

there exist two path connecting I to p(A) and p(B) respectively. Moreover one
of these paths must be a sub-path of the other. [l



Using the two lemmas above, we may prove that the checking algorithm
sketched at the beginning of this section is general. Another consequence of
Lemma 5.3 is the following.

Lemma 5.4 The premises of any heterogenecous par-link occurring in a proof-
net are connected by a path of the underlying dynamic graphs. This path goes
from the negative premise to the positive one. O

This last lemma will be useful when establishing the sequentialisation prop-
erty.

6 Sequentialisation

Our sequentialisation proof follows the method of the splitting tensor [3, 4].
Given a proof-net, we define a splitting tensor to be a tensor-link such that:

1. its conclusion is not a premise of any other link (in other words, its conclusion
is one of the conclusions of the proof-net);

2. the value assigned to its positive premise is equal to the product of the values
assigned to some of the negative conclusions of the proof-net

The next lemma justifies the above definition.

Lemma 6.1  Let P be a proof-net that contains a splitting tensor. Then,
remouving this tensor-link splits P into two disconnected proof-nets.

Proof (sketch). Tt is immediate that the splitting tensor splits the graph under-
lying P into two disconnected subgraphs (G; and Gs. Therefore, if the splitting
tensor does not split the proof-net, there must exist a par-link one premise of
which belongs to GG1 and the other premise of which belongs to G». But then,
by Lemma 5.4, there would exist a path going from one of the premises of this
par to the other one. Because (1 and (G5 are connected only by the switch cor-
responding to the splitting tensor, this path would go through this switch. But
this, by Lemma 5.1, conflicts with Condition 2 in the definition of a splitting
tensor. O

The key lemma of the sequentialisation proof is the following.

Lemma 6.2 Let P be a proof-net whose no conclusion is the conclusion of a
par-link. If P contains at least one tensor-link then it contains a splitting tensor.

Proof (sketch). Since P does not contain any conclusive par, its output con-
clusion must be the output conclusion of an axiom link. Consider the input
conclusion (say A) of this axiom link. This input conclusion A must be the
premise of some link (say /) otherwise P would only consists of one axiom link,
which would contradict the fact that it contains at least one tensor-link. Because
of Lemma 5.4, [ cannot be a par-link, therefore, it is a tensor-link. Consider the
conclusion of this tensor-link (which is an input conclusion) and iterate the same
kind of argument. One eventually finds a conclusive tensor-link. It is easy to
show that this tensor-link must be a splitting tensor. [l



Proposition 6.3  Any proof-net is sequentialisable. [l

7 Adding multiplicative conjunction

Intuitionistic multiplicative linear logic is obtained from implicative linear logic
by adding the following formation rule:

F = FQF,
together with the two inference rules that follows:
A BT+ C - A Awv B
—— (@ left) (® right)
A9 B,T' v+ C A+~ A®B

Our correctness criterion may be easily adapted to intuitionistic multi-
plicative linear logic by enriching the free commutative monoid M with two
operations, %() and (~)%, that obey the following law:

2(n)-(n)7 =n
Then, the notion of polarised formula of Section 3 is extended by the following

rules:
N = NN
P = PP,
which allows one to add the following clauses to the positive and negative trans-
lations of Section 3:
(A9 B)- = A~ ¥ B~
(Ao Byt = At o BT,
This gives rise to two additional kinds of links, which are respectively called
homogeneous par-link and homogeneous tensor-link. These links together with
the corresponding algebraic constraints and switches are given by Figure 6.

| LINKS | CONSTRAINTS | SWITCHES |

A~ B~ 1 A~ B~ 1 A~ B~

Ho) e .
%

x x v
n

(A© B) (A@ B) (A© B)
At BY At B At BY

® Ne/ %@f
(A B)Y (A@ B)f (A2 B)*

Figure 6: Links, constraints, and switches for the conjunction




The idea behind the adaptation of our criterion to the case of the multi-
plicative conjunction is straightforward. It is to be noted, however, that to adapt
our sequentialisation proof to this new setting requires some work.

8 The non-commutative case: the Lambek calculus

By rejecting the exchange rule, which is is the only structural rule of intuitionistic
multiplicative logic, one obtains a non-commutative logic known as the Lambek
calculus [8].

The formulas of the Lambek calculus are built according to the following
grammar:

F = A| FeF | F\F | F/F

where formulas of the form A e B correspond to conjunctions (or products),
formulas of the form A\ B correspond to direct implications (i.e., A implies B),
and formulas of the form A/B to retro-implications (i.e., A is implied by B).

The deduction relation of the calculus is defined by means of the following
system:

Identity rules

'-A A A A+ B
Awr A (ident) T 5 (cut)
1,4, 2

Logical rules

A, B,A+ C '-A Awv B
(o left) (e right)

Ae B Awr C I'Ar AeB

'-A A, B A+ C AT+ B
(\ left) ——  (\ right)

Al,F,A\B,AQI—C FI—A\B

' A A, B A+ C I''Av B
(/ left) ——  (/right)

Al,B/A,F,AQ — C I+ B/A

In order to adapt our criterion to the Lambek calculus, 1t suffices to work
in a freely generated monoid X* (enriched with the left and right square roots,
when the product is present) that is not commutative. Then, because the calculus
i1s not commutative, one must carefully distinguish between the direct and the
retro implication, between the left and the right premises of the corresponding
links, and between left and right cancellation in the monoid.

The translation of the Lambek formulas into polarised formulas 1s the fol-
lowing;:

(a)~ =a” (a)t =at

(A\ B)" = ATt @ B~ (A\ Byt = Bt % A~
(A/B)- = A~ @ BT (A/B)Y =B~ ® AT
(AeB)" = A~ X B~ (AOB)+:B+®A+

This gives rise to the links, the constraints, and the switches of Figure 7 and 8.



At B~ A~ Bt At BT
¥ 3 &
A wAr | (e
At B~ A~ Bt A~ B~
@ ® N
(A\ B)” (A/B)” (AeB)
Figure 7: Links for the Lambek calculus
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Figure 8: Constraints and switches for the Lambek calculus

9 Concluding remarks

As we said in the introduction, our criterion is intrinsically intuitionistic, which
is also the case of Lamarche’s [5]. Similarly, we could say that the non commuta-
tive version of our criterion is intrinsic to the Lambek calculus, which solves an
open question raised by Retoré [7]. Indeed, in the literature, proof-nets for the
Lambek calculus are defined in terms of conditions that ensure commutative cor-
rectness, together with an additional condition that ensures non-commutativity.
The latter is, most often, a planarity condition [7, 9]. In contrast, when using
our criterion, commutative correctness and non-commutativity are not checked
independently.

In [9, CHAP. III, §6, pp. 38—40], Roorda defines a way of decorating proof-
nets that is almost identical to ours. He then observes that the existence of such



a decoration is necessary, and raises the question whether it is sufficient (in fact,

he conjectures it is not). Consequently, our paper solves Roorda’s open question
(in the unexpected sense).

Another difference between Roorda’s work and ours lies in the dynamic

interpretation of our criterion. Indeed, Roorda’s decorating algorithm involves

associative (commutative) unification. In this paper, we have avoided this un-

necessary complexity by introducing the notion of underlying dynamic graph and
the two square root operators.
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