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Abstract

We introduce a new class of automata, which we
call vector addition tree automata. These automata
are a natural generalization of vector addition systems
with states, which are themselves equivalent to Petri
nets. Then, we prove that the decidability of provabil-
ity in multiplicative exponential linear logic (which is
an open problem) is equivalent to the decidability of the
reachability relation for vector addition tree automata.
This result generalizes the well-known connection ex-
isting between Petri nets and the !-Horn fragment of
multiplicative exponential linear logic.

1 Introduction

Petri nets (PN), and equivalent systems such as vec-
tor addition systems (VAS) [11] or vector addition sys-
tems with states (VASS) [7], have been extensively
studied as models of parallelism and resource sensi-
tive systems. Consequently, when Girard introduced
linear logic [5] (which is a resource sensitive logic that
allows for some kind of parallelism), several authors
started to investigate the connections between this new
logic and Petri nets, both on the syntactic and seman-
tic sides [6, 1, 13, 2, 4].

Along this line of research, M. Kanovich established
several equivalence results between different notions
of Petri nets and some Horn-like fragments of linear
logic [8, 9, 10]. In particular, he derived the decidabil-
ity of the !-Horn fragment of multiplicative exponential
linear logic (MELL) [9] from the decidability of the
reachability relation in Petri nets [12, 14].

Unfortunately, Kanovich’s decidability result can-
not be easily generalized to the decidability of MELL,
which is still open. Indeed, there is no clear corre-
spondence between MELL provability and Petri net
reachability. Therefore, a possible way of tackling the
MELL decidability problem is to first answer the fol-

lowing question: is there a natural generalization of
Petri nets whose reachability relation would be equiv-
alent to provability in MELL ?

In this paper, we propose an answer to this ques-
tion. We introduce a notion of vector addition tree
automaton (VATA) that generalizes both vector addi-
tion systems with states and tree automata (TA) [3].
In fact, our vector addition tree automata are a gen-
eralization of the usual tree automata in exactly the
same way that vector addition systems with states are
a generalization of finite state automata (FSA). From
an orthogonal viewpoint, they generalize vector addi-
tion systems with states in exactly the same way that
tree automata generalize finite state automata. The
picture is thus the following:

FSA VASS ≡ PN !-Horn

TA VATA MELL

The paper is organized as follows. The next section
reminds the reader of some prerequisites, and fixes the
notations. Section 3 introduces the notion of vector
addition tree automata. We give the definition, define
a notion of normal form, and establish an equivalence
result between a VATA and its normal form. Section 4
is devoted to MELL: we define IMELL, the intuition-
istic fragment of MELL and we recall the equivalence
of MELL and IMELL. Then, we reduce provability
in IMELL to provability in a very constrained frag-
ment of IMELL, which we call s−IMELL!

0 . Finally,
in section 5, we establish a correspondance between
provability in s−IMELL!

0 and reachability for VATA
under normal form.

2 Preliminaries

This section introduces the necessary mathematical
background and fixes the notations that we use in the



sequel. For the sake of completeness, we first remind
the reader of the usual notions of ranked alphabet,
term, context, and linear tree-homomorphism.

Definition 1. A ranked alphabet F = (Fn)n∈N is an
indexed family of disjoint finite sets, such that

⋃
n∈N Fn

is finite.

By abuse of language, we sometimes confuse F with⋃
n∈N Fn, and we speak about the elements of F when

we mean the elements of
⋃

n∈N Fn. These elements will
be called the symbols of the alphabet. When such a
symbol belongs to Fn, one says that its arity is n. In
particular, the symbols of arity 0 are called constants.

Definition 2. Given a ranked alphabet F = (Fn)n∈N
and a possibly infinite set X disjoint from F , the set
of terms T (F ,X ) built over F and X is inductively
defined as follows:

1. if x ∈ X , then x ∈ T (F ,X );

2. if c ∈ F0, then c ∈ T (F ,X );

3. if f ∈ Fn, and t0, . . . , tn−1 ∈ T (F ,X ), then
f(t0, . . . , tn−1) ∈ T (F ,X ), for n > 0.

The usual case for X is to be a set of variables. Nev-
ertheless, we will consider other cases. If X is empty,
the set T (F , ∅) is called the set of ground terms and
is written T (F).

Definition 3. Let F be a ranked alphabet and Xn =
{xi | i ∈ n} be a set of n variables, disjoint from F .
The set of n-contexts Cn(F) is the set of terms C ∈
T (F ,Xn) that contain exactly one occurrence of each
variable xi ∈ Xn.

Given C ∈ Cn(F), and t0, . . . , tn−1 ∈ T (F), one
writes C[t0, . . . , tn−1] for the ground term obtained by
replacing in C the occurrence of xi by ti, for each i ∈ n.

The notion of context allows the notion of linear
tree-homomorphism to be defined.

Definition 4. Let F and G be two ranked alphabets,
and let (θn)n∈N be a family of functions that associate
to each symbol f ∈ Fn a n-context Cf ∈ Cn(G). The
linear tree-homomorphism θ : T (F) → T (G), gener-
ated by the family (θn)n∈N, is inductively defined as
follows: θ(f(t0, . . . , tn−1) = Cf [θ(t0), . . . , θ(tn−1)] ∈
T (G), for each f ∈ Fn.

Remark that in Definition 3 we require that each
variable xi occurs exactly once. Consequently, our
notion of a linear tree-homomorphism corresponds to
what is usually called in the literature a non-erasing
linear tree-homomorphism.

The next notions we introduce are proper to the
kind of automata that we will define in the next sec-
tion. These automata use vectors of natural numbers,
i.e., elements of Nk, for some k ∈ N. We let bold-
face lowercase Roman letters, x,y, z, . . ., range over
such vectors. We use 0 to denote the null vector
(0, 0, . . . , 0), and ej (j ∈ k) to denote the standard base
vectors, i.e, e0 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0), . . . ,
ek−1 = (0, 0, . . . , 1). For a vector x = (x0, . . . , xn−1)
we write ‖x‖ =

∑
i∈n xi.

Definition 5. Let Q be a finite set, the elements of
which will be called states, and let k ∈ N. A k-
configuration over Q is a pair (q,x) ∈ Q × Nk.

We now define the notion of description, which is
the data structure on which our automata operate.

Definition 6. Let F be a ranked alphabet, let Q be
a finite set of states, and let k ∈ N. The set of k-
descriptions over F and Q, k-D(F , Q), is defined to be
the set of terms T (F , Q × Nk).

Adapting the notion of context to the case of de-
scription is straightforward.

Definition 7. Let F be a ranked alphabet, x be a sym-
bol that does not belong to F , Q be a finite set of states,
and let k ∈ N. The set of k-description contexts, k-
C (F , Q), is the set of terms C ∈ T (F , (Q×Nk)∪{x})
that contain exactly one occurrence of x.

Given a k-description t ∈ k-D(F , Q), one writes C[t]
for the k-description obtained by replacing the occur-
rence of x by t in C.

3 Vector Addition Tree Automata

3.1 Definition

We are now in the position of giving the main defini-
tion of this paper, i.e., the definition of vector addition
tree automata. Vector addition systems with states
may be seen as finite state automata where transitions
are labelled with integer vectors. Our notion of vector
addition tree automaton generalizes this to the case of
(bottom-up) finite tree-automata.

Definition 8. A vector addition tree automaton of
dimension k (k-VATA, for short) is a quadruple
〈F , Q, Cf , ∆〉 where:

1. F is a ranked alphabet;

2. Q is a finite set of states;



3. Cf is a finite set of k-configurations over Q, called
accepting configurations;

4. ∆ ⊂
⋃

n∈N(Fn × (Q × Nk)n × Q × Nk) is a finite
set of transition rules.

A k-VATA is strongly deterministic if there is at
most one transition in ∆ for each symbol in F .

Let 〈F , Q, Cf , ∆〉 be a k-VATA, and consider some
transition rule:

(f, (q0, z0), . . . , (qn−1, zn−1), q, z) ∈ ∆.

Such a transition rule will be written as:

f((q0,x0), . . . , (qn−1,xn−1)) −→
(
q,

∑

i∈n

(xi − zi) + z
)

where x0, . . . ,xn−1 are formal parameters ranging over
Nk. Under this form, ∆ appears to be a rewriting sys-
tem acting on k-descriptions. This motivates the defi-
nition of the move relation.

Definition 9. Let A = 〈F , Q, Cf , ∆〉 be a k-VATA.
The move relation −→A is defined as follows. Let t, u ∈
k-D(F , Q),

t −→A u

if and only if there exists a description context C ∈
k-C (F , Q) and a production rule

f((q0,x0), . . . , (qn−1,xn−1)) −→
(
q,

∑

i∈n

(xi − zi) + z
)

in ∆ such that

1. t = C[f((q0,y0), . . . , (qn−1,yn−1))];

2. u = C[(q,
∑

i∈n(yi − zi) + z)];

3. ∀i ∈ n. yi − zi ∈ Nk.

As usual, −→∗
A denotes the reflexive transitive clo-

sure of the move relation −→A.
In the above definition, Condition 3 is central. It

corresponds to the positivity condition of vector ad-
dition systems. Consider, for instance, the following
2-VATA:

F = { a, b, g(), f(, ) }
Q = { q0, q1, q2 }

Cf = { (q0, (0, 0)) }
∆ = { a −→ (q2, (1, 0)),

b −→ (q2, (0, 1)),
f((q2,x), (q2,y)) −→ (q1,x + y),
g((q1,x)) −→ (q0,x − (1, 1)) }

Then we have:

g(f(a, b)) −→∗
A (q0, (0, 0)), g(f(b, a)) −→∗

A (q0, (0, 0))

On the other hand, we have:

g(f(a, a)) −→∗
A g((q1, (2, 0)))

but then we are stuck because of Condition 3.
As one expects, a ground term is recognized by a

k-VATA if it can be rewritten into an accepting config-
uration.

Definition 10. Let A = 〈F , Q, Cf , ∆〉 be a k-VATA.
The tree language LA recognized by A is defined as fol-
lows:

LA = {t ∈ T (F) | t −→∗
A (q, z) for some (q, z) ∈ Cf}

With different motivations (modelisation of crypto-
graphic protocols), other authors have defined a for-
malism equivalent to VATA (they have called it BVASS
for Branching VASS) [17].

3.2 Normal form

In order to give a simple translation of a VATA in
linear logic, we define a normal form for VATAs. The
main point is that checking emptiness for a given VATA
is equivalent to checking emptiness for another VATA
in normal form.

Definition 11. A production rule is in normal form
if it has one of the following forms:

c −→ (q, ei) for some i ∈ k,
f((q0,x0)) −→ (q,x0 − ei) for some i ∈ k,
f((q0,x0), (q1,x1)) −→ (q,x0 + x1).

A k-VATA A = 〈F , Q, Cf , ∆〉 is in normal form iff

1. ∀n > 2. Fn = ∅;

2. Cf = { (qf ,0) } for some qf ∈ Q;

3. the production rules in ∆ are in normal form.

The construction of an automaton in normal form
proceeds in three steps (the three following lemmas).
First, we construct an automaton with only one final
state; then, we make it strongly deterministic; and,
then, we modify the set of productions to have only
normal forms.

Lemma 1. Let A = 〈F , Q, Cf , ∆〉 a k-VATA. There is
a k-VATA A′ = 〈F ′, Q′, {(qf ,0)}, ∆′〉 and a linear tree-
homomorphism θ : T (F) → T (F ′) such that LA′ =
θ(LA).



Proof. We define F ′ = F ∪ {g} where g ∈ F ′
1 is a new

symbol of arity 1; Q′ = (Q × {↑, ↓}) ∪ {qf} and, for
each q ∈ Q, we write q↑ and q↓ the two copies of q in
Q′. ∆′ is given by:

• for each production in δ ∈ ∆:

f((q0,x0), . . . , (qn−1,xn−1)) −→
(
q,

∑

i∈n

(xi − zi)+ z
)

the following production δ′ is in ∆′:

f((q↑0 ,x0), . . . , (q↑n−1,xn−1)) −→
(
q↓,

∑

i∈n

(xi−zi)+z
)

• for each state q ∈ Q, the production δ′ is in ∆′:

δ′ = g((q↓,x)) −→ (q↑,x)

• for (q, z) ∈ Cf , the production δ(q,z) is in ∆′:

δ(q,z) = g((q↓,x)) −→ (qf ,x− z)

The linear tree-homomorphism θ is defined by:
θ(f) = g(f(x0, . . . , xn−1)) for each f ∈ Fn.

We can now prove by induction the two facts:

1. if t −→∗
A (q, z) then there is some u ∈ T (F ′) such

that θ(t) = g(u) and u −→∗
A′ (q↓, z).

2. if u −→∗
A′ (q↓, z) then there is some t ∈ T (F)

such that g(u) = θ(t) and t −→∗
A (q, z).

Finally, we prove that LA′ = θ(LA). Let t ∈ LA,
that is t −→∗

A (q, z) with (q, z) an accepting state.
By fact 1, there is some u such that θ(t) = g(u) and
u −→∗

A′ (q↓, z). As (q, z) is an accepting state, θ(t) =
g(u) −→∗

A′ (qf ,0), hence θ(t) ∈ LA′ . Conversely, let
u ∈ LA′ , i.e. u −→∗

A′ (qf ,0) then necessarily, u = g(u′)
with u′ −→∗

A′ (q↓, z) and (q, z) is an accepting state of
A. By fact 2, there is some t such that g(u) = θ(t) and
t −→∗

A (q, z), hence t ∈ LA.

Lemma 2. Let A = 〈F , Q, {(qf ,0)}, ∆〉 a k-VATA.
There is a strongly deterministic k-VATA A′ =
〈F ′, Q, {(qf ,0)}, ∆′〉 and a linear tree-homomorphism
θ : T (F ′) → T (F) such that LA = θ(LA′).

The idea of the proof is to split each symbol f ∈
F into some symbols f1, f2, . . . such that two differ-
ent production rules always refer to different symbols.
Then, the tree-homomorphism just maps each fi to f .

It is important to work with strongly determinis-
tic automata rather than with deterministic ones. In-
deed, the transformation =⇒1, in the lemma 3, pre-
serves strong determinism while it may not preserve
determinism.

Proof. We write ∆f the set of productions of ∆ associ-
ated with the symbol f . For each f ∈ F , let j(f) be the
cardinal of ∆f and {δf1 , . . . , δfj(f)} a fixed enumeration
of ∆f . We define F ′:

F ′ =
⋃

f∈F
{f1, . . . , fj(f)}

For each production δfi of the form

f((q0,x0), . . . , (qn−1,xn−1)) −→
(
q,

∑

i∈n

(xi − zi) + z
)

we define δ′fi
:

fi((q0,x0), . . . , (qn−1,xn−1)) −→
(
q,

∑

i∈n

(xi − zi)+ z
)

and then
∆′ =

⋃

f∈F
{δ′f1

, . . . , δ′fj(f)
}

Finally, the linear tree-homomorphism θ is defined by
θ(fi) = f(x0, . . . , xn−1) for each f ∈ Fn.

With the previous definitions, the fact that LA =
θ(LA′ ) is straightforward.

Lemma 3. Let A = 〈F , Q, {(qf ,0)}, ∆〉 be a strongly
deterministic k-VATA. There is a k-VATA in normal
form A′ = 〈F ′, Q′, {(qf ,0)}, ∆′〉 and a linear tree-
homomorphism θ : T (F) → T (F ′) such that LA′ =
θ(LA).

Proof. We give a set of elementary automata transfor-
mations (see fig. 1) that are used to construct step by
step a normal form. For each transformation, written
=⇒i, we only give as the left hand side the produc-
tion δf that is replaced and the set of new productions
added as the right hand side of =⇒i; for the linear
tree-homomorphism θ, we give only its value on f , and
suppose that θ is the identity function elsewhere.

The construction of the automaton in normal form
proceeds as follows:

• Reaching ∀n > 2. Fn = ∅. We define η(A) =∑
n>2 n|Fn|. By induction, if η(A) = 0, there is

nothing to do; else, with =⇒1, we construct an
automaton with a smaller η.

• Obtaining an automaton with productions of arity
2 in normal form. We replace each production
of arity 2 which is not in normal form with the
transformation =⇒2.

• Obtaining an automaton with productions of arity
1 in normal form. Each production of arity 1 can
be written

f(q0,x0) −→ (q, (x0 − z0) + z)



f((q0,x0), . . . , (qn−1,xn−1)) −→ (q,
∑

i∈n(xi − zi) + z) =⇒1{
f1((q0,x0), (q1,x1)) −→ (q′, (x0 − z0) + (x1 − z1))

f2((q′,x′), (q2,x2), . . . , (qn−1,xn−1)) −→ (q,x′ +
∑

1<i<n(xi − zi) + z)
θ(f(x0, . . . , xn−1)) = f2(f1(x0, x1), x2, . . . , xn−1)

f((q0,x0), (q1,x1)) −→ (q, (x0 − z0) + (x1 − z1) + z) =⇒2






f0(q0,x0) −→ (q′0,x0 − z0)
f1(q1,x1) −→ (q′1,x1 − z1)

f2((q′0,x0), (q′1,x1)) −→ (q′,x0 + x1)
f3(q′,x) −→ (q,x + z)

θ(f(x0, x1)) = f3(f2(f0(x0), f1(x1)))

f(q0,x0) −→ (q, (x0 − z0) + z) =⇒3






f0(q0,x0) −→ (q′,x0 − z0)
f1 −→ (q′′, z)

f2((q′,x0), (q′′,x1)) −→ (q,x0 + x1)
θ(f(x)) = f2(f0(x), f1)

f(q0,x0) −→ (q,x0) =⇒4

{
f0 −→ (q′,0)

f1((q0,x0), (q′,x1)) −→ (q,x0 + x1)
θ(f(x)) = f1(x, f0)

f(q0,x0) −→ (q,x0 − (z0 + ei))) =⇒5

{
f0(q0,x0) −→ (q′,x0 − ei)
f1(q′,x0) −→ (q,x0 − z0)

θ(f(x)) = f1(f0(x))

f −→ (q,0) =⇒6

{
f0 −→ (q′, e0)

f1(q′,x0) −→ (q,x0 − e0)
θ(f) = f1(f0)

f −→ (q, z + ei) =⇒7






f0 −→ (q′, z)
f1 −→ (q′′, ei)

f2((q′,x0), (q′′,x1)) −→ (q,x0 + x1)
θ(f) = f2(f0, f1)

Figure 1. Elementary automata transformations

We proceed with the 3 following steps.

– For each production such that z /= 0, we ap-
ply transformation =⇒3.

– Suppose z = 0, for each production such that
z0 = 0, we apply =⇒4.

– Now, each production is such that z = 0 and
z0 /= 0. If z0 = ei then the production is
in normal form. Else, we apply inductively
=⇒5 which decreases ‖z0‖.

• Finally, for each production f −→ (q, z):

– if z = 0, we apply =⇒6,
– if z /= 0, we apply inductively =⇒7 which

decreases ‖z‖.

Proposition 1. For any k-VATA A there exists a k-
VATA A′ in normal form such that LA = ∅ iff LA′ = ∅.

Proof. This is an easy consequence of the three previ-
ous lemmas and the fact that for any set of trees L and
any linear tree-homomorphism θ, θ(L) = ∅ if and only
if L = ∅.

4 Multiplicative exponential linear
logic

4.1 Definitions

In this section, we introduce four fragments of mul-
tiplicative exponential linear logic. We start with the
intuitionistic fragment, which we call IMELL.

The formulas of IMELL are built upon a set of
atomic formulas A according to the following syntax:

F ::= 1 | A | F ⊗ F | F ! F | !F

The formulas of the form A ⊗ B and A ! B are
called multiplicative formulas, and the formulas of the
form !A are called exponential formulas.

Let Roman uppercase letters range over formulas,
and Greek uppercase letters over multisets of formu-
las. The deduction relation of IMELL is specified by
means of the following intuitionistic sequent calculus.
Identity rules

A − A (ident)
Γ − A ∆, A − B

(cut)
Γ, ∆ − B



Logical rules

Γ − A
(1-left)

Γ,1 − A
− 1 (1-right)

Γ, A, B − C
(⊗-left)

Γ, A ⊗ B − C

Γ − A ∆ − B
(⊗-right)

Γ, ∆ − A ⊗ B

Γ − A ∆, B − C
(! -left)

Γ, ∆, A ! B − C

Γ, A − B
(! -right)

Γ − A ! B

Γ, A − B
(!-left)

Γ, !A − B

!Γ − A
(!-right)

!Γ − !A
where, in Rule (!-right), !Γ stands for a multiset of
exponential formulas, i.e., formulas of the form !F .

Structural rules
Γ − B

(W)
Γ, !A − B

Γ, !A, !A − B
(C)

Γ, !A − B

Rules (!-left), (!-right), (W), and (C) are also called
dereliction, promotion, weakening, and contraction, re-
spectively. The cut rule is dispensable, and the cut-free
proofs satisfy the subformula property.

At this point, we can say few words about classi-
cal MELL. The formulas of this system are built
from positive atomic propositions a, b, c, . . ., and cor-
responding negative atomic propositions a⊥, b⊥, c⊥, . . .
The constants and connectives include “1”, “⊗”, and
“!”, together with their duals “⊥”, “

&

”, and “?”. Im-
plication is defined as in classical logic, i.e., A !
B = A⊥ &

B, where the negation, (·)⊥ is defined
by means of de Morgan’s laws: 1⊥ = ⊥, ⊥⊥ = 1,
(A ⊗ B)⊥ = A⊥ &

B⊥, etc. It is well known that the
decidability problems of classical MELL and IMELL
are equivalent (this may be established, for instance,
by using a negative translation à la Kolmogorov [16]).
Moreover, we have that the classical system is conser-
vative over the intuitionistic one, in other words, any
intuitionistic sequent that is classically provable is also
intuitionistically provable. We will use this fact in the
proof of Lemma 10.

The next fragments of interest are obtained by con-
straining the syntax of the formulas. We first define
IMELL0 to be the fragment where exponential for-
mulas are not allowed as strict subformulas. More for-
mally, the formulas of IMELL0 obey the following syn-
tax:

F0 ::= M | !M
M ::= 1 | A | M⊗M | M ! M

Moreover, exponential formulas are not allowed in the
right-hand sides of the sequents (in fact, the only pos-
sibility of having an exponential formula in the right-
hand side of a sequent would be in the conclusion of a
derivation whose last rule is a promotion).

Then, we define IMELL!
0 to be the implicative

fragment of IMELL0, i.e., the fragment whose formu-
las obey the following syntax:

F!
0 ::= M | !M
M ::= A | M ! M

Finally, we define s−IMELL!
0 to be the fragment of

IMELL!
0 whose formulas are either atomic formulas

or exponential formulas of one of the following forms:

!(a ! b) !(a ! (b ! c)) !((a ! b) ! c)

where a, b, and c are atomic formulas.
The deduction relation of the three new fragments

is the one of IMELL. Nevertheless, it is not difficult
to prove that the following sequent calculus is correct
and complete for s−IMELL!

0 .
Let !Σ range over multisets of exponential formulas

of the specified form, and Γ and ∆ range over multisets
of atomic formulas:

!Σ, a − a (T0)

!Σ, Γ − a
(T1) if !(a ! b) ∈ !Σ

!Σ, Γ − b

!Σ, Γ, a − b
(T2) if !((a ! b) ! c) ∈ !Σ

!Σ, Γ − c

!Σ, Γ − a !Σ, ∆ − b
(T3) if !(a ! (b ! c)) ∈ !Σ

!Σ, Γ, ∆ − c

4.2 From IMELL to IMELL0

In this section, we prove that IMELL is decidable
if and only if IMELL0 is. The construction we give is
inspired by a similar unpublished construction due to
M. Kanovich.

Consider a given sequent of IMELL, Γ − A. We
intend to construct a set of formulas Γ and a sequent
Γ∗ − A∗ such that:

1. Γ∗ − A∗ is a purely multiplicative sequent;

2. Σ is a sequence of formulas of the form !S, where
S is a purely multiplicative formula;



3. Σ, Γ∗ − A∗ is provable if and only if Γ − A is.

Let M be the set of formulas F such that !F is
a subformula of the sequent Γ − A. Then, to each
formula in F ∈ M , we associate a fresh atomic propo-
sition pF , and we define the following transformation
over the subformulas of Γ − A:

1. 1∗ = 1;

2. a∗ = a, for a atomic;

3. (F ⊗ G)∗ = F ∗ ⊗ G∗;

4. (F ! G)∗ = F ∗ ! G∗;

5. (!F )∗ = pF .

In order to construct the sequence of formulas Σ, we
associate to each formula F ∈ M three modal formu-
las:

DF = !(pF ! F ∗),
CF = !(pF ! pF ⊗ pF ),
WF = !(pF ! 1),

and we define Σ0 to be the following sequence of for-
mulas:

Σ0 = (DF , CF , WF )F∈M .

The idea behind this definition is that dereliction, con-
traction and weakening will be simulated by the formu-
las DF , CF , and WF , respectively. It therefore remains
to allow promotion to be simulated. To this end, we
will saturate the sequence of formulas Σ0.

Let P = P0, P1, . . . be an enumeration of all the
formulas of the form

!(pF1 ! · · · ! pFn ! pF )

such that

1. F1, . . . , Fn, F ∈ M ,

2. Fi /= Fj , whenever i /= j.

Notice that this enumeration is finite because of Con-
dition 2. Then, define

Σi+1 = Σi, Pk

where Pk = !(pF1 ! · · · ! pFn ! pF ) is the first
formula in P such that:

1. Pk /∈ Σi,

2. Σi, pF1 , . . . , pFn − F ∗ is provable.

Finally, define Σ to be the limit of the finite sequence
Σ0, Σ1, . . ..

Since M and P are finite, the only possibility of
non-effectiveness in constructing Σ is that one has to
decide the provability of sequents (Condition 2 in the
definition of Pk). Notice that these sequents belong to
IMELL0. Consequently, we have the following lemma.

Lemma 4. Let Γ − A be a sequent of IMELL. If
IMELL0 is decidable then the construction of the as-
sociated IMELL0 sequent, Σ, Γ∗ − A∗, is effective.

We now prove that Σ, Γ∗ − A∗ is provable if the
original sequent Γ − A is.

Lemma 5. Let Γ − A be a sequent of IMELL, and
let Σ, Γ∗ − A∗ be the associated IMELL0 sequent. If
Γ − A is provable, so is Σ, Γ∗ − A∗.

Proof. By induction on the cut-free derivation of Γ −
A, the exponential formulas in Σ allowing dereliction,
contraction, weakening, and promotion to be simu-
lated. Notice that, by the subformula property, ∆∗

and B∗ are defined whenever ∆ − B is a sequent oc-
curring in the cut-free derivation of Γ − A.

In order to prove the converse of Lemma 5, we will
use a semantic argument based on phase semantics. We
will not give here a complete definition of the notion of
phase space but refer the reader to [5] for the original
definition, and to [15] for a definition tailor-made for
intuitionistic linear logic.

Lemma 6. Let Γ − A be a sequent of IMELL, and
let Σ, Γ∗ − A∗ be the associated IMELL0 sequent. Let
P be any phase space, and let η be any valuation that
interprets the atomic propositions as facts of P. Then
there exists a valuation η′ such that:

[[Γ − A]]η = [[Σ, Γ∗ − A∗]]η′

Proof. Let η′ be the valuation such that:

η′(a) =
{

[[!F ]]η if a = pF for some F ∈ M
η(a) otherwise

By a straightforward induction, we have that [[Γ]]η =
[[Γ∗]]η′ and [[A]]η = [[A∗]]η′. Moreover, under this valu-
ation, we have that [[Σ]]η′ = [[1]], which established the
desired property.

We are now in the position of establishing the con-
verse of Lemma 5.

Lemma 7. Let Γ − A be a sequent of IMELL, and
let Σ, Γ∗ − A∗ be the associated IMELL0 sequent. If
Σ, Γ∗ − A∗ is provable, so is Γ − A.



Proof. Since Σ, Γ∗ − A∗ is provable, it is semanti-
cally valid in any phase space, under any interpreta-
tion. This implies, by Lemma 6, that Γ − A is also
semantically valid in any phase space, under any in-
terpretation. Consequently, by the phase semantics
completeness theorem, we have that Γ − A is prov-
able.

We obtain the main proposition of this section as an
immediate consequence of Lemmas 4, 5, and 7.

Proposition 2. IMELL is decidable if and only if
IMELL0 is decidable.

4.3 From IMELL0 to IMELL!
0

In order to reduce provability in IMELL0 to prov-
ability in IMELL!

0 , we introduce the following posi-
tive and negative translations of the multiplicative for-
mulas:

1. A+ = A− ! b, for any formula A;

2. 1− = b;

3. a− = a ! b;

4. (A ⊗ B)− = A+ ! (B+ ! b)

5. (A ! B)− = (A+ ! B+) ! b

where b is a fresh variable. The positive translation is
then extended to the formulas of IMELL0 by defining
(!A)+ to be !(A+).

The above translation may be interpreted in classi-
cal multiplicative exponential linear logic as a transla-
tion by double negation. More formally, we have the
following lemma.

Lemma 8. Let A be an IMELL0 formula, and let
A+[b := ⊥] denote the formula obtained by replacing,
in the positive translation of A, each occurrence of the
fresh variable b by the constant ⊥. Then, A+[b := ⊥]
is classically equivalent to A.

Proof. By a straightforward induction on the structure
of A, using de Morgan’s laws and the following classical
equivalences: A ⊗ 1 = A = A

&

⊥.

We now prove that any IMELL0 sequent is provable
if and only if its positive translation is provable.

Lemma 9. Let Γ − A be an IMELL0 sequent. If
Γ − A is provable, so is Γ+ − A+.

Proof. By induction on the derivation of Γ − A.

Lemma 10. Let Γ − A be an IMELL0 sequent. If
Γ+ − A+ is provable, so is Γ − A.

Proof. If Γ+ − A+ is intuitionistically provable, it is,
a fortiori, classically provable. Then, since b is a fresh
variable, we also have that Γ+[b := ⊥] − A+[b := ⊥] is
classically provable. From this, by Lemma 8, we have
that Γ − A is classically provable, which allows us to
conclude the proof because classical multiplicative ex-
ponential linear logic is conservative over intuitionistic
multiplicative exponential linear logic.

We obtain the next proposition as an immediate
consequence of Lemmas 9 and 10.

Proposition 3. IMELL0 is decidable if and only if
IMELL!

0 is decidable.

4.4 From IMELL!
0 to s−IMELL!

0

Finally, we show that IMELL!
0 provability is

equivalent to s−IMELL!
0 provability. The reduction

is based on the following lemma.

Lemma 11. Let Γ − A and Γ′ − A′ be IMELL
sequents, p be an atomic proposition, and F be a for-
mula such that Γ = Γ′[p := F ] and A = A′[p :=
F ]. Then, Γ − A is provable if and only if
!(p ! F ), !(F ! p), Γ′ − A′.

Proof. If Γ − A is provable, the provability of
!(p ! F ), !(F ! p), Γ′ − A′ may be established by
induction on the derivation of Γ − A, the two ex-
ponential formulas allowing the negative and positive
occurrences of F to be replaced by p.

On the other hand, if !(p ! F ), !(F ! p), Γ′ − A′

is provable, we have that !(F ! F ), !(F ! F ), Γ′[p :=
F ] − A′[p := F ] is provable. This is, by hypothesis,
!(F ! F ), !(F ! F ), Γ − A. Then, the result follows
by a contraction followed by a cut.

Then the reduction proceeds as follows.

Lemma 12. Let !Σ, Γ − A be an IMELL!
0 sequent.

Then there exists an IMELL!
0 sequent !Σ′, Γ′ −

a such that Γ′ contains only atomic formulas, and
!Σ, Γ − A is provable if and only if !Σ′, Γ′ − a is
provable.

Proof. The proof proceeds by induction on the num-
ber of non-atomic formulas in Γ, A. Suppose there is
such a non-atomic formulas B in Γ, A, and let Γ1, A1

be such that (Γ1, A1)[p := B] = (Γ, A), where p is
a fresh variable that occurs in (Γ1, A1). Then, by
Lemma 11, !Σ, !(p ! B), !(B ! p), Γ1 − A1 is prov-
able if and only if !Σ, Γ − A is, and the result follows
by induction hypothesis.



Lemma 13. Let !Σ, Γ − a be an IMELL!
0 sequent

such that Γ contains only atomic formulas. Then there
exists a sequent !Σ′, Γ − a such that all the formu-
las belonging to Σ′ contain at most two occurrences of
“!”.

Proof. The proof proceeds by induction on the sum
of the lengths of the formulas that contain more than
two occurrences of “!”. Let !Σ = !Σ1, !A1, where
A1 contains more than two occurrences of “!”. Then
there exist two atomic formulas a and b in A1, and a
formula A′

1 such that A1 = A′
1[p := (a ! b)], where p is

a fresh variable occurring in A′
1. Then, by Lemma 11,

we have that !Σ1, !A′
1, !(p ! (a ! b)), !((a ! b) !

p), Γ − a is provable if and only if !Σ, Γ − a is, and
the result follows by induction hypothesis.

Proposition 4. IMELL!
0 is decidable if and only if

s−IMELL!
0 is.

Proof. Let !Σ, Γ − A be an IMELL!
0 sequent. By

Lemmas 12 and 13, there exist a sequent !Σ′, Γ′ − a
such that all the formulas in Γ′ are atomic, all the for-
mulas in !Σ′ contain at most two occurrences of “!”,
and !Σ′, Γ′ − a is provable if and only if !Σ, Γ − A is.
Then, the only reason why !Σ′, Γ′ − a would not be a
s−IMELL!

0 sequent is that !Σ′ would contain formu-
las of the form !b (for b atomic). These formulas may
be replaced by !((b ! b) ! b).

5 Relating VATA and MELL

Let {a0, . . . ak−1} be a fixed enumeration of atomic
formulas. For a multiset Γ whose elements are in the
enumeration, we write |Γ| the corresponding vector of
Nk. Conversely, for x ∈ Nk, we write Γx the corre-
sponding multiset.

5.1 From VATA toMELL

Let A = 〈F , Q, {(qf ,0)}, ∆〉 be a k-VATA in normal
form. We define the set of atomic formulas A of to be
Q∪{a0, . . . ak−1}, where a0, . . . ak−1 are fresh symbols.
Then we define the set of formulas Σ to be Σ0∪Σ1∪Σ2

where:

Σ0 = {ai ! q | f −→ (q, ei) ∈ ∆}
Σ1 = {(ai ! q0) ! q |

f((q0,x0)) −→ (q,x0 − ei) ∈ ∆}
Σ2 = {q0 ! (q1 ! q) |

f((q0,x0), (q1,x1)) −→ (q,x0 + x1) ∈ ∆}

Proposition 5. L(A) /= ∅ iff !Σ − qf

Proof. First, by induction on the structure of t, we
prove that if t −→∗

A (q,x) then !Σ, Γx − q. If the
head symbol of t is unary (resp. binary), the result
is easily obtained with rule (T2) (resp. rule (T3)) and
with the induction hypothesis; the remaining case is:
f −→A (q, ei), then with rule (T0), we have !Σ, ai − ai

and then with rule (T1), we get !Σ, ai − q because
ai ! q ∈ Σ.

Secondly, we can observe that each provable sequent
!Σ, Γ − α is either of the form !Σ, ai − ai or is such
that all elements of Γ are in {a0, . . . ak−1} and α ∈ Q
(easy induction on the derivation). We can prove by
induction on the derivation that if !Σ, Γ − q, then
there is some t such that t −→∗

A (q, |Γ|). Actually, the
previous remark ensures that |Γ| is always well defined.

5.2 FromMELL to VATA

Let !Σ, Γ − a0 be a sequent of s−IMELL!
0 and

{a0, . . . , ak−1} a fixed enumeration of the atomic for-
mulas of the sequent.

We can write Σ = Σ0 ∪ Σ1 ∪ Σ2 where Σ0 (resp.
Σ1, resp. Σ2) contains only formulas of the form
aj ! al (resp. (aj ! al) ! am, resp. aj !
(al ! am)) and we fix an enumeration of these for-
mulas : {f0, . . . , fn0−1} (resp. {g0, . . . , gn1−1}, resp.
{h0, . . . , hn2−1})

We define a k-VATA A = 〈F , Q, Cf , ∆〉 as follows:

• F = (Fn)n∈N with

F0 = {c0, . . . , ck−1}
F1 = {f0, . . . , fn0−1} ∪ {g0, . . . , gn1−1}
F2 = {h0, . . . , hn2−1}
Fn = ∅ if n > 2;

• Q = {q0, . . . , qk−1};

• there is only one final state: Cf = {(q0, |Γ|)}

• there is exactly one production for each symbol of
the alphabet:

– ci −→ (qi, ei);

– if fi = aj ! am then fi((qj ,x)) −→ (qm,x);

– if gi = (aj ! al) ! am then

gi((ql,x)) −→ (qm,x − ej) ;

– if hi = aj ! (al ! am) then

hi((qj ,x0), (ql,x1)) −→ (qm,x0 + x1).



Proposition 6. The sequent !Σ, Γ − a0 is provable in
s−IMELL!

0 if and only if L(A) /= ∅.

Proof. By induction on the derivation, we prove that:
if the sequent !Σ, Γ − ai is provable in IMELL!

0 then
there is a term t such that t −→∗

A (qi, |Γ|).

(T0) !Σ, ai − ai
then ci −→A (qi, ei).

(T1)
!Σ, Γ − aj

!Σ, Γ − ai

with fn = aj ! ai ∈ Σ for some

n ∈ n0. By induction, there is a t such that t −→∗
A

(qj , |Γ|). Then fn(t) −→∗
A (qi, |Γ|).

(T2)
!Σ, Γ, aj − al

!Σ, Γ − ai

with gn = (aj ! al) ! ai ∈ Σ for

some n ∈ n1. By induction, there is a t such that
t −→∗

A (ql, |Γ| + ej). Then gn(t) −→∗
A (qi, |Γ|).

(T3)
!Σ, Γ, − aj !Σ, Γ, − al

!Σ, Γ1, Γ2 − ai

with hn = aj ! (al !
ai) ∈ Σ for some n ∈ n2. By induction, there are
t and u such that t −→∗

A (qj , |Γ1|) and u −→∗
A

(ql, |Γ2|). Then hn(t, u) −→∗
A (qi, |Γ1, Γ2|) (be-

cause |Γ1, Γ2| = |Γ1| + |Γ2|)

Conversely, by induction on the structure of the
term t: if there is term t such that t −→∗

A (qi,x) then
the sequent !Σ, Γx − ai is provable in IMELL!

0 .

• If t = cn −→A (qi, ei) then n = i and, with rule
(T0), the sequent !Σ, Γei − ai is provable.

• If t = fn(u) −→∗
A (qi,x) with fn = aj ! ai ∈ Σ

and u −→∗
A (qj ,x) then, by induction hypothesis,

!Σ, Γx − aj is provable and with rule (T1), the
sequent !Σ, Γx − ai is provable.

• If t = gn(u) −→∗
A (qi,x) with gn = (aj ! al) !

ai ∈ Σ and u −→∗
A (ql,x+ ej), then, by induction

hypothesis, !Σ, Γx, aj − al is provable and then
with rule (T2), the sequent !Σ, Γx − ai is provable.

• If t = hn(u, v) −→∗
A (qi,x) with hn = aj !

al ! ai ∈ Σ, u −→∗
A (qj ,x0) and v −→∗

A (ql,x1)
with x = x0 + x1, then, by induction hypothesis,
!Σ, Γx0 − aj and !Σ, Γx1 − al and then with rule
(T3), the sequent !Σ, Γx − ai is provable.
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