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1. Introduction

The goal of this paper is to demonstrate how Parigot’s Au-calculus (Parigot 1992) may
act as a correct foundation for functional programming enriched with control operators.

The Ap-calculus is an extension of the A-calculus that provides classical logic with an
algorithmic interpretation. The extension is twofold. On the one hand, new syntactic
constructs (p-abstraction and naming) are given in order to encode classical proofs. On
the other hand, the calculus is supplied with new notions of reduction in order to give
algorithmic content to the double-negation rule of classical logic.

Since Griffin’s pioneering work (Griffin 1990), based on Felleisen’s theory (Felleisen et
al. 1987; Felleisen and Hieb 1992), it is known how the notion of control in functional
programming, is related to classical logic through a correspondance akin to the isomor-
phism of Curry-Howard. This analogy, however, is not sufficient to accept the Ap-calculus
as a foundation of the notion of control. Indeed, most of the control operators existing
in functional programming have been introduced for pragmatic reasons related to the
way the functional programs are actually interpreted. Therefore, we must also justify the
Ap-calculus on such a pragmatic basis before accepting it as an appropriate foundation.
This is what we achieve in this paper by developing an environment machine for the
typed Ap-calculus.

The problem we have to solve may be explained as follows. The existing control oper-
ators obey computation rules that are akin to those used in (Krivine 1994). This rule,
using the notation of the Ap-calculus, may be written as follows:

(pa. M) Ag ... Ay = Ma:=Af fAg ... Ap] (%)

Such a computation rule does not correspond to an actual notion of reduction (in the
sense of (Barendregt 1984)): firstly, it is not compatible with the term formation rules
(the rule may only be applied at the outermost level); secondly, it does not satisfy, in
general, the subject reduction property. The equivalent of (%) in the Ap-calculus is the
following rule:

(pa. M) Ag ... Ay = po. Mla:=Af lal(f Ao ... An)], (#%)

which is compatible and satisfies the subject reduction property for any type. However,
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the implementation of this last rule on an environment machine is not straightforward.
The difficulty is that the outermost y-abstraction which occurs in the left-hand side of ()
does not disappear in its right-hand side. Consequently, a straightforward implementation
of (x+) would require contractions of redexes within the bodies of u-abstractions; which
supposes the implementation of some renaming mechanism in order to avoid clashes be-
tween variables. In order to circumvent this problem, we prove that Reduction Rule (k)
may be correctly implemented using computation rules akin to (x).

The paper 1s organised as follows.

The next section is an introduction to the Ag-calculus. This introduction is original
in various respects. The syntax that we use is less restrictive than the one introduced
by Parigot. This, together with new notions of reduction, provides the calculus with
a better handling of negation. We also use intuitionistic sequents (i.e., sequents whose
consequents consist of only one formula) instead of Parigot’s classical ones. This allows
the Ap-calculus to be seen as a classical natural deduction system a la Prawitz. Finally,
we give a uniform treatment of the different notions of reduction of the calculus, by
expressing them in terms of the usual substitution together with linear 3-contractions.

In Section 3, we briefly review the Krivine machine. We first explain how 1t works when
using A-terms written in the usual syntax. Then we present the version of the machine
that operates on terms written in de Bruijn’s nameless notation.

In Section 4, we discuss the notion of weak head reduction in the Ay-calculus. Roughly
speaking, weak head reduction strategies, for the A-calculus, do not contract g-redexes
under the A-abstractions. By analogy, one could think that weak head reduction strategies
for the Ap-calculus should not contract redexes under the p-abstractions. We explain why
this view is wrong and we define the proper notion of weak head normal form for the
Ap-calculus.

Section b provides the Ap-calculus with de Bruijn indices. This allows a calculus of
explicit substitution, based on Aoy (Curien et al. 1992), to be defined. This is carried
out in Section 6, which is rather technical.

Finally, in Section 7, we derive an abstract machine (which we call the pK-machine)
from the weak head reduction strategy introduced in Section 4. We prove its correctness,
and its completeness in the sense that it allows the weak head normal form of any term to
be computed. Then, a careful analysis of our completness proof leads us to a simplification
of our machine. This gives rise to a realistic implementation of the Ap-calculus where
p-abstraction and naming correspond respectively to saving and to restoring the current
continuation. In fact the resulting machine is akin to the ones described in (Streicher
and Reus), with the difference that it is proven to correctly implement typed reductions
which satisfy the subject reduction property at any type.

2. The Ap-calculus
2.1. Context-free syntax

The presentation of the Ap-calculus that we give here differs from the original one. We
introduce a notion of cotype and use intuitionistic sequents instead of classical ones.
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With this presentation, the Au-calculus may be seen as a natural deduction system and
its rules appear as instances of natural deduction rules due to Prawitz and Gentzen. It
also allows us to simulate the different notions of substitution that we need by using the
usual substitution together with linear S-reductions. Consequently, it allows us to give a
uniform treatment to the different notions of reduction which we use.

We also adopt a slightly more liberal syntax than the original one. This relaxation of
the syntax, which is discussed in Subsections 2.6, is related to the handling of negation
and was first introduced in (de Groote 1994b).

The terms of the Ap-calculus are built from two disjoint alphabets of variables: the
set of A-variables, and the set of p-variables. The context-free syntax of the language is
given by the following grammar:

T 2= x| A7) | (TT) | (pa.T) | LalT,

where @ ranges over A-variables, and « ranges over p-variables. A Ap-term of the form
pa. T is called a p-abstraction, and a Ap-term of the form [« ]7T is called a named term.
The operator p is a binding operator. Therefore, the free occurrences of a u-variable o
in T become bound in pa.T. We write FV(M) for the set of free A and p-variables of
the Ap-term M.

The usual relation of a-conversion extends naturally to the case of bound p-variables.
In order to be protected from clashes between free and bound variables, we adopt Baren-
dregt’s variable convention (Barendregt 1984) for p-variables as well as for A-variables.

2.2. Typing rules

The type system of the Ap-calculus in (Parigot 1992) amounts to second-order classical
logic. In this paper, for the sake of simplicity, we restrict our presentation to the proposi-
tional case (i.e. simply typed Ap-calculus). This limitation does not affect the generality
of our results. Indeed the presence of first and second-order quantifiers does not require
new specific notions of reduction but simply allows more terms to be typed. Therefore,
since our abstract machine reduces untyped terms (i.e., typable terms but without typing
information), it also works in the second-order setting. In fact, taking first and second-
order quantification into account would only complicate the strong-normalisation and
subject-reduction proofs.

The set of types, which is built on an alphabet of atomic propositions, is given by the
following grammar:

T o= L] A (r=1),

where | is the distinguished atomic proposition that stands for absurdity, and A ranges
over atomic propositions. We also introduce the set of cotypes by saying that 7+ is a
cotype whenever 7 is a type.

T In Section 5, we provide a formal treatment of the notion of free and bound occurences in terms of
de Bruijn indices.
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The type system of the Ap-calculus is then defined by means of a sequent calculus.
The sequents are of the form
'v-"T:r1

where 7 is a type, T 1s a Au-term, and I is the typing context. Such typing contexts are
defined as sets of declarations of the form (x : ) or (a : pt), where z is a A-variable, a is
a p-variable, ¢ is a type, and pt is a cotype, and where each A- or p-variable is declared
at most once. The typing rules are the following:

Logical rules
Tyez:7w x:7 (ID)

'e:ow M:r1 '-M:0—>1 I'-N:o
(ABS) (APP)
I'-Xe.M:0—T1 I'- MN: 1
Naming rules
F,OzZTJ'I—MZT F,OzZTJ'I—MZJ_
T (NAME) (MUABS)
a:7 w [alM: L ' pa. M1

Notice that Axiom (1D) and Rule (aAPP) allow for implicit weakening and implicit con-
traction respectively. This includes weakening and contraction of cotypes, which amounts
to right weakening and contraction. In fact, it is not difficult to see how the above type
system corresponds to classical logic. Intuitively, cotypes corresponds to negated formu-
las. With this interpretation in mind, naming corresponds to an instance of Gentzen’s
elimination of negation (Gentzen 1955), and p-abstraction to Prawitz’s double negation
rule (Prawitz 1965). That is, using the cotype notation:

[A*]

At A4 1
1 A

Nevertheless it is important to note that the negation corresponding to the cotypes is
not a connective and that cotypes may not appear within subformulas. To summarise,
the Ap-calculus deals with two sorts of negation:

— the usual negation, which is a connective; this negation is defined as =7 = 7 — L;
— a meta-negation, which corresponds to the cotypes; this negation, which is not a
connective, is involutive de facto.

This distinction between two notions of negation, which is not mandatory (see (Rehof
and Sgrensen 1994)), gives an interesting structure to the calculus. Indeed, Parigot’s Apu-
calculus may be seen as a natural deduction system dealing with two kinds of hypotheses:
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usual hypotheses that are handled intuitionistically (these hypotheses correspond to A-

variables), and negative hypotheses for which reductio ad absurdum is allowed (these

hypotheses correspond to p-variables). Let us illustrate this by giving a proof of == A —
A:

y:—A,x: Az A
y: A o AL
y:—A o At ey -4 y:——A o At v Az lalz oA
y:—=A o At ey lale) L

z: A v [ale: L

bl

y: A pay(Aelalz) t A

- Ay poy(Aelalz) i m—A— A

2.3. Main reductions
The computational principle of the A-calculus is the g-reduction relation:
(Az. M) N —3 M[z:=N] (8)

where M[z := N] denotes the usual capture-avoiding substitution. Consequently, 3-
reduction is also the main reduction rule of the Ap-calculus. Nevertheless, because of the
double negation rule, S-reduction is not sufficient. Consider the following proof scheme:

[z : A]
M:B
——  ABS
[@: (A= B)?*] Xe.M:A—B
lal(Az. M) : L

(...lal(z. M)..): L :
(pa. ...lal(Ae.M)..): A — B N:A
(pa. ...lal(Az. M)..)N : B

APP

This proof contains a hidden redex, namely (Az. M) N. Indeed the above proof is not
normal in the sense that it does not satisfy the subformula property, which is due to the
fact that an introduction rule (ABs) is followed by an elimination rule (APP). However,
because of the use of a double negation rule, this elimination rule does not immediately
follow the corresponding introduction rule. Consequently, the redex (Az. M) N does not
actually appear in the proof and this is why we say that it 1s hidden.

In order to turn hidden redexes into actual ones, some reduction rule other than £ 1s
needed. This new reduction rule, called p by Parigot, allows the above proof scheme to
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be reduced as follows:

[z : A]
M:B .
——  ABS .
Ae. M :A— B N:A
APP
[ : BY] (Ae. M)N : B

[oz]((/\x.M)N) il

(...lal((Az. M)N)..): L
(pa. ... lal((Ae. M)N)..): B

Informally, the notion of p-reduction may be explained as follows. Roughly speaking, in
a p-abstraction pa. M of type A — B, only the subterms named by « are necessarily of
type A — B. Hence, when such a u-abstraction is applied to an argument N of type A,
this argument must be passed on to the subterms named by a.

In order to formalise the notion of p-reduction, we introduce some auxiliary definitions.
Firstly, we temporarily extend the syntax of the Ap-calculus by generalising the notion
of named term. The grammar that we consider is the following;:

T 2= x| AT) | (TT) | (pe.T) | [a]T | INIT,
N == Xf.T,

where any name A° f.T" is such that T" contains one and only one free occurrence of the
variable f. For instance, A° f. f # is a name while A° f.z and A° f. f (f ) are not.
Secondly, we give typing rules for the new terms:

f:rw M:L (ABS®) Le XfM:rt '-N:7
ABS
L+ XNf. M:7t L~ [Af MIN:L

(NAME®)

where, in Rule ABS® the condition that there is a unique occurrence of f in M must be
respected.
Finally, we introduce an auxiliary reduction rule that amounts to linear F-reduction:

[Xf. MIN =40 M[f:=N] (8°)

It is important to note that this 3°-reduction relation is linear because of the unique
occurrence condition for f. Consequently, it is obvious that the terms of the extended
calculus are strongly 5°-normalisable. Moreover the relation of 3°-reduction is confluent
and the #°-normal forms of the extended terms correspond to pure Ap-terms. This allows
us to keep to the syntax of Subsection 2.1 by working with equivalence classes of extended
terms modulo (°-equivalence. From now on, the symbol = that stands for syntactic
equivalence will denote strict syntactic identity modulo o and (3°-conversion. Therefore
the extended syntax and the notion of 3°-reduction must not be seen as a real extension of



An environment machine 7

the Ap-calculus but rather as meta-linguistic means—akin to the notion of substitution,
for instance—that will be useful in formalising different notions of reduction.
With all the above apparatus, the notion of u-reduction becomes straightforward to

define:
(po. MYN =y p3. Ma:=X°f.181(f N)] (1)

2.4. Auziliary reductions

The main notions of reduction of the Ap-calculus are 5 and p: the relation of F-reduction
implements the computational principle of intuitionistic logic while the relation of u-
reduction gives an algorithmic interpretation to the double negation rule.

In addition to these two reduction relations, we will consider three other notions of
reduction whose computational contents are less important. These notions of reduction
do not allow hidden -redexes to become apparent. Nevertheless, they are helpful because
they allow useless inferences to be eliminated.

A first auxiliary notion of reduction is Parigot’s renaming (Parigot 1992). Consider the
following proof scheme:

B:rt a:rt v M. L
F,B:TJ‘l—poz.M:T
T, 8:75 v [B1(pa. M) : L

The operation of naming is, in some sense, the inverse of the operation of u-abstraction.
It is therefore useless to apply an operation of naming on a g-abstraction. The relation
of renaming allows such detours to be eliminated. Let us write M? for the Au-term
obtained by replacing, in M, each free occurrence of a by . The above proof scheme
may be reduced to the following:

F,ﬁZTJ'I—MgZJ_

The second notion of reduction that we introduce in this section is what we call elim-
wmation of absurd weakening. This notion of reduction is related to the possible cotype
declarations of the form (a : L1). Such declarations are clearly useless. In a classical
sequent calculus such as Gentzen’s LK, they would correspond to absurd conclusions

! The main advantage of our approach is that we are able to define the different reduction relations
that we study by using only the usual notion of substitution. Consequently, we get for free calculi of
explicit substitutions for the Au-calculus, reminiscent of Audebaud’s (Audebaud 1994).
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obtained by right weakening. Consider the following proof scheme:

Da:lt v M: L
' pa. ML

From a logical point of view, the last inference of this proof scheme has no effect since
one infers 1 from L. Nevertheless, we may not reduce the above proof scheme simply to
I' v M : L because of the possible free occurrences of o in M. However, each time «
occurs free in M| it has been introduced by a naming rule of the following form:

Aa:lt - N:L
Aa:lt v lalN:L

(%)

Inference rules such as (%) are also useless and may simply be skipped. Let us write M,
for the term obtained by removing, from M, each free occurrence of « (i.e. replacing each
subterm of the form [a] N by N). Then, Proof (¥) may be reduced as follows:

FFMQ:L

Finally, the third auxiliary notion of reduction we shall use is reminiscent of the notion
of np-reduction in the A-calculus. Consider the following derivation:

La:tt+ M:r

Lot [alM: L

' palalM 1
Now, if the declaration (a : 71) is irrelevant in assigning 7 to M (i.e., if @ does not occur
free in M), the above derivation may be reduced to the following one:

Fl—M:T

We have given a proof-theoretic motivation to three notions of reduction: renaming (p,
for short), elimination of absurd weakening (¢), and an n-like reduction that we will call
f. Now we have to define these notions of reduction at the level of untyped terms since
we do not want the notion of type to play any dynamic part when evaluating a Ap-term.

Roughly speaking, elimination of absurd weakening amounts to stripping off the oc-
curences of a p-variable from a Ap-term. Nonetheless, this operation does not make any
sense if a given typing constraint is not satisfied: the p-variable that is stripped off must
be of cotype L*. Consequently, the problem in defining the notion of e-reduction in the
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untyped setting is to satisfy the typing constraint without stating an explicit typing con-
dition. Now, observe that any well-typed p-abstraction pa. M of type 7 is such that the
subterm M is of type L and the p-variable « is of cotype 7+ . Therefore, whenever a term
of the form pa. pB. M is well-typed, the subterm pf. M must be of type L and, conse-
quently, the y-variable 3 must be of cotype L*. This observation suggests the following
reduction rule:?

po.pfB. M —. pa. M[B:=X°f. f] (¢)

On the other hand, the relation of renaming makes perfectly good sense when expressed
in an untyped framework (indeed, it satisfies the subject reduction property). Hence, a
first attempt would be to specify the notion of p-reduction as follows:

lal(pB. M) = M[3:=X°f.[al f] (% * %)

Unfortunately, the relation of reduction obtained by putting € and (# * %) together does
not satisfy the Church-Rosser property, as is shown by the following counterexample:

lal(pB.py. M) =, py.M[B:=Xf.lalf]
Lad(uf.py. M) —. Lal(pB. Mly:=X°f. f])

The problem is that p-contraction provokes the disappearance of the context pfS.[ ] that
enables the e-contraction. In order to circumvent this difficulty, we state the p-reduction
rule as follows:

po 1B (py. M) =, pa. M[y:=X°f.[81f] (r)
Finally, there is no difficulty in stating Rule 6:
poalalM =9 M (o & FV(M)) (6)

2.5. Confluence, subject reduction, and strong normalisation

Let — stand for the relation of reduction induced by the five notions of reduction g, p,
e, p, and 6. This relation satisfies the usual properties of confluence, subject reduction,
and strong normalisation.

Proposition 2.1. (Confluence) TLet M, N, O be (untyped) Ap-terms such that M — N
and M —» O. Then there exists a Apy-term P such that N — P and O — P.

Proof. The property may be established using a generalisation of the Tait-Martin-Lof
method, which is due to Klop (KLop et al. 1993). Details are given in (de Groote and
Py 1996). U

In order to establish the subject reduction property for a relation of reduction con-
taining G, we need the following substitution lemma, whose proof (in the case of the
simply-typed A-calculus) may be found in any text book.

§ The e-rule that we introduce is, in fact, reminiscent of Felleisen’s C, ., reduction rule (Felleisen and
Hieb 1992).
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Lemma 2.2. Let T' be a typing context, o and 7 be types, # be a A-variable, and M and
N be Ap-terms such that T, 2 :o0 - M :7and T+ N :o, then T v M[z:=N]:7. [

Similarly, in order to handle the notions of u, ¢, p, f-reduction, we need another
substitution lemma, whose easy proof is left to the reader.

Lemma 2.3. Let ' be a typing context, ot be a cotype, 7 be a type, a be a p-variable,
M be Ap-term, and A° f. N be anamesuch that T', a : ot + M :7and T + X°f. N : ot
then T' v M[a:=X°f.N]: . ]

Remark that we need only one substitution lemma for the four notions u, €, p, 6-
reduction. This is because all four have been defined using the usual substitution together
with the notion of name.

Proposition 2.4. (Subject Reduction) Let T' be a typing context, T be a type, and M
and N be Ap-terms such that M = N.If I' = M : 7 then ' = N : 7.

Proof. The proof is as usual, using Lemmas 2.2 and 2.3 for the the base cases. O
Finally, we state the strong normalisation property.

Proposition 2.5. (Strong Normalisation) Let T' be a typing context, 7 be a type, and
M be a Ap-term such that I' v M : 7. Then there is no infinite sequence of Gupecf-
contractions starting from M.

Proof. The proposition may be established using standard techniques. Details are
given in Appendix A. ]

2.6. Relation to Parigot’s original definition

As we said previously, the syntax that we have adopted 1s slightly more liberal than
the one introduced by Parigot (Parigot 1992). Tt is immediate that any Au-term typable
according to Parigot’s (first-order) system is typable according to ours. Moreover, the
notions of i and p-reduction that we have defined correspond exactly to the original ones
when dealing with Parigot’s original syntax. The converse does not hold. We justify this
choice in this subsection.

Parigot defines two syntactic categories of terms: the unamed terms (') and the named
terms (V). The grammar is the following:

(e U) | (U D) | (por. V),

The naming rules given by Parigot are also different from ours because they do not
introduce or eliminate the absurd proposition L. In fact, what they introduce and elimi-
nate amounts to a meta-notion of absurdity, which is denoted by an absence of formula.
Hence, using our notations, Parigot’s rules are the following:

La:mt '+ M: 7 La:mw M:
T (NAME) (MUABS)
o™ w[alM: ' pa. M 1

bl
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Consequently, the introduction and elimination of propositional absurdity appear as par-
ticular cases of p-abstraction and naming:

' M: ' M: 1
——— (L-INTRO) —— (L-BLIM)
P~ puf. M: L L'+ [yI1M:

where 3 does not occur free in M, v is not declared in I'; and with the special convention
that declarations of the form (v : L1) are not mentioned.

With these conventions, the proof of =——A — A that we have given at the end of
Subection 2.2 becomes the following:

y:—A,x: Az A
y:——A o AL,
y:——A a: AL 2 A v pflale: L
y:——A o At vy -4 y:—A oAt v dzopflalz i —A

y:——A o At ey pblale) L

y:——A o AT e [y (y Qe pBlale))

y:mA - pa ]l (y (A pfb.lalx)) A

= Aypal [yl (y Az pB.lalr)) i =—A — A

r:Av [alz:

Parigot’s syntax offers the advantage that the notion of e-reduction is not needed.
Indeed, terms of the form pa. u3. M being forbidden, they are replaced by terms of the
form pa. [y]1(uB. M), where v is a free variable of cotype L+. Consequently, elimination of
absurd weakening (i.e., £) may be mimicked by renaming (i.e., p). However, this apparent
economy of concepts induces some odd properties. In the above example, the Ap-term
Ay. pa [v](y (Az. pf.lalz)) stands for a completed proof. However it contains a free
p-variable. This phenomenon is due to the fact that the p-variable that is introduced
by the absurdity elimination rule is not declared in the typing context. Consequently
it 1s condemned to remain free. This is not quite satisfactory because, from a logical
point of view, this free u-variable corresponds to a useless hypothesis that has not been
discarded. Moreover, the presence of undeclared free variables becomes a real impediment
when representing variables by means of de Bruijn indices.

3. The Krivine abstract machine
3.1. The K-machine with named variables

In this section, we review the abstract machine of Krivine, which is an environment
machine that evaluates A-terms. We give a first version of it that reduces A-terms written
in the usual concrete syntax. In the next subsection, we give a lower level version of the
machine that works on A-terms in de Bruijn’s notation.

The Krivine abstract machine (K-machine, for short) computes weak head normal



Ph. de Groote 12

forms (if any) by contracting head f-redexes. In fact, it can be seen as a call-by-name
variant of Landin’s SECD machine (Landin 1964).

Roughly speaking, the state (or the dump) of the K-machine is given by a triple
(M, &), S), where M is the A-term to be reduced, £ is an environment that assigns
values to the free variables of M, and & is a stack that contains the arguments of M.
More formally, let A denote the set of the A-terms and X' the set of A-variables. The set
Dump of the states of the K-machine is defined as follows:

Dump = Closure x Stack
Closure = A x Env
Env = X 2> Closure
Stack = Closure®

Then, the following transition system defines the possible moves of the machine:
() (& &), 8) = (£x), )

(i) (e M, &), cl =8y = (M, Elcl/x]), S)

(i) ({(MN,&),S) = (M, E),(N, &) =8

where the infix operator “::” denotes the cons operation, as in SML.

Intuitively, a closure stands for a term together with a list of substitutions for its free
variables. Then, to evaluate a (free) variable consists in performing the corresponding
substitution (Transition i). To evaluate an abstraction when the stack of arguments is
non-empty consists in contracting a S-redex by adding the corresponding substitution to
the environment (Transition ii). Finally, to evaluate an application consists in turning the
argument of the application into a closure and in pushing it on the stack (Transition iii).

3.2. The K-machine with de Bruyn indices

When using concrete bound variables, one has to consider A-terms up to a-congruence,
which can be intricate when implementing terms on a machine because it may involve
variable renaming. A way of circumventing this problem is to use de Bruijn’s nameless
notation (de Bruijn 1972), which is a formalism particularly well suited to automatic
manipulation. The idea 1s to represent any bound occurrence of a variable by means of
an index. This index, which is a positive integer, corresponds to the number of A’s lying,
within the syntactic tree of the term, between the bound occurrence it represents and
the corresponding binding A. For instance, the term Az.z (Ay.zy) is written as follows
using de Bruijn indices: AO(A10).
More formally, the set of nameless terms is defined by the following grammar:

T == n | (AT) | (TT)

where n is any positive integer. Then the correspondence (=) between the usual concrete
syntax and de Bruijn’s nameless notation is given by the following system:

I'-2z=n

'er2z=0
Iy z=>n+1
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Mz M= M ' M =M ' - N= N
I = dz. M =AM’ '- MN= M N’

where I' stands for a sequence of A-variables.

The above system illustrates that the de Bruijn indices may be interpreted, from a
computational point of view, as addresses in a stack. Indeed, when an index n stands for
a free variable, it corresponds to the n'" variable (counting from zero) in the sequence
on the left of the turnstile (starting from the right of the sequence).

In the previous section, we have defined an environment to be a function from X’ to
Closure, undefined almost everywhere. A usual way of representing such functions whose
definition domains are finite is by means of finite lists. This observation, together with
the remark about the computational interpretation of the de Bruijn indices, explains why
environments can be represented as stacks. This leads to a machine where there is no
technical difference between environments and stacks.

Let A denote the set of de Bruijn’s nameless terms. The states of the K-machine (with
de Bruijn indices) is specified by the following equations:

Dump = A x Env x Stack
Closure = A x Env
Env = Closure”
Stack = Closure”

The moves of the machine are specified by the following transition system:

(i) (0, (M, &) =& S) - (M, E,S),

(i) (m+1,el &8 — n €&, S8),

(i) (MM, &, ¢ =8y = (M, cl €, 8),

() ((MN), & 8) = (M, & (V&) ::8).

The striking simplicity of this definition comes mainly from the fact that the K-machine
is designed to compute the weak head normal form (if any) of some given A-term. For this
reason, the machine does not perform any reduction or substitution under a A-abstraction
and, consequently, there is no need for any updating of the de Bruijn indices.

Now, in order to adapt the K-machine to the Au-calculus, we have two tasks to face.
The first one is to define the notions of weak head reduction and weak head normal form
for the Ap-calculus. The second one is to adapt de Bruijn’s nameless notation to the
Ap-terms. These two tasks are the subjects of the next two sections.

4. Weak head reductions in the Ap-calculus

The weak head reduction strategy —»,, in the case of the A-calculus, may be specified
by the following formal system.

M—)hN M—)hN Nﬁ)hO

Ao MVN = Mz=N]  — Y M
Az M)N = Ml:=N] - r5—5 h M=, O
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This system specifies the two following facts that characterise the weak head reduction
strategy:

— redexes occurring in the body of an abstraction are not contracted (absence of Rule £);
— redexes occurring in the argument of an application are not contracted either (call-
by-name strategy).

Now, in order to adapt this reduction strategy to the Au-calculus, we must certainly
complete the above system with the following axioms:

(pa. MY N =, pae. Mee:=Af el (f N))
po. pfB. M =g po. M[B:=Af. f]

po 181 (py. M) = po. My:=Af. 151 f]
polalM —, M a & FV(M)

Then, the question is: should we add inference rules as well in order to allow redexes to
be contracted inside p-abstractions and named terms? At first sight, the answer could be
no because of an analogy between A- and p-abstraction, on the one hand, and between
application and naming, on the other hand. Such an answer, however, does not really
make sense as will be demonstrated by a simple example.

One of the properties of the weak head reduction strategy (which explains why it is
used in the case of actual programming languages) is that it allows the actual normal
form to be computed when the term to be reduced is of atomic type. Now, consider the
following Ap-term where x is a constant of atomic type:

polal ((Ae. z) (uB. [alx))

This term may be reduced as follows:

polal((Ae. z) (pf.lalx)) —p polal(uf.lalx)
—,  pa.lalx
—9 K

In order to keep the property that the weak head reduction strategy completely reduces
any term of atomic type, we must accept the above reduction sequence as belonging to
the strategy. But this implies that we allow redexes to be contracted inside p-abstractions
and named terms. Consequently, we have to add the two following rules to the system
specifying the weak head reduction strategy:

M—)hN M—)hN
po. M —y po. N lalM —p [alN

In the case of the A-calculus, the weak head reduction strategy is completely specified
by the following computation rule:

(/\l‘M)AoAlAn—)M[x:AO]AlAn
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We end this section by giving similar rules for the Ap-calculus. These rules, for a reason
that we will explain, are stated in the two contexts pa.[al[ ] and pa.[ ]. They are the
following:

polal((Ae. MY Ag Ay -+ Ap) = polal(Mz:=Agl Ay -+ Ap) (1)
po. Qe MYAg Ay - Ap =3¢ pa. Mz:=Agl Ay -+ Ay (2)
g L) (U M) Ag Ay - Ag) —o por M[B:=NF.1ad(f Ao Ay A)]  (3)
po (B . M) Ag Ay -+ A —e pa. M[B:=XF.fAg AL Ay (4)

Computation Rules 1 and 2 amount simply to the usual A-calculus computation rule
stated in the two contexts of interest. On the other hand, Rules 3 and 4 are specific to the
Ap-calculus: they involve several p-reduction steps. In addition, Rule 3 performs one p-
reduction step while Rule 4 performs one e-reduction step. We also adopt the convention
that Rules 3 and 4 include the particular case where the sequence of terms AgA; - - A,
is empty (in which case they simply amount to p and &, respectively).

Because our computation rules are stated in the two contexts pa.[a][ ]and pa.|[ ],
the p-abstractor “p3” that occurs in the left-hand sides of both Rules 3 and 4 disappears
in their respective right-hand sides. This will appear as a key property when defining the
p I -machine.

Rules 1 to 4 are consistent with the weak head reduction strategy as shown by the
following proposition.

Proposition 4.1. Let M and N be two Ap-terms such that M —. N. Then, M —», N.
Proof. By a straightforward computation. ]

The converse is not true. Consider, for instance, the following term:
po lal(lad (Az. z) *)).

It cannot be reduced using our computation rules. In fact this term is not typable, and
the results of Section 7 will provide a weak converse to proposition 4.1: any closed typable
Ap-term may be reduced to its weak head normal form using the computation rules.

5. Ap-calculus and de Bruijn indices

To adapt de Bruijn’s nameless notation to the Ap-calculus is almost straightforward.
The only degree of freedom consists in deciding whether both A- and p-variables will be
represented by the same set of indices or by two separate sets. The first choice, which we
adopt here, results in a machine with one environment. On the other hand, the second
choice would result in a machine with two distinct environments: one for the A-variables,
and another one for the p-variables. But in fact, such a difference is inessential.

We give below a formal system which defines both the context-free syntax and the
typing relation at the same time.
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Logical rules

I'n:A I'-n:A
FHLAwv0:4 _ T
I'Brntl:A B +mn+l1: A
''Aw- M:B '-M:A—> B ' N:A
' AM:A—B '- MN:B
Naming rules
[+ [n]: At [+~ [n]: At
LAY ~ [0]: AL - T T - T
I''Br[n+l1]: A B+ n+1]: A
LAY~ M L [+ [n]: At ' M: A
' puM:A ' [nlM:L

Remark that the above system makes explicit the analogy existing between application

and naming.
The relation between the nameless notation and the usual concrete syntax is given by

adapting the system of Section 3.2:

I'-2=n I'-2=n
Nevz=0
INyvr 2= n+l INar z=n+l
Mz M= M ' M =M ' - N= N
I = dz. M =AM’ I'- MN= MN'
I' + [o] = [n] I' = [o] = [n]
I'a + [a]l = [0]
I'z v+ [a] = [n+1] I3+ [a]l = [n+1]
Nawv M= M I' - [a] = [n] ' M= M
'+~ pa. M= uM’ I' - [alM = [n1M'

We end this section by stating a proposition that relates the two formal systems given
above to the typing system of Section 2.2.

Proposition 5.1. Let T' be a typing context. Let I be the list of variables declared
in T and let T be the list of corresponding types and cotypes (I and T* correspond
respectively to the first and the second projections of the components of T'). Let M be a
Ap-term and M’ be a nameless Ap-term such that T/ v M = M’. Then, T' v+ M : A if
and only if I v M': A.

Proof. Straightforward. U
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6. Ap-calculus and explicit substitutions

As we have already stressed, by defining our notions of reduction in terms of the usual
substitution together with linear S-reductions, we get calculi of explicit substitutions for
free. This section is devoted to the introduction of such a calculus, based on Aoy, (Curien
et al. 1992). This calculus, which is merely technical, is only needed in the course of the
proof of Proposition 7.3 (which is given in Appendix B). Hence, the reader who is not
interested in such technicalities may proceed directly to the next section.

We do not provide a full account of the Aoy-calculus. We refer the interested reader
to (Curien et al. 1992). We just give here the syntax of the Ap-term with explicit substi-
tutions, together with the associated rewriting system.

The set of terms is that of the Au-calculus extended with the construction M {s}, where
s 18 a substitution. The precise syntax is the following:

T == n| (M) | (TT) | () | In1T | INIT | T{s},
N == (X°T)
s = dd | 1| T-s|fi(s) | sos.

Remark that the above syntax is based on the extended syntax of Section 2.3. Indeed,
to make sense, a caculus of explicit substitutions for the Au-calculus must also provide
an explicit treatment of 5°. It is to be understood that A° stands for a linear abstractor:
(A°T) is a well-formed name if and only if one and only one de Bruijn index in T refers
to the outermost A°.

We will use A, to denote the set of pure Ap-terms (with de Bruijn indices), and A,
to denote the set of Au-terms with explicit substitutions. Hence, we have that A, C Ay,

Using the formalism of the Aoyg-calculus, the notions of 3, y, €, and p-reduction, are
specified respectively as follows.T

(AM)N  —pg M{N -id} (Beta)
EM)N = p(MOCTION{To 1) 1) (M)

ppM = (pMA{N0 - id}) (Epsilon)
punlpM =, (pM{A[n+110 - d}) (Rho)

The notion of #°-reduction is explicitly handled by the following rule:
[NMIN —geo M{N-id} (Beta®)

Finally, the rewriting system (—,) which allows the substitutions themselves to be han-
dled is given in Appendix C.

The next three propositions relate the notions of 3, i, ¢ and p-reduction, as introduced
in Sections 2.3 and 2.4, to the present calculus of explicit substitution. The three of them
may be established by adapting proofs given in (Curien et al. 1992). We leave it as a
tedious but not difficult exercice to the interested reader.

T We do not give any rule corresponding to 6 because, on the one hand, it will not be needed in the
course of the proof of proposition 7.3 and, on the other hand, the explicit substitution formalisms are
not well suited to n-like rules.
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Proposition 6.1. Let r stand for 3, p, ¢ and p, and let v’ stand for ', p/, & and p’,
respectively. Let M, N be Ap-terms, let M’ € Ay, and let T' be a list of variables such
that ' = M = M'.If M —, N then there exists N’ € A, such that M’ —», /550 N’ and
' N=N" ]

The rewriting system (—,) given in Appendix C is terminating. On the other hand,
any Ap-term is strongly §° normalisable. It is not the case, however, that any M € A,
is strongly of’°-normalisable—see (Mellies 1995). Nevertheless, it is easy to show that
the o3°-normal form of any M € A,,—denoted, o/3'°(M)—exists. Moreover, for any
M € Ao, we have 03°(M) € A,. This property allows us to state a kind of converse to
Proposition 6.1.

Proposition 6.2. Let r stand for 3, p, ¢ and p, and let v’ stand for ', p/, ¢ and p’,
respectively. Let M be a Ap-term, let M’ N’ € A,,, and let T be a list of variables
such that T ~ M = ¢f°(M'). If M’ —,» N’ then there exists a Ap-term N such that
M —», Nand T' v N = ogf’°(N'). ]

It is possible to refine the above proposition by introducing the notion of external
contraction. Intuitively, an external reduction is a reduction step that does not take place
within a substitution. More precisely, when defining formally a relation R of contraction
reduction, one states a congruence rule for each term formation rule. In particular, in
the present setting, one must state the following rule:

S$1 —R 52

T{Sl} —R T{Sz}

By dropping this rule (and consequently, all the rules corresponding to substitution

formation rules), one defines the relation of external contraction—denoted, —&*.

Proposition 6.3. Let r stand for 3, p, ¢ and p, and let v’ stand for ', p/, ¢ and p’,
respectively. Let M be a Ap-term, let M’ N’ € A,,, and let T be a list of variables
such that T' &= M = o@°(M'). If M’ —5* N’ then there exists a Au-term N such that

M=, Nand T~ N = ¢g"°(N'). U
We end this section by introducing some notations that we will be needed in the sequel.
Let “)” denote the empty sequence and “::” denote the cons operation. We define the

function

APP  Apo X (Aus)™ = Apo

that applies a term to a list of arguments as follows:
(i) APP(M, ) =M,
(i) App(M, N = L)=ApPP(M N, L).
If s is a substitution, we write APP(M, L{s}) for the term defined as follows:
(i)  ApP(M, u{s}) = M,
(it)  APp(M, (N :: £){s}) = ArP(M (N{s}), L{s}).
The advantage of the latter notation is that it allows us to write the following substitution
rule:

(APP(M, £)){s} —»- APP(M{s}, L{s}),
which generalises Rules (App) of Aoy, (See Appendix C).



An environment machine 19

7. An environment machine for the Au-calculus
7.1. Overview

The reader who is familiar with applicative control operators (e.g. catch and throw, or call
with current continuation) will have noticed a strong similarity between such operators
and the Ap-calculus. Indeed the intutitive operational interpretation of a p-redex is as
follows: take the list of arguments of the p-abstraction and pass it on to the subterms
named by the corresponding p-variable. Now, in the K-machine, the list of arguments
corresponds to the stack. This suggests the following moves: when encountering a pu-
abstraction, save the stack on the environment; when encountering a u-variable, restore
the corresponding stack. These rough ideas lead to a straightforward generalisation of
the Krivine abstract machine.

Let A, denote the set of Au-terms (in concrete syntax), and A denote the set of u-
variables. Define the following domains and moves:

Dump = Closure x Stack
Closure = A, x Env
Env = (X fin, Closure) & (A fin, Stack)
Stack = Closure®

i

( S) = (E(x), S)

El E el 28 — (M, Elcl/x]), S)
(

(

)
i ggMN, £),8) = (M, &), (N, €):8)
iv)  ((pe. M, E), S) — (M, £[S/a]), u)
v)  ((lelM, &), 1) — (M, &), E(a))

The above machine corresponds actually to the abstract machine which we shall derive

~—

from the computation rules of Section 4. However, as we explained in the introduction
of this paper, the reduction implemented by Moves (iv) and (v) seems unsound at first
sight: it satisifies the subject reduction property only at type L, while the consistency of
classical logic implies that programs (i.e., closed terms) of type L cannot exist. Conse-
quently, in order to prove the correctness of our abstract machine, some detour will be
needed.

7.2. The pK-abstract machine: preliminary definition

As we explained in Section 3.2, the simplicity of the K-machine comes from the fact that
the redexes occurring within the body of an abstraction are not reduced.

Unfortunately, with the Ap-calculus the situation is not as simple. Indeed, when com-
puting the weak-head normal form of a Ap-term, it could be necessary to perform reduc-
tions and substitutions under a p-abstraction. This is a consequence of the following fact:
when contracting a p-redex, the p-abstraction involved in this redex does not disappear.

Nevertheless, since we are only interested in the evaluation of closed expressions, we
may use the computation rules of Section 4. Consider, for instance, Rule 3. If we concen-
trate only on the redex (and thus forget the context in which it occurs), Rule 3 seems to
suggest the following reduction relation:



Ph. de Groote 20

(/JﬁM)AoAlAn - M[ﬁz/\f[a](fAOAlAn)] (*)

This relation >, however, is not a notion of reduction because it is only correct when
the left-hand side occurs in the context pe.[a][ | while the right-hand side occurs in
the context par.[ ]. Therefore a machine implementing Transition (*) must also record
some contextual information. Therefore, we will provide our abstract machine with an
additional component, namely, a Boolean state variable that will indicate whether the
content of the machine must be interpreted in the context p[0][ ] or u[ ].

The next step in the design of the g/K-machine is to observe that the substituted term
in (%), i.e.,

A L) (f Ag A -+ Ay)

is completely characterised by the list of arguments Ag, Ay, ..., A,, which corresponds
to the content of the stack of the machine. So, as we suggested in Section 7.1, when
the machine encounters a p-abstraction, it must save the contents of the stack in the
environment. Conversely, when a named term is encountered, the stack saved in the
environment should be restored. However, there are two possible uses of the stack that
correspond respectively to Rules 3 and 4 of Section 4. In the first case, the stack must
be interpreted as:

L@l (f Ao Ay - Ay),

while in the second case, it must be interpreted as:
ANf . fAg AL A,

This interpretation depends of the value of the Boolean state variable at the time the
stack 1s saved. Consequently, it is also necessary to save this value.
These ideas are formalized in the following definition.

Definition 7.1. (uK-machine—preliminary definition) The set Dump of the states of
the pK-machine is defined by the following equations:

Dump = A, x Env x Stack x 2
Env = (Stack x 2) U Closure)*
Stack = Closure”
Closure = A, x Env

Let M,N € Ay; £,& € Env; § € Stack; i € 2; ccl € (Stack x 2) U Closure; ¢l €
Closure. The moves of the gy K-machine are specified by the following transition system:

(i) (0, (M, &) =&, S, i) - (M, &8, 1),

(i)  (n+1, ccl 28,8, = (n, &, 8, 14),

(i) (M, & el 8, 1) = (M, cl =&, 8, i),
(iv)  ((MN), 8 S iy = (M, E,(N,E) = 8, 1),
(v)  (uM, €&, S > = (M, (8,i) =&, u, 1),
(Vl) (M, S, i) — (m, & (M, E), ),

(Vu) (0,(8,0) =& (M, &), 1) = (M, &, S, 0),
(viii) (0,(S,1) =& (M, &), 0) = (M, &, S, 0),
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(ix) (0, (S,1) = &, (M, E), 1) — (M, €, 8, 1).

The intuitive meanings of the above moves are as follows. Moves (i) to (iv) correspond
exactly to the moves of the K-machine. Move (v) corresponds to the storage of the stack,
together with the value of the Boolean state variable, into the environment. The value of
the Boolean state variable 1s 0 when the content of the dump must be interpreted in the
context ul01[ ], and 1 when it must be interpreted in the context p[ ]. Moves (vi) to (ix)
correspond to the restoration of the associated stack when encountering a p-variable. A
priori there should be four cases according to the Boolean value saved with the stack,
on the one hand, and the value of the Boolean state variable in the dump, on the other
hand. Nevertheless, as we shall see, one of these cases cannot occur.

7.3. Correctness and completeness

In order to prove that our intuition is legitimate, we must prove that the moves of
the pK-machine implement correctly the weak head reduction strategy. To this end, we
define an unloading function D[ -, which transforms a dump into a Ap-term with explicit
substitutions. The idea is as usual: the environment is interpreted as a substitution, and
the stack as a list of arguments.

Definition 7.2. (Unloading function) The unloading function D[] : Dump — A,
is defined by the following clauses:

(i) D[(M,E,8,0)] = pl01APP(M{E}, S),
(i) DM, E S )] = puArr(M{E},S)
where the auxiliary functions used in this definition are defined below.

The function - : Stack — (A, )* which transforms a list of closures into a list of terms
is defined as follows:

(i) U= u

(i) (M, &):8=M{E}:S.

The function = : Env — ¥ which allows environments to be transformed into substitu-
tions 1s defined as follows:

MA{ES} -

=
| ™
S
Il
o

(i)

Finally, the function S[[-] : Stack x 2 — A, which transforms stacks into Ap-terms is
defined as follows:

() SIS, 0] = NrAre(0, 8{1}),
(i) SIS, 1] = X Arp (0, 8{1)).
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We are now in position to prove the correctness and completeness of the yK-machine.
The correctness property says that any move of the machine corresponds to a legal
reduction of the Ap-calculus.

Proposition 7.3. (Correctness of the machine) Let D,D’ € Dump be such that
D — D'. Then D[DP] —»p:prerprope D[D']]. Moreover, Moves (iii) and (v) involve external
B, i, &, or p-contractions; Moves (i), (ii), (iv), and (vi) are such that ¢(D[[D]) = a(D[D']);
Moves (vii), (viii), and (ix) are such that |o(D[D])| > |o(D[D'])|, where | -| denotes the
length of a term.

Proof. The proof, which is rather long but amounts mainly to algebraic manipulations
of explicit substitutions, is given in Appendix B. ]

The completeness property says that the machine allows any program to be evaluated.
More technically, we add a single constant x and an atomic type ¢ to the Ap-calculus,
and we extend its type system with the following axiom:

'~ %:4.

This allows a program to be defined as a closed term of type ¢. Then, the completeness
property is stated as follows.

Proposition 7.4. (Completeness of the machine) TLet @ be a program (i.e. a closed
Ap-term of type ¢), and let P € A, be such that ~ = P. Then there exists an
environment &£ such that

<Pa Ly Ly 0> _*>1 <*a ga L 0>

Proof. First of all remark that pa.la]@, is a well typed term of type ¢, convertible
to @ by f-contraction. Consequently, by Proposition 5.1, ul0lP i1s well-typed as well.
Therefore, by Proposition 2.4, 5.1, 6.2, and 7.3, any state D of the machine involved in
the evaluation of P is such that a3 (D[D]) is closed and well-typed. In particular, if the
machine stops on a configuration of the form

(x,&,8,1) (%)

we must have § = |, and ¢ = 0 because the other possibilities do not correspond to
well-typed terms.

A priori, two things could prevent the strategy implemented by the machine to reach a
final state (*): The machine could be stuck on another state, or could run for ever.

The machine cannot be stuck. The states on which the machine could possibly be stuck
are the ones that do not match the left-hand side of any move:

n, .S, 1),
AME, L, 1),
nlM, &, 8, i), where S # .,
0,(S,i):: &,8,i), where & is not of the form (M, &),

(n
(
(
(
(0,(5,0) :: &, (M, £),0).
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In State (a), n corresponds to a free variable and this contradicts the fact that P is
closed. State (b) corresponds to a functional term, which contradicts the fact that P
is of atomic type. In State (c), the term [n]1M must be of type L. Consequently, the
stack § must be empty. In State (d), O stands for a p-variable because its value in the
environment is a stack. Therefore a state such as (d) can only be reached by a move of
type (vi) followed by a (possibly empty) sequence of moves of type (ii). This implies that
the stack 8’ in State (d) must be made of a single closure. Finally State (e) is such that

D[(0, (8,0 :: &, (M, &),0)] = pl01(0{ X\ [1IAPP(0, S{1}) - id}) (M {€})
o 01N 1IAPP(0, S{1})) (M {E})
—greire plOI(IITAPP(0, S{T)){M{E} - id}
—»o plOl(101APP(M{£}, S))

Now, if state e was reachable, the term
o3 (pl01(101APP(M{E}, S5))) (*%)

would be a reduct of P and, consequently, would be a closed well-typed term. But this
is not possible because the only type that can be assigned to a term like (x#) is L and
then the fact that (xx) is closed would contradict the consistency of classical logic.

The machine may not run for ever. We distinguish between three types of moves: (A)
Moves (iii) and (v); (B) Moves (vii), (viii) and (ix); (C) Moves (i), (ii), (iv), (vi). By
Propositions 6.3 and 7.3 an inifinite sequence of moves may not contain infinitely many
moves of Type (A) because it would be possible to construct an infinite sequence of
Buep-contractions starting from pa.[a] @), which contradicts Proposition 2.5. Similarly,
an infinite sequence of moves of Type (B) and (C) cannot contain infinitely many moves of
Type (B) because these moves decrease the length of the o-normal forms of the unloaded
terms while moves of Type (C) keep it unchanged. Finally moves of Type (C) decrease
the structural complexity of the pair made of the two first components of the machine
(i.e., the term and the environment). Consequently, there cannot be an inifinite sequence
of moves of Type (C) either. ]

7.4. The pK-abstract machine: simplified definition

It is worth commenting on the proof of Proposition 7.4. Let us go back to the different
states on which the machine could possibly be stuck. The nature of the arguments used
to reject the different possibilities differs from one case to the next. States (a), (c), and
(d) are rejected using a simple typing argument. On the other hand, the argument used
to reject State (e) is deeper. Tt does not rely only on typing but also on the consistency
of classical logic. Indeed if one destroys the logical concistency of the typing system,
Proposition 7.4 does not hold anymore. For instance, if we add to the calculus a constant
Q of type ¢ = L then the evaluation of the Ap-term pa.[a]([o] (2 %)) will be stuck on a
state similar to State (e). Finally, State (b) is rejected because Proposition 7.4 concerns
programs, i.e., terms of atomic type. Nevertheless, State (b) is a perfectly acceptable final



Ph. de Groote 24

state. It simply corresponds to the usual fact that a term of functional type is evaluated
to a closure.

Imagine that we load the machine with a well-typed term M and that it eventually
reaches a final state akin to State (b), i.e.,

(M, 4, 0, 0) = (AN, &, 1, i).

If i = 1 then D[{AN, &, 4, i)] = p((AN)[E]). This would imply that (AN)[£] is of type L,
which is impossible. Therefore, when a final state akin to State (b) is reached, we have
that ¢ = 0. Hence, when the machine is loaded with a closed well-typed term, it eventually
reaches a final state of the form (M, &, , 0), where M is either a A-abstraction or the
constant %.

Now the value of the Boolean state variable, which is needed when unloading the ma-
chine, does not play any computational role. Indeed, in the course of a computation, the
value of the Boolean state variable at some given moment (together with some Boolean
value possibly saved in the environement) is only needed in order to compute its next
value. In particular, Moves (vii), (viii), and (ix), in Definition 7.1, do not differ except in
the handling of the Boolean state variable. Therefore, since we know that the final value
of this variable is necessarily 0 when the machine is loaded with a well-typed closed term,
we may simplify Definition 7.1 as follows.

Definition 7.5. (yK-machine—simplified definition) The set Dump of the states of
the pK-machine is defined by the following equations:

Dump = A, x Env x Stack

Env = (StackU Closure)*
Stack = Closure”
Closure = A, x Env

Let M,N € A,; £,& € Env; S € Stack; ccl € Stack U Closure; ¢l € Closure. The
moves of the K -machine are specified by the following transition system:

(i) (0,(M, &) &, 3>%<M55>,

(ii) <n—|—1 ccl &, S> - (n, &, 8),
(i)  (AM, &, Sy = (M, cl &, 8),
(iv) (M )53> (M, & (N,&):8),
() (uM,E,8) > (M, 88,0,

(vi)  ([nlM, S, w = n, €, <M &N,

(vii) (0,8 & (M, &) = (M, €&, S).

The unloading functlon may be adapted to the above definition as follows:
D[(M, &,8] = Apr(M{E},S)

However, Proposition 7.3 does not hold anymore with Definition 7.5 together with the
above unloading function. Nevertheless, as established by the above discussion, Proposi-
tions 7.3 and 7.4 may be replaced by the following one.
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Proposition 7.6. (Completeness and correctness of the simplified machine)  Let M
be a closed well-typed Au-term and let N € A, be such that ~ M = N. Then there
exists an environment £ and a term O € A, such that

(1) <N’ Ly |—|> i> <O’ 8’ |—|> _ —
(2) N =9 plOIN —pierpiope pl01(O{E}) =5 OfF}

Moreover, O is either x or a A-abstraction. ]
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Appendix A. Proof of Proposition 2.5

In this appendix we prove the strong-normalisation of (our variant of) the Ap-calculus.
A proof that the original system is strongly normalisable with respect to the relations of
S and p-reductions (in the second order case) may be found in (Parigot 1993).

Our proof is organised in three parts:

— We prove that any typable Au-term is strongly Su-normalisable. To this end, we use
the Tait-Girard reducibility method.

— We prove that any typable Au-term is strongly pef-normalisable.

— We prove that the pef-contractions may be postponed with respect of the Su-contrac-
tions.

The strong normalisation proposition for the entire reduction system immediately follows
from these three properties.

For the sake of simplicity, we consider a family (X7)retype of disjoint alphabets of A-
variables indexed by types, and a family (A, )oecotype of disjoint alphabets of u-variables
indexed by cotypes. We define

o= J x»u | 4.

TELype oEcotype

{2 may be consisdered as an infinite typing context where each A-variable x € X, (respec-
tively, each p-variable o € A,) is declared of type 7 (respectively, of cotype o). Then
we say that a Ap-term M is typable (according to ) with type 7 if there exists a finite
context I' C Q such that I' v+ M : 7. Clearly, any Ap-term typable according to the
system of Subsection 2.2 is typable according to € (up to free-variable renaming). We
write simply M : 7 when a Ap-term M is typable with type 7 according to €2.

We also introduce the following notations. We write N for sequences of Ap-terms
(including the empty one). Let N = Ny,..., N, and T = o, ..., 2,. We write M N for
the application (M Np) ... Ny, and, when N is the empty sequence, M N = M. We write

Mx; := N;l;en for the simultaneous substitution M[Z:= N|. Finally, if R is a notion of
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reduction, we write “—pg”, for the relation of R-contraction (i.e., the one-step reduction
relation), and we write “5p” (respectively, “—»g”) for its transitive closure (respectively,
transitive reflexive closure). These three relations may be axiomatised by means of formal

systems, which allow inductive proofs to be performed (Barendregt 1984, CHAP. 3, §1).

Strong Bu-normalisation

Let SNg, denote the set of strongly Su-normalisable Au-terms. The family of sets of
reducible terms is defined, as usual, by induction on the types.

(i) [r]={M : 7| M € SNg,, }, whenever 7 is atomic.
i) [o—=71]={M:0—=7|VN€[o],(MN)el[r]}

Lemma A.1. Let 7 be any type:
(a) a:_N € [r], for any A-variable z and any sequence of strongly normalisable terms
N such that # N : 7
(b)  [Ir] C SNgyg;
Proof. By induction on the structure of 7.
Basic case: 7 is atomic.

(a) By hypothesis, every term in the sequence N is strongly normalisable. Hence
# N € SNg,,, which implies © N € [r].
(b) By definition.

Induction case: 7 = 7 — 1.

(a)  Let N € [[r1]. By induction hypothesis (b), N is strongly normalisable. Then, by
induction hypothesis (a), x N N € [ry]. Hence, x N € [ry = 7]

(b)  Let M € [[r1 = 7], and let & be some variable of type 7. By induction hypoth-
esis (a), « € [[r1]], which implies M z € [[72]]. Hence, by induction hypothesis (b),
M z is strongly normalisable, and so is M.

O

Lemma A.2. TLet Az. M : ¢ — 7 be such that M[z:= N] € [r], whenever N € [o].
Then Az. M € o — 7]

Proof. By definition, A\e. M € [o — 7] if and only if (Az. M) NO € SN, for
any N € [o], and any sequence O of reducible terms such that (Az. M) N O is of
atomic type. Let N and O be such a term and such a sequence of terms, and sup-
pose (Az. M\)NO ¢ SNgu. By hypothesis, the Au-terms M, N, and O are reducible and
therefore, by Lemma A.1., Property (b), strongly normalisable. Consequently, any infi-
nite reduction sequence starting from (Az. M) N O cannot entirely consist of reduction
within the subterms M, N, and O. Hence, such an infinite reduction sequence should

obey the following scheme:

(Ae. MYNO =55, (Ae. M) N'O' =5 M'[2:=N'10 —p, ---
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But then, we could construct another infinite sequence starting from M[z:=N]O:
M[z:=N]O =5, M'[z:=N"10 —pp
contradicting the fact that M [z := N] is reducible. ]

Lemma A.3. Let (ua. M) N and P be Ap-terms such that (pa. M) N —»5, P. Then
there exist a Ap-term M’, and four sequences of Ap-terms N, No, Nll, N;, such that:
(a) N =N, Ny;
(b)  P=(ufM)Ny: »
(c) N1 =g Ny and Ny =g, No;
(d)  Ma:=XfAB1(f N1)] —»pu M.

Proof. A straightforward induction on the number of contraction steps in the reduction
(pa. MY N —» 5, P. U

Lemma A.4. Let po. M : 7 be a Ap-term such that Mo :=X°f.[B1(f N)] € [L],
whenever N is a sequence of reducible terms such that A° f.[31(f N) : 71. Then pa. M €

[~1-

Proof. The proof is similar to the one of Lemma A.2. Let N be a sequence of reducible

terms, such that (ua. M) N is of atomic type. Then, by Lemma A.3.; any infinite re-
duction sequence starting from (pa. M) N O could be turned into an infinite reduction
sequence of the following form:

(pa. MYN = (pa. M)N{ N,

—rgu (no. M) NN, o
= (pB M= X fAB1(f Ny)]) Ny
%}/@N “ e

where the rest of the sequence would consist only of contractions taking place within

M'[a:=XfAB81(f Nll)] But then, we could construct another infinite sequence:
Mla:=Xf.181(fN1)] =g M'la:=XF1B1(FNY)] =gy -

contradicting the reducibility of M[a:=X°f.[51(f N1)]. ]

Lemma A.5. If M : 7 then M € [7].

Proof. Let (#;)ien be the sequence of free A-variables of M, and let (a;)iem be its
sequence of free p-variables. We prove that

Mz;:=Nilienla; =X L0151 Oi)liem € [7],

for any sequence of reducible terms (N;);en, which agrees on the types of the free A-

variables of M, and any sequence of sequences of reducible terms (Os)ien such that the
sequence of names (A° f.[3;1(f O;))iem agrees on the cotypes of the free p-variables of
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M. Then the proposition will be established by taking N; = z; and A°f.[3;1(f0;) =
A flaglf.

The proof is by induction on the strucuture of M. For the sake of conciseness, we write
M* fOI' M[l‘Z = Ni]iEn[ai = /\of. [ﬁl] (f Oz)]zEm

Case 1: M = ;. We have M* = N;, which is reducible by hypothesis.

Case 2: M = Az. M;. We must have 7 = 7 — 7. By induction hypothesis, we have
M{z:=N] € [r], for any N € [r1]. Hence, by Lemma A.2, Ax. M} € [r1 — m=].

Case 3: M = M1 M,. By induction hypothesis, M7y and M3 are both reducible, from
which it follows that M; My = (M Ms)* is reducible.

B1(fO) €

Case 4: M = pa. My. By induction hypothesis, we have that M [a =A
0):rt Then we are

[L], for any sequence of reducible terms O such that A\°f.[31(f
done by Lemma A .4.

Case 5: M =[a;1M;. We have that 7 = L. Consequently, ([a;1M7)* € [L] if and only
if ([a;1M7)* € SNg,. By induction hypothesis, M; is reducible, and so is M; O;. Then
by Lemma A.1, Property (b), M; O; is strongly normalisable, and so is [a] (M} O;) =
(Lev; 1 My )*. O

Strong pe@-normalisation

Lemma A.6. Any Ap-term is strongly pef-normalisable.

Proof. Immediate because any p, € or #-contraction decreases the length of the con-
tracted Ap-term. U

Postponement of the pef-contractions

Lemma A.7. Let R stand for p, ¢, or 8, and let R’ stand only for ¢, or 6.
(a) If M —pgr N then M[z:=0] =g N[z:=0].
b) If N =g O then M[z:=N|—»g M[z:=0].
c) UM —pg Nthen Mla:=Xf.(81(fO)] =r Nla:=Xf.181(fO)].
d) If M —, N then either M[a := X f.[B1(fO)] =, Nl := X°f.[B1(fO)], or
Mla:=Xf1B81(fO)] =, P —, N[a:=Xf.[31(f O)], for some term P.
() KN —grO then Mla:=Xf.(8)1(fN)] =g N[a:=Xf.161(f0)].
Proof. By induction on the structure of M. Remark that Property (c) does not hold
for the notion of p-reduction, and must be replaced by Property (d). This is due to the
case where M = py.lal(pd. M') and N = py. M'[6:=X° f.[a] f]. Then, we have:

10 Mo = L1011 O)
= . 08 (b M= X181 ( O
u Y. 181 (pd. M'[e:= A f. 1
p /ry.M’[oz::/\°f.[ﬁ](fO)
wy. M'[a:=Xf.081(f0)
py. M[6: =X f.lal flla:=

14
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]
Lemma A.8. Let R stand for § or y, and let M and N be Ap-terms such that
Mla:=X°f.[31f] or N.
Then there exist a Au-term O such that:
(a) N =O[a:=Af.0811],
Proof. By induction on the derivation of M[a:=Xf.[a]f] —r N. O

Lemma A.9. Let R stand for f or p,let M : 7 and N : 7, and let o be a p-variable of
cotype L+ such that
Mla:=X°f. f] =r N.

Then there exist a Au-term O such that:
(a) N =O[a:=A°f. f],

Proof. By induction on the derivation of M[a:=A°f. f] —-r N. Contrary to the case
of Lemma A.8, we need the extra hypothesis that the Au-terms are well-typed. This
eliminates the following pathological case:

(Taldz. PYQ)[a:=Af. f1] = (Azx. Pla:=Af. f]) Qla:=(A°f. f)]
—5 Plz:=Q|la:=Xf. f]
Indeed the term [a] Az. P must be of type L, and therefore the application (la]lAz. P) Q

is not typable. The same phenomenon allows p-redexes to be created by untyped e-
contractions.

Lemma A.10. (p/f-postponement) Let M, N, O be such that M —, N —5 O. Then
there exists a Ap-term P such that M —3 P —, O.

Proof. By induction on the derivation of M —, N, using Lemma A.7, Properties (a)
and (b), with R = p, and Lemma A.8, with R = . ]

Lemma A.11. (p/p-postponement) Let M, N, O be such that M —, N —, O. Then
there exists a Ap-term P such that M i>u P—,0.

Proof. By induction on the derivation of M —, N, using Lemma A.7, Properties (d)
and (e), with R = p, and Lemma A.8, with R = p. ]

Lemma A.12. (¢/f-postponement) Let M,N,O : 7 be such that M —. N —4 O.
Then there exists a Apy-term P : 7 such that M —5 N —. O.

Proof. By induction on the derivation of M —. N, using Lemma A.7, Properties (a)
and (b), with R = ¢, and Lemma A.9, with R = §. ]

Lemma A.13. (¢/p-postponement) Let M,N,O : r be such that M —. N —, O.
Then there exist a Ay-term P : 7 such that M —, P —. O.
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Proof. By induction on the derivation of M —, N, using Lemma A.7, Properties (c)
and (e), with R = ¢, and Lemma A.9, with R = p. ]

Lemma A.14. (6/3-postponement) Let M, N, O be such that M —4 N —3 O. Then
there exists a Ap-term P such that M i>ﬁu P -4 O.

Proof. By induction on the derivation of M —¢ N, using Lemma A.7, Properties (a)
and (b), with R = @. Note the unusual form of this postponement statement. Indeed,
postponing § with respect to § may introduce p-contractions. This corresponds to the
following case:

(pa.lal(Az.Q)) R =9 (Az. Q) R =5 Qz:=R)]

which is transformed into:
(pa.lal(Az. Q) R =, pa.lal((Az. Q) R) —p po.lalQ[z:=R] —4 Qz:=R)
U

Lemma A.15. (6/p-postponement) Let M, N, O be such that M —4 N —, O. Then
there exists a Ap-term P such that M i>u P —4 O.

Proof. By induction on the derivation of M —4 N, using Lemma A.7, Properties (c)
and (e), with R = 6. ]

Appendix B. Proof of Proposition 7.3
We first state and prove two technical lemmas.
Lemma B.1. Let M € Ay, and let £ € A}, be non empty. Then
APP(UM, L) —»oprow p(M{AX1IAPP(0, L{to1}) - 1})
Proof. We proceed by induction on £
Base case: L= (N ).

APP(uM, N :: ) = (uM)N
S (M CTIO(N (o)) - 1)
= p(M{ANIAPP(O, (N ) {ToT}) -1}
Induction step: L= (N :: L').
For the sake of conciseness we define the following abbreviations:

A= X[LI0(N{tot}), B = X°[1IAPP(0, L {to1}), C =O0(N{fo1}).
Then we have:

APP(uM, N :: L) = APP((uM)N, L")
S APP(u(M{A 1], £)
—oprop H(M{A-1HB -1} By induction hypothesis.
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—o  W(M{(A-1)o(B-1)})

—o  W(M{A{B -1} -(to(B-1))})

—o  W(M{A{B-1}-1})

= p(M{(AMO(N{tot})){B -1} -1})

—o (M ({N(B-1) HO{M(B-1) HN{ Tt HN(B-1)})) - 1})
—o  (M{X(0{(B-1) o THO(N{tot o (B-1)}))) - 1})

—o WM (B{THO(N{to (B-1)o1}))) - 1})

o u(M{”(B{T}( (N{to1})) - 1)

= p(M{N((A°[APP(0, L'{ToT})){1}C)) - 1})

= p(MAN((AI21APP(0, L'{ ot H{N(1) }))C)) - 1)

—g  WMA{X((A°[21APP(0, L' {Toto1}))C)) - 1})

—rpre p(M{A([21APP(0, L'{totot P{C - id})) - 1})

—o  p(MAX([LIAPP(C, L' {TotoT o (C'-id)}))) - 1})

—o  W(M{X([LAPP(C, L'{To1}))) - })

= p(M{X(LAPP(O(N {tot}, L'{To1}))) - 1})

= p(M{X(WAPP(0, (N : L){to1}))) - 1) 0

Lemma B.2. Let £ € A, and let s be a substitution. Then
(A°[LIAPP(0, L{To1}) - (s071)) o (A°[L10 - id) —»spre (A°[LIAPP(O0, L{1}) - 5)
Proof. For the sake of conciseness we define the following abbreviations:
A = X°[LIAPP(0, L{fo1}), B = A°[110.
Then we have:

(A-(sot))o(B-id) —», A{B-id} -(soto(B-id))
—», A{B-id} s
= (A°[LIAPP(O, L{tot})){B - id} - s

—o  (AL{MN(B - id)}APP(O{NN(B - id)}, L{ToT HMN(B - id)})) - s
—o (A B{1}APP(0, L{Tot o N(B -id)})) - s
—s  (AB{1}APP(0,L{t o (B -id)o1})) -s
—o (”B{T}APP(O L£{1})) s
= (A°(A°L0){1}APP(0, L{1})) - s
—o  (A°(A°1210)APP(0, L{1})) - 5
—gre (A°(120 ){APP(O L{1}) -ud}) - s
—s  (A°[1IAPP(0, L{1})) - 5 O

We are now in a position of proving Proposition 7.3. The four first moves of the
machine correspond exactly to the ones of the Krivine machine. Therfore, we only focus
on Moves (v), (vi), and (vii)—Moves (viii) and (ix) being similar to Move (vii).

Move (v): D = (uM, &, S, i) and D' = (M, (S,i) : £, 1, 1). We take i = 0, the case

where ¢ = 1 being similar. Then, we have:

D[Pl = DM, &, 8, 0)
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= ul0IAPP((uM){E},S)
—o  plOIAPP(u(M{N(E)}),S)

—popron Ol M{M(E)J{AILIAPP(0, S{to1}) - 1)
by Lemma B.1.

o pO(MAN(E) o (\ILIAPP(0, S{to1}) - 1)})
—o  pl0lu(M{X11APP(0, S{to1}) - (Eo 1))
—p H(M{XAPP(0, S{tot}) - (€0 1) HAMIO - id})
o p(M{(NAPP(0, S{tot}) - (Eo 1)) o (A°[110 - id)})
—pogre  p(M{N[11APP(0,S{1}) - €}) by Lemma B.2.
= u(M{S[S,0)]-€})
= p(M{(S,0):€})
= DM, (8,0) = &, 4, 1)]
= D[D']

Move (vi): D ={InlM, &, u, ©) and D' = (n, £, (M, &), i). We take i = 0, the other case

being identical.

(M, &, 1, 0)]
plO)(mIM){£}
pO)(n{E}M{EY)
(n{E}(M, €))

= D[[(H £ (M, ), 0)]
= DD

D[Py = D[
]
]
[0]

Move (vii): D = (0, (S8,0) :: &, (M,&), 1) and D' = (M, £, S, 0).

D[P] =  D[0, (S8,0):: &, (M, E), 1)]
= pAPP(0{(S,0) :: &'}, (M, £))
= u(O{SKS,0)] - &}H(M{E})
—o N(S[KS 0)I(M{E}))
= u((“IAPP(0, S{1)) (M {€}))
—pe p((WAPP(0, S{1}H){M{E} - id})
JAPP(M{E}, S{THM{E} - id})
0IAPP(M{E}, S{1 o (M{E} - id)})
JAPP(M{E}, S)

Iy
tt

[0
[
[0]1APP
(M, €, 8. 0]

o
q
o =
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Appendix C. The rewriting system oy

(App)
(Abs)
(Abs®)
(Name)
(Muabs)
(Clos)
(VarShift1)
(VarShift2)
(FVarCons
(FVarLift1
(FVarLift2
(RVarCons
(RVarLift1
(RVarLift2
(
(
(
(
(
(
(
(
(
(
(
(

AssEnv)
MapEnv)
ShiftCons)
ShiftLift1)
ShiftLift2)
Lift1)
Lift2)
LiftEnv)
1dL)

1dR)
LiftId)

1d)

(M
(AM

N){s} =0 (M{s}N{s})
{s} =0 (M{s}N{s})
M){s} = A°(M{f(s)})

)

\_/\_/\_/\_/

(A°
((NTM){s} —o N{s}(M{s}
(M) {s} =0 p(M{1N(s)})
M{sHt} —o M{sot}
n{t} =, n+1
n{tos} =, nt+1{s}
0{M s} = M
0{N(s)} =+ 0
0{N(s) ot} =5 O{t}
n+1{M - s} =, n{s}
A 1{fi(s)} = nis o 1}
n+1{fi(s) ot} =, n{so (tot)}
(sot)ou—s s0(tou)
(M) o1 =55 M{t}- (501
To(M:s) s

tofi(s) =25 5071
1o (fr ()ot)—)USO( ot)
1(5) o t) = fi(s 0 1)
1(5) 0 (1(8) 0 1) =0 fi(s 0 ) o
N(s)o (M- 1) > M (sot)
zdos—)a
soid =, s
N(id) = id
M{id} -, M
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