
Chapter 8

m-Linear Context-Free Rewriting Systems as
Abstract Categorial Grammars

PHILIPPE DE GROOTE
�

AND SYLVAIN POGODALLA
�

ABSTRACT. This paper presents a coding of m-linear context-free rewriting systems (m-
LCFRS) into abstract categorial grammars (ACG). Thus, it shows the latter formalism, which
offers a powerful grammatical framework based on a small set of computational primitives, is
able to reach some interesting classes of languages w.r.t. natural language modeling.

Introduction

Abstract categorial grammars (ACG) (de Groote 2001) have the property of explic-
itly generating two languages: an abstract one and an object one. The former may
appear as a set of abstract grammatical structures and the latter as the set of the cor-
responding concrete forms. It then offers a framework in which other grammatical
models can be encoded, both in the structures and in the expressions they allow.

This encoding has been done for any G in the class of CFGs (de Groote 2001)
or in the classe of TAGs (de Groote 2002). This paper shows such an encoding for
m-linear context-free rewriting systems (m-LCFRS). This enables ACGs to cover
important (w.r.t. natural language modeling) classes of languages such as the ones
generated by, because of the weak equivalence between them, multicomponent
tree adjoining grammars (MCTAGs) (Weir 1988), multiple context-free grammars
(MCFG) (Seki et al. 1991) or minimal grammars (MG) (Michaelis 2001).

�
INRIA, LORIA, Nancy, France; {Philippe.deGroote,Sylvain.Pogodalla}@

loria.fr

71

Proceedings of Mathematics of Language 8
R. T. Oehrle & J. Rogers (editors).
Chapter 8, Copyright c

�
2003, P. de Groote & S. Pogodalla.

m-Linear CF Rewriting Systems as Abstract CGs: P. de Groote & S. Pogodalla /72

8.1 Abstract Categorial Grammars

This section defines the notion of an abstract categorial grammar. We first introduce
the notions of linear implicative types, higher-order linear signature, linear λ -
terms built upon a higher-order linear signature, and lexicon.

Definition. Let A be a set of atomic types. The set ��� A � of linear implicative types
built upon A is inductively defined as follows:

1. if a � A, then a ����� A � ;
2. if α � β ���	� A � , then � α
�� β ������ A � .

Definition. A higher-order linear signature consists of a triple Σ ��� A � C � τ � , where:

1. A is a finite set of atomic types;

2. C is a finite set of constants;

3. τ : C ���	� A � is a function that assigns to each constant in C a linear im-
plicative type in �	� A � .

Definition. Let X be a infinite countable set of λ -variables. The set Λ � Σ � of lin-
ear λ -terms built upon a higher-order linear signature Σ ��� A � C � τ � is inductively
defined as follows:

1. if c � C, then c � Λ � Σ � ;
2. if x � X, then x � Λ � Σ � ;
3. if x � X, t � Λ � Σ � , and x occurs free in t exactly once, then � λx � t ��� Λ � Σ � ;
4. if t � u � Λ � Σ � , and the sets of free variables of t and u are disjoint, then
� t u ��� Λ � Σ � .

As usual, Λ � Σ � is provided with notion of capture avoiding α-conversion, substitu-
tion and β -reduction (Barendregt 1984).

Given a higher-order linear signature Σ ��� A � C � τ � , each linear λ -term in Λ � Σ �
may be assigned a linear implicative type in �	� A � . This type assignment obeys an
inference system whose judgements are sequents of the following form:

Γ
 Σ t : α

where:

73 � Mathematics of Language 8

1. Γ is a finite set of λ -variable typing declarations of the form ‘x : β ’ (with
x � X and β ����� A �), such that any λ -variable is declared at most once;

2. t � Λ � Σ � ;
3. α ����� A � .

The axioms and inference rules are the following:

	
Σ c : τ � c � (cons)

Γ
 x : α 	
Σ t : β

Γ 	 Σ � λx � t � : � α 	� β � (abs)

x : α 	
Σ x : α (var)

Γ 	 Σ t : � α 	�� β �
Γ
 ∆ 	 Σ � t u � : β

(app)

Let Σ1 ��� A1
 C1
 τ1 � and Σ2 ��� A2
 C2
 τ2 � be two higher-order linear signa-
tures, a lexicon � : Σ1 � Σ2 is a realization of Σ1 into Σ2, i.e., an interpretation of
the atomic types of Σ1 as types built upon A2 together with an interpretation of the
constants of Σ1 as linear λ -terms built upon Σ2. These two interpretations must be
such that their homomorphic extensions commute with the typing relations. More
formally:

Definition. a lexicon � from Σ1 ��� A1
 C1
 τ1 � to Σ2 ��� A2
 C2
 τ2 � is defined to be
a pair � ��� F
 G � such that:

1. F : A1 � ��� A2 � is a function that interprets the atomic types of Σ1 as linear
implicative types built upon A2;

2. G : C1 � Λ � Σ2 � is a function that interprets the constants of Σ1 as linear
λ -terms built upon Σ2;

3. the interpretation functions are compatible with the typing relation, i.e., for
any c � C1, the following typing judgement is derivable:

	
Σ2

G � c � : F̂ � τ1 � c ����

where F̂ is the unique homomorphic extension of F. Similarly, Ĝ is the
unique λ -term homomorphism from Λ � Σ1 � to Λ � Σ2 � that extends G.

In the sequel, when ‘ � ’ will denote a lexicon, it will also denote the homomor-
phisms F̂ and Ĝ (the intended meaning will be clear from the context).

We are now in a position of defining the notion of abstract categorial grammar.

Definition. An abstract categorial grammar is a quadruple � ��� Σ1
 Σ2
���
 s � where:

m-Linear CF Rewriting Systems as Abstract CGs: P. de Groote & S. Pogodalla /74

1. Σ1 and Σ2 are two higher-order linear signatures; they are called the abstract
vocabulary and the object vocabulary, respectively ;

2. � : Σ1 � Σ2 is a lexicon from the abstract vocabulary to the object vocabu-
lary;

3. s is an atomic type of the abstract vocabulary; it is called the distinguished
type of the grammar.

The abstract language ������� generated by � is defined as follows:

�	������
� t � Λ � Σ1 ��� � Σ1
t : s is derivable �

In words, the abstract language generated by � is the set of closed linear λ -terms,
built upon the abstract vocabulary Σ1, whose type is the distinguished type s. On
the other hand, the object language ������� generated by � is defined to be the image
of the abstract language by the term homomorphism induced by the lexicon � :

��������
� t � Λ � Σ2 ����� u ���	������� t
���� u ���

8.2 m-Linear Context-Free Rewriting Systems

In this section, we directly define the class of m-linear context-free rewriting sys-
tems (Vijay-Shanker et al. 1987; Weir 1988), even if it can be defined as a proper
subclass of the class of multiple context-free grammars (Seki et al. 1991; Michaelis
2001), the latter themselves being a subclass of the generalized context-free gram-
mars introduced by Pollard (1984).

Definition. A five-tuple G
� N � O � F � R � S � is a m-linear context-free rewriting sys-
tem (m-LCFRS) if:

1. N is a finite non-empty set of nonterminal symbols;

2. O
! m
i " 1 � Σ #�� i for some finite non-empty set Σ of terminal symbols with Σ $

N
 /0. O is thet set of all non-empty finite tuples of finite strings in Σ such
that each tuple has at most m components;

3. F is a finite subset of n % m Fn & � /0 � where Fn is the set of partial functions
from � O � n into O. Moreover, for each f � F, there exist n � f �'��(, d � f �'��(
and d1 � f ���)�)�)��� dn * f + � f ����(such that:

f : �)� Σ # � d1 * f + �)�)�)�,��� Σ # � dn - f . * f + ��/� � Σ # � d * f + and

75 � Mathematics of Language 8

f ����� x11 ������� x1d1 � f �	� �������
� � xn � f � 1 ������� xn � f � dn � f � � f �	����
� f1 ��� y11 ������� y1n � f1 �	��� �������
� fd � f � ��� yd � f � 1 ������� yd � f � n � fd � f � �������

with � d � f �
i � 1

� n � fi �
j � 1 � yi j � � n � f �

i � 1
� di � f �

j � 1 � xi j � and every fi is linear in each of the

y jk, i.e.: � f � F � � i ��� 1 � d � f ��� ��� ξi0 �������
� ξin � fi � � Σ � such that

fi ��� yi1 ������� yin � fi � ���� ξi0 yiσi � 1 � ξi1 yiσi � 2 ������� yiσi � n � fi � � ξin � fi �
with σi permutation on � 1 � n � fi ��� . We call Ξ the (finite) set of all the ξi j that
are defined in that way.

4. R ! � n " m � F # Fn ��$ Nn % 1 is a finite set of rewriting rules.

We usually write a rule r � f � X0 � X1 �������
� Xn � �&� F # Fn �'$ Nn % 1 for some n �(
as X0) f ��� X1 �������*� Xn ��� , and X0) f � � if n 0. If n 0, r is terminating,

else it is nonterminating;

5. S � N is the distinguished start symbol;

6. there is a function dG from N to
(

such that if X0) f ��� X1 �������+� Xn ��� � R, then
d � f �� dG � X0 � and di � f �� dG � Xi � where d � f � and di � f � are as in 3;

7. dG � S �, 1.

We can now define the languages these grammars generate:

Definition. For each X � N and k � (
, the set Lk

G � X � ! O is defined as follows:

- L0
G � X �. � θ / X) f � � � R and f � �� θ �

- let Fn
X � f � F / � X) f ��� X1 �������+� Xn ��� � R � . Then Lk % 1

G � X �.
Lk

G � X � � n " m � f 0 Fn
X

f ��� Lk
G � X1 � �������+� Lk

G � Xn �����
X derives θ in G if there exist X � N and k � (

such that θ � Lk
G � X � . θ is

called an X -phrase in G. For each X � N, the language derivable from X by G is
LG � X �. � k 021 Lk

G � X � , and LG � S � is the language derivable by G.

In addition, we need the definition of the associated parse trees.

Definition. T � Dγ � V � is a tree over V iff γ is a function from Dγ into V where
the domain Dγ is a finite subset of

(43
such that:

1. if q � Dγ � p 5 q � then p � Dγ;

2. if p � j � Dγ � j � (� then p � 1 � p � 2 �������+� p � � j 6 1 � � Dγ

m-Linear CF Rewriting Systems as Abstract CGs: P. de Groote & S. Pogodalla /76

where ��� is the free monoid generated by � , � is the binary operation, 0 is the iden-
tity and for q ��� ��� p � q iff there is a r �	� � such that q
 p � r, and p � q iff p �
q and p �
 q.

We say that Dγ
 Dom T � and γ
 Label T � .
Definition. For each X � N and k ��� , the set PT k

G X � of the parse trees derived
from X is defined as follows:

� PT 0
G X ��
����� 0 � � � 0 ��� X � f �������X � f ���� R �

� let rn
X
 ��! f � X � X1 �#"#"#"$� Xn % � R � . Then PT k & 1

G X �'
)(n * m (r + rn
X

Tr with Tr

���� 0 � (-, i � i � Di � � � 0 ��� X � f ��� (., i � i � ω �� γi ω �#���/ Di � γi �0� PT k

G Xi ���
X derives T in G if there exists X � N and k �1� such that T � PT k

G X � . T is
called a X -parse tree in G. For each X � N, the parse trees derivable from X by G
is PTG X �2
)(k +43 PT k

G X � , and PTG
)(X + N PTG X � is the set of parse trees of G.

Note that from PTG, we can obviously recover LG X � with a linearization func-
tion Lin, for all X � N . Indeed, by induction, if T � PT 0

G X � , it exists X � f ��5� R,
and with Lin T �6
 f ��6
 θ , θ � L0

G X �87 LG X � . If T � PT k & 1
G X � there ex-

ists ! f � X � X1 �#"#"#"$� Xn % � R and Ti � PT k
G Xi � . By induction hypothesis, for each

i � n, Lin Ti ��� Lk
G Xi � , then Lin T �5
 f #! Lin T1 � �#"#"#"�� Lin Tn � % �9
 θ is such that

θ � Lk & 1
G X �97 LG X � .

8.3 Building an ACG Equivalent to an m-LCFRS

In this section, we present the main result of this paper.

Theorem. For every m-LCFRS G
:! N � O � F � R � S % , there exists an ACG ; G such
that:

� the abstract language <:=; G � of normal terms is isomorphic to the set of
parse-trees of G;

� the language generated by G coincides with the object language of ; G, i.e.> =; G �?
 LG S � .
Proof. First, we add to G a new symbol S @ and a new rule S @4� fS A S � with fS A #! x % ��

x. This is because we model tuples with higher-order functions, and we need to
come back to strings at the end. Nevertheless, the generated language is unchanged
(we could avoid this by garanteeing that G is not recursive in S).

Then, we define ; G
B! Σ1 � Σ2 �DCE� S @ % with the abstract vocabulary Σ1
 ! A1 � C1 � τ1 %
such that:

77 � Mathematics of Language 8

� A1 � N ��� S ���
� the set of constants C1 is a set of symbols in one-to-one correspondance with

R

� for c 	 C1 and
 f � X0 ������ Xn � the corresponding rule, τ1 � c � � X1 �����������
Xn ��� X0

Using the usual encoding of the type σ of strings from an arbitrary atomic type� with σ � � ��� � , the empty string being λx � x, the string made from one character
a being λx � xa and the concatenation operation � being defined as λ f � λg � λx � f � gx �
(which is an associative operator that admits the identity function as a unit), we can
define the object vocabulary as follows (considering σ as an atomic type):

� A2 � � σ � ;
� C2 � � f1 � �������� fd � f � � ���! X " f � �#	 R � f � � �
 f1 � �������� fd � f � � � � ��� Ξ;

� τ2 is defined as assigning the type σ to each c 	 C2.

Then we define the lexicon $ with:

� $ � S � � � σ , then for every X 	 N , $ � X � � � σ ��� ��� ��� σ% &(')
dG � X � times

��� σ � ��� σ (note

that $ � S � � � σ ��� σ � ��� σ);

� for every c 	 C1 that corresponds to a rule
 f � X0 � X1 ����*� Xn � with X0 +� S � and

f �

 x11 ���� x1d1 � f � � ����*��
 xn � f � 1 ���� xn � f � dn , f - � f � �� � �
 f1 �
 y11 ���� y1n � f1 � � ������*� fd � f � �
 yd � f � 1 ���� yd � f � n � fd , f - � � � �
with fi �
 yi1 ���� yin � fi � � � � ξi0 yiσi � 1 � ξi1 yiσi � 2 � ��� yiσi � n � fi �.� ξin � fi �
Let ui � ξi0 � yiσi � 1 � � ξi1 � yiσi � 2 � ��� yiσi � n � fi �.� � ξin � fi � for each i 	0/ 1 � d � f �21 ,
then, with 3xi � xi1 ��� xidi � f � , we have:

$ � c � � λT1 ��� Tng � T1 � λ 3x1 � T2 � λ 3x2 � T3 �4��� Tn � λ 3xn � f � � gu1 ��� ud � f � � ��� ���
Indeed, this is a term of Λ � Σ2 � because of the linearity condition on f and
the fi.

Note that if c : X and X is an atomic type, then f comes from a terminating
rule, f � � �
 f1 � �������� fd � f � � � � and $ � c � � λg � g f1 � � ��� fd � f � � � .
If c correspond to the rule
 fS 5 � S � � S � , then $ � c � � λ t � t � λx � x � .

m-Linear CF Rewriting Systems as Abstract CGs: P. de Groote & S. Pogodalla /78

Then we build I a mapping from the normal terms of Λ � Σ1 � that are of atomic
types onto the derivation trees of G by induction as follows:

� if c � C1, c of type α � N and correspond to the rule α � f � � , I � c ������ 0 	�
�� 0 ��� α
 f � 	 �
� if t � cu1 ����� un (in head normal form) is of type α � N with c � C1 cor-

responding to the rule � f
 α
 α1
 �����
 αm � where ui is of type αi � N , then
m � n (because t is of atomic type) and I � t ��� ��� 0 	�� n

i � 1 i � Dom � I � ui ���
�� 0 �� α
 f �
 and for all i � n
 i � w � Label � I � ui ��� � w ���
� no other case has to be considered since we consider only terms with atomic

type.

By induction on the parse trees of G, is it easy to prove that I is an isomorphism.
Induction hypothesis H � n � : � k � n, � X � N , T � PT k

G � X � iff there exists a unique
t � Λ � Σ1 � , in normal form and of atomic type, such that T � I � t � .� n � 0: � X � N , T � PT 0

G � X � iff there exists X � f � � � R, iff there exists a
unique c � C1 corresponding to X � f � � and c of atomic type X , iff there
exists a unique t � c � C1 such that T � I � t � (by definition of T and I � t �);

� n � 1: if k � n, its trivial by induction hypothesis. If k � n, � X � N , T �
PT k

G � X � iff there exists � f
 X
 X1
�������
 Xn � � R and Ti � PT k � 1
G � Xi � , iff there

exists a unique c � C1 corresponding to � f
 α
 α1
 �����
 αn � and (induction
hypothesis) for all i � n, � !ui � Λ � Σ1 � such that Ti � I � ui � , iff there exists a
unique t � cu1 ����� un such that T � I � t � (by definition of T and I � t �).

We prove ���! G �"� LG � S � in two steps:
� any tuple � x1
������#
 xn � is modeled in Λ � Σ2 � by λ f � f x1 ����� xn

� by induction, we prove that for every t � Λ � Σ1 � that is of atomic type, $%� t �&�
λg � gx1 ����� xn where � x1
�������
 xn � � Lin � I � t ��� .
It is clear if t � c � C1. If t � ct1 ����� tn, with c � C1 corresponding to the
rule � f
 X0
 X1
 �����
 Xn � , and by induction hypothesis, for each i � n, $'� ti �(�
λg � gxi1 ����� xidi) f * with Lin � I � ti ���"� � xi1 ����� xidi) f * � .
So, using the same notations as in the definition of $, we have

$'� t �+� $'� c � $'� t1 � ����� $'� tn �
� � λT1 ����� Tng � T1 � λ ,x1 � T2 � ����� ����� � λh � h ,x1 � ����� $'� tn �
� � λT2 ����� Tng � T2 � λ ,x2 � T3 � ����� ����� $%� t2 � ����� $%� tn �
...

� λg � gu1 ����� ud) f *

79 � Mathematics of Language 8

Since Lin � I � t ������� u1 ��	�	�	
� un � when identifying strings and their coding in
Λ � Σ2 � , this ends the proof (by definition of the ui). �

8.4 Example

This section provides an example from G ��� N � O � F � R � S � the 5-LCFRS defined as
follows:

� N ��� A � S �
� we have the following rules:

r0 : S ��� S f0 ��� x � ��� x
r1 : S � A f1 ��� x1 ��	�	�	
� x5 � ����� x1 ��������� x5 �
r2 : A � A f2 ��� x1 ��	�	�	
� x5 � ����� x1 � a ��	�	�	
� x5 � e �
r3 : A f3 ������� a � b � c � d � e �

G generates the language LG � S � ����� anbncndnen n ! 0 � .
Following the rules given in the previous section to build the ACG " G, we have:

A1 ��� A � S � S � � A2 ��� σ �
C1 �#� r0 � r1 � r2 � r3 � C2 ��� a � b � c � d � e �
τ1 is such that

τ1 � r0 ��� S $&% S �
τ1 � r1 ��� A $'% S
τ1 � r2 ��� A $'% A
τ1 � r3 ��� A

τ2 is the constant function σ

(� S �)��� σ(� S ����� σ $�% σ �*$'% σ(� A ����� σ $'% σ $'% σ $�% σ $+% σ $�% σ �,$'% σ(� r0 ��� λ t 	 t � λx 	 x �(� r1 ��� λT 	 λg 	 T � λx1x2x3x4x5 	 g � x1 � x2 � x3 � x4 � x5 ���(� r2 ��� λT 	 λg 	 T � λx1x2x3x4x5 	 g � x1 � a �-� x2 � b �-� x3 � c �-� x4 � d �-� x5 � e ���(� r3 ��� λg 	 gabcde

For in-

stance, we can compute:

(� r0 � r1 � r2 � r3 �������.� (� r0 �-� (� r1 �-� (� r2 �-� (� r3 �������� (� r0 �-� (� r1 �-� λg 	 g � a � a �-� b � b �-� c � c �-� d � d �-� e � e ������ (� r0 �-� λg 	 g � a � a � b � b � c � c � d � d � e � e ���� a � a � b � b � c � c � d � d � e � e

m-Linear CF Rewriting Systems as Abstract CGs: P. de Groote & S. Pogodalla /80

Conclusion

This paper gives a coding of m-linear context-free rewriting systems into abstract
categorial grammars. After the coding of CFGs and TAGs, it shows ACGs to cover
still a larger class of languages. Identifying their exact expressive power remains
an open problem.

Importantly, it also outlines the ability of ACGs to appear as the kernel of a
grammatical framework in which other existing grammatical models may be en-
coded.

Bibliography

Barendregt, H. P. (1984). The lambda calculus, its syntax and semantics. North-
Holland. Revised edition.

de Groote, P. (2001). Towards abstract categorial grammars. In Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, pp. 148–155.

de Groote, P. (2002). Tree-adjoining grammars as abstract categorial grammars.
In TAG+6, Proceedings of the sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks, pp. 145–150. Università di Venezia.

Michaelis, J. (2001). Transforming linear context-free rewriting systems into min-
imalist grammars. In Proceedings of the conference Logical Aspects of Compu-
tational Linguistics (LACL ‘01), volume 2099 of LNCS/LNAI.

Pollard, C. (1984). Generalized Phrase Structure Grammars, Head Grammars,
and Natural Language. Ph.D. thesis, Stanford University, CA.

Seki, H., T. Matsumura, M. Fujii, and T. Kasami (1991). On multiple context-free
grammars. Theoretical Computer Science, 223:87–120.

Vijay-Shanker, K., D. J. Weir, and A. K. Joshi (1987). Characterizing structural
descriptions produced by various grammatical formalisms. In Proceedings of
the 25th ACL, pp. 104–111. Stanford, CA.

Weir, D. J. (1988). Characterizing Mildly Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania.

