
An algebraic correctness criterion forintuitionistic proof-netsPhilippe de GrooteProjet CalligrammeINRIA-Lorraine & CRIN-C.N.R.S.615, rue du Jardin Botanique - B.P. 10154602 Villers-lès-Nancy Cedex � FRANCEe-mail: degroote@loria.fr1 IntroductionWe consider intuitionistic fragments of multiplicative linear logic for which wede�ne appropriate notions of proof-nets.Intuitionistic proof-nets may be easily de�ned by �rst introducing intuition-istic (or polarised) proof-structures [1, 5] and then by using any usual correctnesscriterion [2, 3]. Nevertheless, when using a criterion such as Girard's or Danos-Regnier's, one does not take any advantage of the intuitionistic nature of thepolarised proof-nets. Indeed, the aforementioned criteria have been formulatedin the classical framework.In this paper, we formulate a new criterion, which is intrinsically intuition-istic. This criterion consists in decorating the proof-structures with algebraicterms that must obey some constraints reminiscent of phase semantics. Theseconstraints are de�ned according to the polarities of the proof-structure, whichexplains the intuitionistic nature of our criterion.We �rst state our criterion for intuitionistic implicativemultiplicative linearlogic (that is the fragment of linear logic whose only connective is ����). Thenwe explain how to accommodate the multiplicative conjunction �
�. Finally, weadapt our criterion to the non-commutative case, i.e., the Lambek calculus [8].In this last case, the criterion is particularly interesting, as we explain at theend of the paper.2 Implicative linear logicWe �rst consider the intuitionistic implicative multiplicative fragment of lin-ear logic (which we call implicative linear logic, for short). This fragment, whichconcerns the only connective ���� (linear implication), obeys the following gram-mar: F ::= A j F �� Fwhere A is the alphabet of atomic formulas.The deduction rules are speci�ed by the sequent calculus that follows.



Identity rulesA � A (ident) � � A A;� � B (cut)�;� � BLogical rules� � A B;� � C (�� left)A��B;�;� � C A;� � B (�� right)� � A��BStructural rule �; A;B;� � C (Exchange)�; B;A;� � C3 Intuitionistic proof-structuresIn order to de�ne a notion of proof-structure for implicative linear logic, we �rstintroduce the notion of polarised multiplicative formula. Let A+ and A� standrespectively for A�f+g and A�f�g. For any a 2 A, we write a+ (respectively,a�) for ha;+i (respectively, ha;�i). Polarised formulas (PN ) are de�ned asfollows: PN ::= P j NP ::= A+ j N &PN ::= A� j P 
Nwhere P and N are respectively called positive and negative formulas.In fact, by interpreting a� as a? (and a+ as a itself), the polarised formu-las form a proper subset of the formulas of classical multiplicative linear logic,and the notion of positive and negative polarities correspond to Danos' notionof output and input formulas [1]. Hence, by translating the formulas of implica-tive linear logic into polarised formulas, we will get a notion of proof-structureadapted to implicative linear logic.Consider the following positive and negative translations:(a)+ = a+ (when a is atomic)(A ��B)+ = A� &B+(a)� = a� (when a is atomic)(A ��B)� = A+ 
 B�These translations allow each intuitionistic sequent �� � A� to be transformedinto the sequence of polarised formulas �(�)�; (A)+�. Then, by combining Gi-rard's notion of link with the above translations, one obtains the polarised linksgiven in Figure 1, where negative and positive polarities are emphasised by blackand white circles, respectively.



A� A+ (A��B)+&B+A� (A��B)�
 B�A+Figure 1: Links for implicative linear logicThe above links are respectively called axiom-link, heterogeneous par-linkand heterogeneous tensor-link. The formulas A� and A+ are de�ned to be theconclusions of the axiom-link; the formula (A��B)+ is de�ned to be the conclu-sion of the par-link while the formulasA� and B+ are de�ned to be its premises;one de�nes the conclusion and the premises of the tensor-link similarly.Finally, an intuitionistic proof-structure is de�ned to be a set of (occurrencesof) polarised formulas connected by polarised links, such that:1. every (occurrence of a) formula is a conclusion of exactly one link and is apremise of at most one link;2. the resulting graph is connected;3. the resulting graph as exactly one positive conclusion (i.e., exactly one oc-currence of a positive formula that is not the premise of any link).Remark that condition 3, in the above de�nition, corresponds to the fact that thesuccedent of any positive intuitionistic sequent is made of exactly one formula.Proof-structures corresponding to graphs whose vertices are (occurrences of)formulas, we will freely use the terminology of graph theory in the sequel. Inparticular, we will write P = hV;Ei for a proof-structure P whose set of verticesis V , and set of edges is E.Given an intuitionistic proof-structure, we de�ne its principal inputs to beits negative conclusions (i.e., the negative vertices that are not the premises ofany link) together with those vertices that appear as the negative premises of itsheterogeneous par-links. This notion of principal input correspond to the notionof (free or bound) variable in the �-calculus.4 An algebraic correctness criterionLetM = hM; �; 1i be some freely generated commutativemonoidwith su�cientlymany generators (in a technical sense that will be made precise in the sequel).We de�ne a proof-net to be an intuitionistic proof-structure hV;Ei togetherwith an application � : V !M such that:1. the values assigned by � to the principal inputs are pairwise coprime (i.e.,do not have any common factor);2. the values assigned by � obey the constraints given in Figure 2, i.e.:(a) the values assigned to the two conclusions of an axiom-link must beequal,



(b) the value assigned to the positive premise of a par-link must be equal tothe product of the value assigned to its negative premise with the valueassigned to its conclusion(c) the value assigned to the negative premise of a tensor-link must be equalto the product of the value assigned to its positive premise with the valueassigned to its conclusion;3. the value assigned to the positive conclusion of the proof-structure is equalto the product of the values assigned to its negative conclusions.A� A+nn A� n �mm(A��B)+B+&n A+ n �mm(A��B)�B�
nFigure 2: Algebraic constraints on the linksCondition 1, in the above de�nition of a proof-net, cannot be satis�ed if the con-sidered monoid does not have, at least, as many generators as there are principalinputs in the proof-structure. This explains what we meant by su�ciently manygenerators. Practically we will work with the strictly positive integers and theusual multiplication.As an example, consider the proof-structure given in Figure 3:30 423010 426105 753 
 ((A�� C)��D)�(B �� C)�(A��B)�
 
 D+&2 Figure 3: A proof-netThis proof-structure is a proof-net: the values assigned to the principal inputs(2; 3; 5; 7) are pairwise coprime; the algebraic constraints of Figure 2 are satis�edfor each link; it is the case that 2 � 3 � 7 = 42.In order to show that our de�nition of an intuitionistic proof-net makessense, we must prove that:1. any formal derivation of a sequent � � A may be transformed into a proof-net whose conclusions are (�)�; (A)+;



2. any proof-net whose conclusions are (�)�; (A)+ may be sequentialised intoa formal derivation of the sequent � � A.Establishing Property 1 consists of a routine induction whose details are leftto the reader. Property 2, which amounts to Girard's sequentialisation theorem,will be proven in Section 6.5 A dynamic view of the criterionGiven some proof-structure how can we check whether it is (or is not) a proof-net? In other words, how can we prove that there exist, for that proof-structure,a valuation � satisfying the constraints in which our criterion consists?Consider again Figure 3 and try to �gure out how the given valuation couldhave been found. Here is a possible solution:� assign pairwise coprime numbers (2; 3; 5; 7) to the principal inputs of theproof-structure;� propagate 5 along the axiom link;� knowing the values assigned to the positive premise (5) and to the conclusion(2) of the left-most tensor-link, assign 10 = 5 � 2 to its negative premise;� by steps similar to the previous ones, assign 30 = 10 � 3 to the negativepremise of the second tensor-link, and propagate this value along the axiom;� check that 30 is divisible by 5 and, consequently, assign 6 to the conclusionof the par-link;� this allows the value assigned to the premise of the last tensor-link to becomputed as 42 = 6 � 7;� propagate 42 along the axiom-link and check that 42 = 2 � 3 � 7.42303010 426105 753 ((A�� C)��D)�
(B �� C)�(A��B)�
 
 D+&2 Figure 4: The dynamic graph underlying a proof-netIt can be proven that the above procedure obeys a general algorithm. Anyproof-net may be assigned a valuation � by propagating the values assigned toits principal inputs. This propagation follows the paths of a directed graph that



we call the dynamic graph underlying the proof-net. Figure 4 exempli�es thisconcept.The notion of dynamic graph may be easily de�ned by introducing a notionof switch: A+A� (A��B)+&B+A� 
(A��B)�A+ B�Figure 5: SwitchesThe dynamic graph underlying a proof-net (or a proof-structure) is de�ned tobe the directed graph obtained by replacing each link of the proof-net by thecorresponding switch.Our dynamic graphs correspond (up to their orientation) to the paths ofLamarche in [5], which he derives from his game semantics [6].Important properties of the dynamic graphs are given by the followinglemmas.Lemma 5.1 Let P = hhV;Ei; �i be a proof-net, and let hA1; : : :Ani 2 V n be apath in the dynamic graph underlying P such that:1. A1 is a principal input of P ;2. in the case that A1 is the input premise of a heterogeneous par-link, the pathdoes not go through the corresponding output premise.Then, �(A1) divides �(Ai) for any i � n.Proof (sketch). A straightforward induction on the length of the path.Lemma 5.2 The dynamic graph underlying a proof-net is acyclic.Proof (sketch). By induction on the number of links. The cases of a single axiomand of a conclusive par are immediate. For the case of a conclusive tensor, oneuses Lemma 5.1 to derive a contradiction.The acyclicity of the dynamic graphs allows the following property to beestablished.Lemma 5.3 Let P = hhV;Ei; �i be a proof-net, and let A;B 2 V be such that�(A) and �(B) are not coprime. Then, there exists a path connecting A and Bin the dynamic graph underlying P .Proof (sketch). Because �(A) and �(B) are not coprime, there exist a principalinput I such that �(I) divides both �(A) and �(B). It is easy to prove thatthere exist two path connecting I to �(A) and �(B) respectively. Moreover oneof these paths must be a sub-path of the other.



Using the two lemmas above, we may prove that the checking algorithmsketched at the beginning of this section is general. Another consequence ofLemma 5.3 is the following.Lemma 5.4 The premises of any heterogeneous par-link occurring in a proof-net are connected by a path of the underlying dynamic graphs. This path goesfrom the negative premise to the positive one.This last lemmawill be useful when establishing the sequentialisation prop-erty.6 SequentialisationOur sequentialisation proof follows the method of the splitting tensor [3, 4].Given a proof-net, we de�ne a splitting tensor to be a tensor-link such that:1. its conclusion is not a premise of any other link (in other words, its conclusionis one of the conclusions of the proof-net);2. the value assigned to its positive premise is equal to the product of the valuesassigned to some of the negative conclusions of the proof-netThe next lemma justi�es the above de�nition.Lemma 6.1 Let P be a proof-net that contains a splitting tensor. Then,removing this tensor-link splits P into two disconnected proof-nets.Proof (sketch). It is immediate that the splitting tensor splits the graph under-lying P into two disconnected subgraphs G1 and G2. Therefore, if the splittingtensor does not split the proof-net, there must exist a par-link one premise ofwhich belongs to G1 and the other premise of which belongs to G2. But then,by Lemma 5.4, there would exist a path going from one of the premises of thispar to the other one. Because G1 and G2 are connected only by the switch cor-responding to the splitting tensor, this path would go through this switch. Butthis, by Lemma 5.1, con�icts with Condition 2 in the de�nition of a splittingtensor.The key lemma of the sequentialisation proof is the following.Lemma 6.2 Let P be a proof-net whose no conclusion is the conclusion of apar-link. If P contains at least one tensor-link then it contains a splitting tensor.Proof (sketch). Since P does not contain any conclusive par, its output con-clusion must be the output conclusion of an axiom link. Consider the inputconclusion (say A) of this axiom link. This input conclusion A must be thepremise of some link (say l) otherwise P would only consists of one axiom link,which would contradict the fact that it contains at least one tensor-link. Becauseof Lemma 5.4, l cannot be a par-link, therefore, it is a tensor-link. Consider theconclusion of this tensor-link (which is an input conclusion) and iterate the samekind of argument. One eventually �nds a conclusive tensor-link. It is easy toshow that this tensor-link must be a splitting tensor.



Proposition 6.3 Any proof-net is sequentialisable.7 Adding multiplicative conjunctionIntuitionistic multiplicative linear logic is obtained from implicative linear logicby adding the following formation rule:F ::= F 
 F ;together with the two inference rules that follows:A;B;� � C (
 left)A
 B;� � C � � A � � B (
 right)�;� � A
 BOur correctness criterion may be easily adapted to intuitionistic multi-plicative linear logic by enriching the free commutative monoid M with twooperations, 12 (�) and (�) 12 , that obey the following law:12 (n) � (n) 12 = nThen, the notion of polarised formula of Section 3 is extended by the followingrules: N ::= N &NP ::= P 
 P;which allows one to add the following clauses to the positive and negative trans-lations of Section 3: (A
 B)� = A� &B�(A
 B)+ = A+ 
 B+:This gives rise to two additional kinds of links, which are respectively calledhomogeneous par-link and homogeneous tensor-link . These links together withthe corresponding algebraic constraints and switches are given by Figure 6.Links Constraints Switches(A
B)�&B�A� A� (n) 1212 (n) (A
B)�B�&n &(A
B)�A� B�
(A
B)+
 B+A+ A+n �mn (A
B)+B+
 m 
(A
B)+A+ B+Figure 6: Links, constraints, and switches for the conjunction



The idea behind the adaptation of our criterion to the case of the multi-plicative conjunction is straightforward. It is to be noted, however, that to adaptour sequentialisation proof to this new setting requires some work.8 The non-commutative case: the Lambek calculusBy rejecting the exchange rule, which is is the only structural rule of intuitionisticmultiplicative logic, one obtains a non-commutative logic known as the Lambekcalculus [8].The formulas of the Lambek calculus are built according to the followinggrammar: F ::= A j F � F j F n F j F=Fwhere formulas of the form A � B correspond to conjunctions (or products),formulas of the form A nB correspond to direct implications (i.e., A implies B),and formulas of the form A=B to retro-implications (i.e., A is implied by B).The deduction relation of the calculus is de�ned by means of the followingsystem:Identity rulesA � A (ident) � � A �1; A;�2 � B (cut)�1;�;�2 � BLogical rules�; A;B;� � C (� left)�; A �B;� � C � � A � � B (� right)�;� � A �B� � A �1; B;�2 � C (n left)�1;�; A nB;�2 � C A;� � B (n right)� � A nB� � A �1; B;�2 � C (= left)�1; B=A;�;�2 � C �; A � B (= right)� � B=AIn order to adapt our criterion to the Lambek calculus, it su�ces to workin a freely generated monoid �� (enriched with the left and right square roots,when the product is present) that is not commutative. Then, because the calculusis not commutative, one must carefully distinguish between the direct and theretro implication, between the left and the right premises of the correspondinglinks, and between left and right cancellation in the monoid.The translation of the Lambek formulas into polarised formulas is the fol-lowing: (a)� = a�(A nB)� = A+ 
B�(A=B)� = A� 
 B+(A �B)� = A� &B� (a)+ = a+(A nB)+ = B+ &A�(A=B)+ = B� &A+(A �B)+ = B+ 
A+This gives rise to the links, the constraints, and the switches of Figure 7 and 8.



(B nA)+&B�A+ (B=A)+&B+A� (B �A)+
 B+A+
(A nB)�
 B�A+ (A=B)�
 B+A� (A �B)�&B�A�Figure 7: Links for the Lambek calculusA+�� � � (B nA)+B�& � A� � � ��(B=A)+B+&� (B �A)+� � ��A+ 
 B+�

(A nB)� � � ��A+ 
 B�� (A=B)�� � � �A� 
 B+� (A �B)� (�) 1212 (�)A� &B��Figure 8: Constraints and switches for the Lambek calculus9 Concluding remarksAs we said in the introduction, our criterion is intrinsically intuitionistic, whichis also the case of Lamarche's [5]. Similarly, we could say that the non commuta-tive version of our criterion is intrinsic to the Lambek calculus, which solves anopen question raised by Retoré [7]. Indeed, in the literature, proof-nets for theLambek calculus are de�ned in terms of conditions that ensure commutative cor-rectness, together with an additional condition that ensures non-commutativity.The latter is, most often, a planarity condition [7, 9]. In contrast, when usingour criterion, commutative correctness and non-commutativity are not checkedindependently.In [9, Chap. III, �6, pp. 38�40], Roorda de�nes a way of decorating proof-nets that is almost identical to ours. He then observes that the existence of such



a decoration is necessary, and raises the question whether it is su�cient (in fact,he conjectures it is not). Consequently, our paper solves Roorda's open question(in the unexpected sense).Another di�erence between Roorda's work and ours lies in the dynamicinterpretation of our criterion. Indeed, Roorda's decorating algorithm involvesassociative (commutative) uni�cation. In this paper, we have avoided this un-necessary complexity by introducing the notion of underlying dynamic graph andthe two square root operators.References[1] V. Danos. Une application de la logique linéaire à l'étude des processus denormalisation et principalement du lambda calcul. Thèse de doctorat, Uni-versité de Paris VII, 1990.[2] V. Danos and L. Regnier. The structure of multiplicatives. Archive forMathematical Logic, 28:181�203, 1989.[3] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1�102, 1987.[4] J.-Y. Girard. Quanti�ers in linear logic II. Technical Report 19, Equipe deLogique Mathématique, Université de Paris VII, 1991.[5] F. Lamarche. Proof nets for intuitionistic linear logic 1: Essential nets. Tech-nical report, Imperial College, April 1994.[6] F. Lamarche. Games semantics for full propositional linear logic. In NinthAnnual IEEE Symposium on Logic in Computer Science. IEEE Press, 1995.[7] F. Lamarche and C. Retoré. Proof nets for the lambek calculus. InM. Abrusci, C. Casadio, and G. Sandri, editors, Third Roma Workshop:Proofs and Linguistic Categories, Rapporto di Ricerca del Dipartimento deFiloso�a. Università di Bologna, 1996.[8] J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly,65:154�170, 1958.[9] D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis,University of Amsterdam, 1991.


