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1 Introduction

The abstract categorial grammars (ACGs, for short) are a type-theoretic gram-
matical formalism intended for the description of natural languages [1]. It is
based on the implicative fragment of multiplicative linear logic, which results in
a rather simple framework.

From a language-theoretic standpoint, however, this simplicity is not syn-
onymous of a weak expressive power [2,4]. In particular, the string languages
generated by the second-order ACGs, whose parsing is known to be polynomial,
corresponds to the class of mildly context sensitive languages [7,11]. Neverthe-
less, in [5], we have argued that it would be interesting to increase the intentional
expressive power of the formalism by providing high level constructs.

From a formal point of view, to provide ACGs with new constructs consists
in extending the type system of the formalism. In the present paper, we study
two such type-theoretic extensions of the ACGs. They consist in providing the
ACG type system with Cartesian product and dependent product, respectively.
We prove that both extensions result in Turing-complete formalisms that allow
any recursively enumerable language to be specified.

The paper is organized as follows. In the next section, we remind the reader
of the definition of an abstract categorial grammar. In section 3, we study ACGs
with Cartesian product. In section 4, we study ACGs with dependent product.

2 Abstract Categorial Grammars

Let A be a set of atomic types. The set TA of linear implicative types built upon
A is inductively defined by the following rules:

TA ::= A | (TA −◦ TA)

A higher-order linear signature is defined to be a triple Σ = 〈A, C, τ〉, where:

1. A is a finite set of atomic types;
2. C is a finite set of constants;
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3. τ is a mapping from C to TA.

A higher-order linear signature will also be called a vocabulary. In the sequel, we
will write AΣ , CΣ , and τΣ to designate the three components of a signature Σ,
and we will write TΣ for TAΣ .

The set of untyped λ-terms is defined as usual, and one takes the relation of
βη-conversion as the notion of equality between λ-terms. Then, given a signature
Σ, the set of well-typed linear λ-terms ΛΣ is the set of λ-terms that may be
assigned a linear implicative types by the following typing rules.

−Σ c : τΣ(c) (cons)

x : α −Σ x : α (var)

Γ, x : α −Σ t : β
x �∈ dom(Γ ) (abs)

Γ −Σ (λx. t) : (α −◦ β)

Γ −Σ t : (α −◦ β) Δ −Σ u : α
dom(Γ ) ∩ dom(Δ) = ∅ (app)

Γ, Δ −Σ (t u) : β

In the above rules, as usual, Γ and Δ range over typing environments, i.e., finite
sets of declarations of the form ‘x : α’ such that each variable is declared at most
once. ‘Γ, Δ’ stands for Γ ∪ Δ, and ‘Γ, x : α’ for Γ ∪ {x : α}. Finally, dom(Γ )
denotes the set of variable declared in Γ .

Given two signatures Σ and Ξ, a lexicon L from Σ to Ξ (in notation, L :
Σ → Ξ) is defined to be a pair L = 〈η, θ〉 such that:

1. η is a mapping from AΣ into TΞ ;
2. θ is a mapping from CΣ into ΛΞ ;
3. for every c ∈ CΣ , the following typing judgement is derivable:

−Ξ θ(c) : η̂(τΣ(c)),

where η̂ : TΣ → TΞ is the unique homomorphic extension of η.1

As stated in Condition 3 of the above definition, there exists a unique type
homomorphism η̂ : TΣ → TΞ that extends η. Similarly, there exists a unique λ-
term homomorphism θ̂ : ΛΣ → ΛΞ that extends θ.2 In the sequel, L will denote
both η̂ and θ̂, the intended meaning being clear from the context. In addition,
when Γ denotes a typing environment ‘x1 : α1, . . . , xn : αn’, we will write L (Γ )
for ‘x1 : L (α1), . . . , xn : L (αn)’. Using these notations, we have that Condition
3 induces the following property:

if Γ −Σ t : α then L (Γ ) −Ξ L (t) : L (α).

We now give the main definition of this section. An abstract categorial gram-
mar is a quadruple G = 〈Σ, Ξ, L , s〉 where:
1 That is η̂(a) = η(a) and η̂(α −◦ β) = η̂(α) −◦ η̂(β).
2 That is θ̂(c) = θ(c), θ̂(x) = x, θ̂(λx. t) = λx. θ̂(t), and θ̂(t u) = θ̂(t) θ̂(u).
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1. Σ and Ξ are two higher-order linear signatures, which are called the abstract
vocabulary and the object vocabulary, respectively;

2. L : Σ → Ξ is a lexicon from the abstract vocabulary to the object vocabu-
lary;

3. s ∈ TΣ is a type of the abstract vocabulary, which is called the distinguished
type of the grammar.

The intuition behind this definition is that the abstract vocabulary is used
to express the parse structures of the grammar while the object vocabulary
corresponds somehow to the terminal symbols of the grammar. This explains that
an ACG generates two languages: an abstract language and an object language.
The abstract language is the set of closed linear λ-terms that are built on the
abstract vocabulary, and whose type is the distinguished type:

A(G ) = {t ∈ ΛΣ | −Σ t : s is derivable}
On the other hand, the object language is defined to be the image of the abstract
language by the lexicon:

O(G ) = {t ∈ ΛΞ | ∃u ∈ A(G ). t = L (u)}
Then, given some term t ∈ ΛΞ , the membership problem for G consists in
deciding whether t belongs to O(G ), i.e., whether there exists u ∈ A(G ) such
that L (u) = t. The decidability of this problem is open. What is known, is that
it is equivalent to the decidability of the multiplicative exponential fragment
of linear logic [4,12]. It is also known that, for second-order ACGs (i.e., ACGs
whose abstract constants are at most second-order) membership is decidable in
polynomial time [11,7].

3 Abstract Categorial Grammars with Cartesian Product

Feature structures, which are akin to records, are one of the main primitives of
unification based grammatical formalisms such as HPSG. Records themselves
are intensively used in Ranta’s GF [10]. This explains our motivation in defining
an extension of the ACGs where a notion of record would be available. From a
theoretical point of view this amounts to extend the ACG typing system with a
Cartesian product.

3.1 Definition

From the perspective of linear logic, the Cartesian product corresponds to the
additive conjunction. Consequently, the set of types must be extended as follows:

TA ::= A | (TA −◦ TA) | (TA & TA)

Then the set of untyped λ-terms must be extended with a pair constructor
together with its two projection operators:

T ::= c | x | λx. T | (T T ) | 〈T, T 〉 | (π1 T ) | (π2 T )
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The notion of equality between λ-terms must be adapted accordingly by taking
into account the following additional reduction rules:

π1 〈t, u〉 → t (left projection)
π2 〈t, u〉 → u (right projection)

〈π1 t, π2 t〉 → t (surjective pairing)

Finally, the three following rules are added to the typing system:

Γ −Σ t : α Γ −Σ u : β
(pair)

Γ −Σ 〈t, u〉 : α & β

Γ −Σ t : α & β
(left proj.)

Γ −Σ π1 t : α

Γ −Σ t : α & β
(right proj.)

Γ −Σ π2 t : β

Then, the very definitions of a lexicon and of an abstract categorial grammar
may be kept unchanged.

3.2 Turing Completeness

As we already mentioned, membership for purely implicative ACGs is equiva-
lent to provability in multiplicative exponential linear logic (the decidability of
which is still open). Analogously, one may expect that membership for ACGs
with Cartesian product is equivalent to provability in multiplicative additive ex-
ponential linear logic (which is known to be undecidable [9]). This is indeed the
case, as shown in this section.

Given any recursively enumerable set of integers, we will construct an ACG
whose object language is this given set. As well known, k-counter machines
compute arbitrary recursive functions [8]. A k-counter machine is a quadruple
M = 〈Q, δ, q0, qf 〉 where Q is a finite set of states, δ is a finite set of transition
rules, q0 ∈ Q is the initial state and qf ∈ Q is the final state. A machine has k
counters in each of which one natural number is stored. Each transition rule in
δ has one of the following forms:

〈q Inc i r〉, 〈q Dec i r〉, 〈q Zero? i r〉

for some i ∈ {1, . . . , k} and q, r ∈ Q. An instantaneous description (ID) is an
element of Q × N

k, where N is the set of natural numbers 0, 1, 2, . . . . When the
machine is in the state q and the increment rule 〈q Inc i r〉 is applied, then the
machine increments the ith counter by 1 and it enters the state r. The decrement
rule 〈q Dec i r〉 is applied to the machine only when it is in the state q and more-
over the entry of the ith counter is not zero. In that case,the machine decrements
the ith counter by 1 and it goes to the state r. The zero-testrule 〈q Zero? i r〉
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is applied to the machine only when it is in the state q and moreover the entry
of the ith counter is exactly zero. In that case, the machine moves to the state r.
For two IDs X, Y ∈ Q×N

k, we write X → Y when the transition from X to Y is
possible. We say that M accepts m ∈ N

k if and only if 〈q0, m〉 ∗−→ 〈qf , 0k〉, where
∗−→ is the reflexive transitive closure of −→ and 0k is short for the sequence of 0s
of length k. The following theorem is an alternative presentation of Lambek’s
result [8].

Theorem 1. For any recursive n-ary function φ, there is a k-counter machine
M with some k > n such that

φ(m1, . . . , mn) = m0 iff M accepts 〈m0, m1, . . . , mn, 0k−n−1〉.

Our encoding of k-counter machines by ACGs is given in a way similar to Lincoln
et al.’s technique for showing the undecidability of the multiplicative additive
exponential linear logic [9]. They have introduced a variant of two-counter ma-
chines, which they call and-branching two-counter machines without zero-test
(2-ACMs, for short), and shown that 2-ACMs simulate standard two-counter
machines. An and-branching k-counter machine without zero-test (k-ACM, for
short) is also a quadruple M = 〈Q, δ, q0, qf 〉, where δ has no zero-test rules.
Instead, it has fork rules of the form 〈q Fork r1 r2〉 with q, r1, r2 ∈ Q, which
allow us to simulate zero-test rules. An ID of a k-ACM is a finite sequence of el-
ements of Q×N

k. The fork rule 〈q Fork r1 r2〉 allows the machine to move from
X1〈q, m〉X2 to X1〈r1, m〉〈r2, m〉X2, where m ∈ N

k and X1, X2 ∈ (Q × N
k)∗.

Only fork rules increase the number of elements of an ID of the machine.
The transition by an increment or decrement rule is defined in the same way
as standard k-counter machines. A sequence of the form 〈qf , 0k〉 . . . 〈qf , 0k〉 is
called an accepting ID. One says that M accepts from an ID X if and only if
X

∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉. One also says that M accepts m ∈ N
k if and only if M

accepts from 〈q0, m〉.
Lincoln et al.’s proof for that a 2-ACM simulates an arbitrary standard two-

counter machine is also applied to k-counter machines. It is easy to modify a
k-counter machine so that it has no transition rule going out from the final state
while keeping the acceptable k-tuples of natural numbers. Then a zero-test rule
〈q Zero? i r〉 is simulated by the following rules of a k-ACM:

〈q Fork r si〉, 〈si Dec j si〉 for all j �= i, 〈si Fork qf qf 〉

where si is a new state not in the original set of states.

Lemma 1. Any k-counter machine is simulated by a k-ACM.

Now, to any k-ACM M = 〈Q, δ, q0, qf 〉, we associate the following ACG GM =
〈ΣM , ΣN, L , s〉:
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ΣM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s : type,
ai : type for all i ∈ {1, . . . , k},
q : type for all q ∈ Q,

cf : qf ,
cρ : αρ for all ρ ∈ δ,

where αρ =

⎧
⎪⎨

⎪⎩

(ai −◦ r) −◦ q for ρ = 〈q Inc i r〉,
r −◦ (ai −◦ q) for ρ = 〈q Dec i r〉,
(r1 & r2) −◦ q for ρ = 〈q Fork r1 r2〉,

d0 : q0 −◦ s,
di : (ai −◦ s) −◦ s.

ΣN

⎧
⎨

⎩

o : type,
0 : o,
S : o −◦ o,

L

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s := (ok −◦ o) −◦ o,
ai := o −◦ o for all i ∈ {1, . . . , k},
q := o −◦ o for all q ∈ Q,

cf := λz. z,

cρ :=

⎧
⎪⎨

⎪⎩

λx. x (λz. z) for ρ = 〈q Inc i r〉,
λxyz. x (y z) for ρ = 〈q Dec i r〉,
λx. π1 x for ρ = 〈p Fork q r〉,

d0 := λxy. x (y 0k),
di := λxy. x (λz. z) (λz1 . . . zk. y z1 . . . zi−1(S zi)zi+1 . . . zk).

We now prove that λy. y (Sm1 0) . . . (Smk 0) belongs to the object language of
GM if and only if M accepts 〈m1, . . . , mk〉, for any k natural numbers m1, . . . , mk.
The proof consists of four technical lemmas, the first two of which establish the
if part of the property. For notational convenience, to each m = 〈m1, . . . , mk〉 ∈
N

k, we assign the typing environment

Γm = x1,1 : a1, . . . , x1,m1 : a1, . . . , xk,1 : ak, . . . , xk,mk
: ak.

Lemma 2. If M accepts from an ID X, then for each element 〈q, m〉 of X,
there is t such that Γm −ΣM t : q and t does not contain di for any i.

Proof. By induction on the length of the transition from X to an accepting ID
〈qf , 0k〉 . . . 〈qf , 0k〉. The constant cf of type qf satisfies the lemma for the zero
step transition.

Case 1. Suppose that ρ = 〈q Inc i r〉 ∈ δ induces the first step of the tran-
sition as

X1 〈q, m〉X2 → X1 〈r, m′〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉

where m′ is obtained by incrementing the ith element of m = m1, . . . , mk by
1. We have Γm′ = Γm, xi,mi+1 : ai and Γm, xi,mi+1 : ai −ΣM t : r for some t
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by induction hypothesis. ΣM contains the constant cρ of type (ai −◦ r)−◦ q. We
have

Γm −ΣM cρ (λxi,mi+1. t) : q.

Case 2. Suppose that ρ = 〈q Dec i r〉 ∈ δ induces the first step of the
transition as

X1 〈q, m〉X2 → X1 〈r, m′〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉

where m′ is obtained by decrementing the ith element of m = m1, . . . , mk by
1. That is, mi > 0. We have Γm = Γm′ , xi,mi : ai and Γm′ −ΣM t : r for some t
by induction hypothesis. ΣM contains the constant cρ of type r −◦ (ai −◦ q). We
have

Γm −ΣM cρ t xi,mi : q.

Case 3. Suppose that ρ = 〈q Fork r1 r2〉 ∈ δ induces the first step of the
transition as

X1 〈q, m〉X2 → X1 〈r1, m〉 〈r2, m〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉.

By induction hypothesis, there are ti for i = 1, 2 such that Γm −ΣM ti : ri. ΣM

contains the constant cρ of type (r1 & r2) −◦ q. We have

Γm −ΣM cρ 〈t1, t2〉 : q. ��
Lemma 3. If M accepts 〈m1, . . . , mk〉, then there is t such that −ΣM t : s and
L (t) = λy. y (Sm1 0) . . . (Smk 0).

Proof. By Lemma 2, there exists t′ such that Γm −ΣM t′ : q0 where m =
〈m1, . . . , mk〉. Let

t = dk (λxk,mk
. . . . dk (λxk,1. . . . d1 (λx1,m1 . . . . d1 (λx1,1. d0 t′) . . . ) . . . ) . . . ).

Then −ΣM t : s. It is easy to check that for any subterm t′′ of t of the form

t′′ = di (λxi,j . . . . d1 (λx1,1. d0 t′) . . . )

where 1 ≤ i ≤ k and 1 ≤ j ≤ mi, we have

L (t′′) = λy. u[z:=y (Sm1 0) . . . (Smi−1 0) (Sj 0) 0k−i]

for some u that contains no constants. The fact −ΣN
L (t) : (ok−◦o)−◦o implies

that L (t) β-reduces to λy. y (Sm1 0) . . . (Smk 0). ��
Lemma 4. Let m ∈ N

k and q ∈ Q. If we have Γm −ΣM t : q for some t, then
M accepts from 〈q, m〉. Moreover, t does not contain di for any i.

Proof. Suppose that Γm −ΣM t : q. We assume that t is β-normal. We prove
this lemma by induction on the number of occurrences of constants in t.

Case 0. t = cf and q = qf . Then the typing environment Γm must be empty,
i.e., m = 0k. Indeed M accepts from 〈qf , 0k〉.
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Case 1. t = cρ t′ with ρ = 〈q Inc i r〉 ∈ δ and t′ such that Γm −ΣM t′ :
ai−◦r. Then Γm, xi,mi+1 : ai −ΣM t′ xi,m+1 : r. Hence, by induction hypothesis,
M accepts from 〈r, m′〉 where m′ is obtained by incrementing the ith element
mi of m by 1. Since 〈q, m〉 → 〈r, m′〉, M also accepts from 〈q, m〉.

Case 2. t = cρ t′ t′′ with ρ = 〈q Dec i r〉 ∈ δ, Γ1 −ΣM t′ : r and Γ2 −ΣM t′′ :
ai for some partition Γ1 and Γ2 of the typing environment Γm. Now, the only
possibility for Γ2 and t′′ is Γ2 = xi,j : ai and t′′ = xi,j for some j ∈ {1, . . . , mi}.
Hence, mi ≥ 1 and Γ1 = Γm − {xi,j : ai}. By applying induction hypothesis
to Γ1 −ΣM t′ : r, we get that M accepts from 〈r, m′〉 where m′ is obtained
by decrementing the ith element mi of m by 1. Since 〈q, m〉 → 〈r, m′〉, M also
accepts from 〈q, m〉.

Case 3. t = cρt
′ with ρ = 〈q Fork r1 r2〉 ∈ δ. The type of cρ is (r1 &

r2) −◦ q. Consequently, t′ = 〈t1, t2〉 for some t1 and t2 such that Γm −ΣM ti :
ri for each i = 1, 2. By induction hypothesis, M accepts from both 〈r1, m〉
and 〈r2, m〉, which implies that M also accepts from 〈q, m〉, because 〈q, m〉 →
〈r1, m〉 〈r2, m〉. ��

Lemma 5. For any t ∈ A(GM ), we have L (t) = λy. y (Sm1 0) . . . (Smk 0) for
some m1, . . . , mk ∈ N and moreover M accepts 〈m1, . . . , mk〉.

Proof. By −ΣM t : s, t has the form

t = di1 (λx′
1. . . . din (λx′

n. d0 t′) . . . )

for some i1, . . . , in ∈ {1, . . . , k} and t′ such that Γ −ΣM t′ : q0 for Γ =
{ x′

j : aij | 1 ≤ j ≤ n }. Let mi be the number of occurrences of di in
t and m = 〈m1, . . . , mk〉. By renaming variables, we can assume Γ = Γm.
By Lemma 4, t′ does not contain any di. It is not hard to see that L (t) =
λy. y (Sm1 0) . . . (Smk 0). Moreover Lemma 4 implies that M accepts m. ��

Finally, we obtain the expected property as a direct consequence of Lemmas 1,
3 and 5.

Proposition 1. For any k-counter machine M , one can effectively construct
an ACG with Cartesian product GM such that

M accepts 〈m1, . . . , mk〉 iff λy. y (Sm1 0) . . . (Smk 0) ∈ O(GM ).

Corollary 1. For any recursive function φ, there exists an ACG with Cartesian
product Gφ such that

φ(a1, . . . , an) = b iff λy. y (Sb 0) (Sa1 0) . . . (San 0) ∈ O(Gφ).

Proof. By Theorem 1 and Proposition 1. It is easy to modify the definition of
GM so that counters not used for representing the arguments and values of the
function φ are completely suppressed in the object language. ��
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4 Abstract Categorial Grammars with Dependent
Product

Dependent product allows ones to specify types that depend upon terms. In a
grammatical setting (where types corresponds to syntactic categories), depen-
dent products are useful in defining generic syntactic categories (for instance,
NP for noun phrase) that can be instantiated according to the value of some
feature (for instance, (NP f ) for feminine noun phrase, (NP m) for masculine
noun phrase, etc.)

4.1 Definition

In the presence of dependent products, types may depend upon terms. Conse-
quently, it is no longer the case that the notion of well-formed types may be
specified only by means of context-free rules. In the same way terms are as-
signed types, types will be assigned kinds. Consequently, we first introduce the
raw syntax of three forms of expressions, namely, the kinds (K ), the types (T ),
and the terms (T ).

K ::= type | (T )K

T ::= a | (λx. T ) | (T T ) | (T −◦ T ) | (Πx : T )T

T ::= c | x | (λ◦x. T ) | (λx. T ) | (T T )

where a ranges over atomic types, and c over constants. In addition to atomic
types, linear functional types, and dependent products, we have two other type
constructs: the abstraction of a λ-variable over a type, and the application of a
type to a λ-term. At the level of the λ-terms, we now distinguish between two
forms of λ-abstractions: a linear λ-abstraction (λ◦x. T ), and a non-linear one
(λx. T ).

Let a range over atomic types, c over constants, A over kinds, and α over
types. A raw signature is then defined as a sequence of declarations either of
the form ‘a:A’ or of the form ‘c:α’. Let Σ be such a raw signature, we define
two partial functions. The first one, κΣ , assigns kinds to atomic types. It is
inductively defined as follows:

κ()(a) is undefined

κΣ;a1:A(a) =
{

A if a = a1

κΣ(a) otherwise

κΣ; c:α(a) = κΣ(a)

Similarly, τΣ , assigns types to λ-term constants:

τ()(c) is undefined

τΣ; a:A(c) = τΣ(c)

τΣ; c1:α(c) =
{

α if c = c1

τΣ(c) otherwise
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We now give the type system of the calculus. It relies on four forms of judge-
ments:

sig (Σ) −Σ A : kind Γ −Σ α : A Γ ; Δ −Σ t : α

where A, α, and t range over kinds, types, and λ-terms, respectively. Σ is a given
signature. Γ and Δ range over typing environments, which are now defined to
be sequences of declarations of the form ‘x : α’.

These four forms of judgements may be paraphrased as follows:

1. Σ is a well-formed signature.
2. Given the signature Σ, A is a well-formed kind.
3. Given the signature Σ, α is a type of kind A according to the non-linear

typing environment Γ .
4. Given the signature Σ, t is a term of type α according to the non-linear

typing environment Γ and the linear typing environment Δ.

Finally, the rules of the typing system are as follows.

Well-formed signatures:

sig ( )

sig (Σ) −Σ A : kind

sig (Σ; a : A)

sig (Σ) −Σ α : type

sig (Σ; c : α)

In the above rules, the introduced symbols (a and c) must be fresh with respect
to Σ.

Well-formed kinds:

−Σ type : kind

−Σ α : type −Σ A : kind

−Σ (α)A : kind

Well-kinded types:

−Σ a : κΣ(a) (type const.)

−Σ α : type Γ −Σ β : A
(type weak.)

Γ, x : α −Σ β : A
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Γ, x : α −Σ β : A
(type abs.)

Γ −Σ λx. β : (α)A

Γ −Σ α : (β)A Γ ; −Σ t : β
(type app.)

Γ −Σ α t : A

Γ −Σ α : type Γ −Σ β : type
(lin. fun.)

Γ −Σ α −◦ β : type

Γ −Σ α : type Γ, x : α −Σ β : type
(dep. prod.)

Γ −Σ (Πx : α)β : type

In Rule (type weak.), x must be fresh with respect to Γ .

Well-typed terms:

; −Σ c : τΣ(c) (const.)

Γ −Σ α : type
(lin. var.)

Γ ; x : α −Σ x : α

Γ −Σ α : type
(var.)

Γ, x : α; −Σ x : α

Γ −Σ α : type Γ ; Δ −Σ t : β
(weak.)

Γ, x : α; Δ −Σ t : β

Γ ; Δ1, x : α, y : β, Δ2 −Σ t : γ
(perm.)

Γ ; Δ1, y : β, x : α, Δ2 −Σ t : γ

Γ ; Δ, x : α −Σ t : β
(lin. abs.)

Γ ; Δ −Σ λ◦x. t : α −◦ β

Γ ; Δ1 −Σ t : α −◦ β Γ ; Δ2 −Σ u : α
(lin. app.)

Γ ; Δ1, Δ2 −Σ t u : β

Γ, x : α; Δ −Σ t : β
(abs.)

Γ ; Δ −Σ λx. t : (Πx : α)β

Γ ; Δ −Σ t : (Πx : α)β Γ ; −Σ u : α
(app.)

Γ ; Δ −Σ t u : β[x:=u]

Γ ; Δ −Σ t : α Γ −Σ β : type α =βη β
(type conv.)

Γ ; Δ −Σ t : β
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In Rules (lin. var.) and (var.), x must be fresh with respect to Γ . In Rule (weak.),
x must be fresh with respect to both Γ and Δ. Moreover, t must be either a
λ-variable, or a constant. In Rule (abs.), x cannot occur free in Δ.

Let Σ be a signature. We will write AΣ for the set of atomic types declared
in Σ. Similarly, we will write CΣ for the set of λ-term constants declared in Σ.
Finally, given a well-formed signature Σ, we will write KΣ , TΣ, and ΛΣ for
the corresponding sets of well-formed kinds, well-kinded types, and well-typed
terms, respectively.

In order to define a notion of ACG with dependent product, it remains to
adapt the definition of a lexicon. Let Σ and Ξ be two well-formed signatures. A
lexicon L from Σ to Ξ is a pair 〈η, θ〉 such that:

1. η is a mapping from AΣ into TΞ ;
2. θ is a mapping form CΣ into ΛΞ ;
3. for every c ∈ CΣ , the following typing judgement is derivable:

−Ξ θ(c) : η̂(τΣ(c)),

where η̂ : TΣ → TΞ is the unique homomorphic extension of η;
4. for every a ∈ AΣ , the following kinding judgement is derivable:

−Ξ η(a) : η̃(κΣ(a)),

where η̃ : KΣ → KΞ is defined by η̃(type)=type and η̃((α)A)=(η̂(α))η̃(A).

4.2 Turing Completeness

The λ-calculus we have defined in the previous section contains the Edinburgh
logical framework [6] as a subsystem.3 We may therefore expect ACGs with
dependent product to be Turing-complete. In order to show it is indeed the
case, we explain how to encode any general phrase structure grammar as an
ACG with dependent product.

We first remind the reader of some basic definitions. A phrase structure gram-
mar is a quadruple G = 〈V, T, R, S〉, where V is a finite set of symbols, T ⊆ V
is a finite set of terminal symbols, S ∈ V is the start symbol and R is a finite
set of production rules of the form α → β for α, β ∈ V ∗. One writes α ⇒ β if
α = γ1α

′γ2, β = γ1β
′γ2 and α′ → β′ ∈ R for some γ1, γ2 ∈ V ∗. As usual, ∗⇒ is

the reflexive, transitive closure of ⇒. The language generated by G is defined as
L(G) = {α ∈ T ∗ |S ∗⇒ α}.

To any alphabet T , we associate a signature ΣT . This signature has one atomic
type o and its set of constants is T , the elements of which are assigned the type
o−◦o. Then, every string a1 . . . an ∈ T ∗ may be encoded as λ◦z. a1 (. . . (an z) . . . ).
Let us write /a1 . . . an/ to denote this last term. We have, in particular, that the
empty string ε is represented by the linear identity function, i.e., /ε/ = λ◦z. z.
We also have that concatenation is represented by functional composition, and
we will write t + u for λ◦z. t (u z).
3 Actually, the notion of dependent type we use is slightly weaker.
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Now, to any phrase structure grammar G = 〈V, T, R, S〉, we associate the
ACG GG = 〈ΣG, ΣT , L , s〉 that is defined as follows.

ΣG

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o, s : type,
σ : (o −◦ o)type,
τ : (o −◦ o)type,
A : o −◦ o for all A ∈ V,
cS : σ(/S/),

cα→β : (Πx, y ∈ o −◦ o)(σ(x + /α/ + y) −◦ σ(x + /β/ + y))
for all α → β ∈ R,

dε : τ(/ε/),
da : (Πx ∈ o −◦ o)(τ(x) −◦ τ(/a/ + x)) for all a ∈ T,
e : (Πx ∈ o −◦ o)(σ(x) −◦ τ(x) −◦ s),

ΣT

{
o : type,
a : o −◦ o for all a ∈ T,

L

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o := o,
s := o −◦ o,
τ := λx. o −◦ o,
σ := λx. o −◦ o,
A := λ◦z. z for all A ∈ V,
cS := /ε/,

cα→β := λxy. λ◦z. z for all α → β ∈ R,
dε := /ε/,
da := λx. λ◦y. /a/ + y for all a ∈ T,
e := λx. λ◦yz. y + z.

The signature ΣG consists of two independent parts that are connected through
the constant e. We will establish the two following properties:

1. for every α ∈ V ∗, S
∗⇒ α if and only if there exists uα such that ; −ΣG uα :

σ(/α/);
2. for every α ∈ V ∗, α ∈ T ∗ if and only if there exists tα such that ; −ΣG tα :

τ(/α/).

This implies that α ∈ L(G) if and only if ; −ΣG uα : σ(/α/) and ; −ΣG tα :
τ(/α/) for some uα and tα.

Lemma 6. For any α ∈ V ∗, if S
∗⇒ α, then there is t such that ; −ΣG t : σ(/α/)

and L (t) �β /ε/.

Proof. Induction on the length of the derivation. For α = S, t = cS satisfies
the lemma. Suppose that S

∗⇒ γ1αγ2 ⇒ γ1βγ2 and α → β ∈ R. By induction
hypothesis, we have t′ such that ; −ΣG t′ : σ(/γ1αγ2/) and L (t′) �β /ε/.
Let t = cα→β/γ1//γ2/t′. Then we have ; −ΣG t : σ(/γ1βγ2/) and L (t) �β

L (t′) �β /ε/. ��
Lemma 7. For every α ∈ T ∗, there is t such that ; −ΣG t : τ(/α/) and
L (t) �β /α/.
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Proof. Induction on the length of α. For α = ε, t = dε satisfies the lemma. For
α �= ε, let α = aα′ with a ∈ T and α′ ∈ T ∗. By induction hypothesis, we have
t′ such that ; −ΣG t′ : τ(/α′/) and L (t′) �β /α′/. Let t = da/α′/t′. Then we
have ; −ΣG t : τ(/α/) and L (t) �β /a/ + L (t′) �β /α/. ��
Lemma 8. For every α ∈ L(G), we have /α/ ∈ O(GG).

Proof. For any α ∈ L(G), we have t1 and t2 such that ; −ΣG t1 : σ(/α/),
L (t1) �β /ε/, ; −ΣG t2 : τ(/α/) and L (t2) �β /α/ by Lemmas 6 and 7. Thus
we have ; −ΣG e/α/t1t2 : s and L (e/α/t1t2) �β /α/. ��
Lemma 9. For any β ∈ V ∗, if ; −ΣG t : σ(/β/), then S

∗⇒ β and L (t) �β /ε/.

Proof. Suppose that ; −ΣG t : σ(/β/). We assume that t is β-normal. We prove
this lemma by induction on t. If t = cS , then β = S and the lemma holds
clearly. Otherwise, t must have the form t = cα′→β′/γ1//γ2/t′ with β = γ1β

′γ2

for some t′ such that ; −ΣG t′ : σ(/γ1α
′γ2/). By induction hypothesis, we have

S
∗⇒ γ1α

′γ2 and L (t′) �β /ε/. The fact that ΣG has the constant cα′→β′

implies that α′ → β′ ∈ R. We have S
∗⇒ γ1α

′γ2 ⇒ γ1β
′γ2 = β and L (t) �β

L (t′) �β /ε/. ��
Lemma 10. For any β ∈ V ∗, if ; −ΣG t : τ(/β/), then β ∈ T ∗ and L (t) �β

/β/.

Proof. Suppose that ; −ΣG t : τ(/β/). We assume that t is β-normal. We prove
this lemma by induction on t. If t = dε, then β = ε and the lemma holds clearly.
Otherwise, t must have the form t = da/α/t′ for some a ∈ T , α ∈ V ∗ and t′ such
that β = aα and ; −ΣG t′ : τ(/α/). By induction hypothesis, we have L (t′) �β

/α/, α ∈ T ∗ and thus aα ∈ T ∗. Besides L (t) �β /a/ + L (t′) �β /aα/. ��
Lemma 11. /α/ ∈ O(GG) implies α ∈ L(G).

Proof. Suppose that t ∈ A(GG). t must have the form t = e/α/t1t2 with ; −ΣG

t1 : σ(/α/) and ; −ΣG t2 : τ(/α/) for some α ∈ V ∗. We have S
∗⇒ α and

L (t1) �β /ε/ by Lemma 9. α ∈ T ∗ and L (t2) �β /α/ by Lemma 10. Therefore,
α ∈ L(G) and L (t) �β /α/ ∈ O(G ). ��
As a consequence of Lemmas 8 and 11 we obtain the main result of this section.

Proposition 2. For any phrase structure grammar, one can find an ACG with
dependent product that generates exactly the same language.

5 Conclusions

This work shows that quite simple extensions of the abstract categorial gram-
mars immediately result in undecidable formalisms. This is not quite surprising
as it is not even known whether membership is decidable or not for the original
ACGs. On the other hand, from a practical point of view, there is a need for
powerful constructs such as feature structures, records, or generic types. Conse-
quently, future work must consist in trying to identify fragments of the extended
formalism proposed in [5] that offer a good compromise between intentional
expressive power and tractability.
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