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Abstract. We consider the problem of higher-order matching restricted
to the set of linear λ-terms (i.e., λ-terms where each abstraction λx. M
is such that there is exactly one free occurrence of x in M). We prove
that this problem is decidable by showing that it belongs to NP. Then
we prove that this problem is in fact NP-complete. Finally, we discuss
some heuristics for a practical algorithm.

1 Introduction

Higher-order unification, which is the problem of solving a syntactic equation
(modulo β or βη) between two simply typed λ-terms is known to be undecidable
[8], even in the second-order case [7]. On the other hand, if one of the two λ-
terms does not contain any unknown, the problem (which is called, in this case,
higher-order matching) becomes simpler. Indeed, second-order [10], third-order
[5], and fourth-order [17] matching have been proved to be decidable (See also
[21] for a survey, including lower and upper bounds on the complexity). In the
general case, however, the decidability of higher-order matching is still open.

Since higher-order unification is known to be undecidable, it is natural to
investigate whether one can recover decidability for some restricted form of it.
For instance, Miller’s higher-order paterns form a class of λ-terms for which
unification is decidable [14]. Another restricted form of higher-order unification
(in fact, in this case, second-order unification) is context unification [3, 4], which
may be seen as a generalisation of word unification. While the decidability of
context unification is open in general, some subcases of it have been shown to
be decidable [3, 4, 11, 12, 19].

In this paper, we study higher-order matching for a quite restricted class of
λ-terms, namely, the λ-terms that correspond to the proofs of the implicative
fragment of multiplicative linear logic [6]. These λ-terms are linear in the sense
that each abstraction λx.M is such that there is exactly one free occurrence
of x in M . Our main result is the decidability of linear higher-order matching.
Whether linear higher-order unification is decidable is an open problem related,
in the second-order case, to context unification [11].

Linear higher-order unification (in the sense of this paper) has been investi-
gated by Cervesato and Pfenning [2], and by Levy [11]. Cervesato and Pfenning



consider the problem of higher-order unification for a λ-calculus whose type sys-
tem corresponds to full intuitionistic linear logic. They are not interested in de-
cidability results—they know that the problem they study is undecidable because
the simply-typed λ-calculus may be embedded in the calculus they consider—but
in giving a semi-decision procedure in the spirit of huet’s pre-unification algo-
rithm [9]. Levy, on the other hand, is interested in decidability results but only
for the second-order case, whose decidability implies the decidability of context
unification.

Both in the case of Levy and in the case of Cervesato and Pfenning, there
was no reason for considering matching rather than unification. In the first case,
the matching variant of the problem is subsumed by second-order matching,
which is known to be decidable. In the second case, the matching variant of the
problem subsumes full higher-order matching, which is known to be a hard open
problem.

Our own motivations in studying linear higher-order matching come from the
use of categorial grammars in computational linguistics. Natural language pars-
ing using modern categorial grammars [15, 16] amounts to automated deduction
in logics akin to the multiplicative fragment of linear logic. Consequently, the
syntactic structures that result from categorial parsing may be seen, through the
Curry-Howard correspondance, as linear λ-terms. As a consequence, higher-order
unification and matching restricted to the set of linear λ-terms have applications
in this categorial setting. In [13], for instance, Morrill and Merenciano show how
to use linear higher-order matching to generate a syntactic form (i.e., a sentence
in natural language) from a given logical form.

The paper is organised as follows. In the next section, we review several basic
definitions and define precisely what is a linear higher-order matching problem.
In Section 3, we prove that linear higher-order matching is decidable while, in
Section 4, we prove its NP-completeness. Finally, in Section 5, we specify a more
practical algorithm and we discuss some implementation issues.

2 Basic definitions

Definition 1. Let A be a finite set, the elements of which are called atomic
types. The set F of linear functional types is defined according to the following
grammar:

F ::= A | (F −◦F ).

We let the lowercase Greek letters (α, β, γ, . . .) range over F .

Definition 2. Let (Σα)α∈F be a family of pairwise disjoint finite sets indexed
by F , whose almost every member is empty. Let (Xα)α∈F and (Yα)α∈F be
two families of pairwise disjoint countably infinite sets indexed by F , such that
(
⋃

α∈F Xα) ∩ (
⋃

α∈F Yα) = ∅. The set T of raw λ-terms is defined according
to the following grammar:

T ::= Σ | X | Y | λX .T | (T T ),
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where Σ =
⋃

α∈F Σα, X =
⋃

α∈F Xα, and Y =
⋃

α∈F Yα.

In the above definition, the elements of Σ are called the constants, the el-
ements of X are called the λ-variables, and the elements of Y are called the
meta-variables or the unknowns. We let the lowercase roman letters (a,b, c, . . .)
range over the constants, the lowercase italic letters (x, y, z, . . .) range over the
λ-variables, the uppercase bold letters (X,Y,Z, . . .) range over the unknowns,
and the uppercase italic letters (M,N,O, . . .) range over the λ-terms. The no-
tions of free and bound occurrences of a λ-variable are defined as usual, and we
write FV(M) for the set of λ-variables that occur free in a λ-term M . Finally, a
λ-term that does not contain any unknown is called a pure λ-term.

If P = {i0, i1, . . . , in} is a (linearly ordered) set of indices, we write λxP.M
for the λ-term λxi0 . λxi1 . . . . λxin

.M . Similarly, we write M (NP) or M (Ni)i∈P

for (. . . ((M Ni0) Ni1) . . . Nin
). As in set theory, we let n = {0, 1, . . . , n − 1}.

These notations will be extensively used in Section 5.
We then define the notion of typed linear λ-term.

Definition 3. The family (Tα)α∈F of sets of typed linear λ-terms is inductively
defined as follows:

1. if a ∈ Σα then a ∈ Tα;
2. if X ∈ Yα then X ∈ Tα;
3. if x ∈ Xα then x ∈ Tα;
4. if x ∈ Xα, M ∈ Tβ, and x ∈ FV(M), then λx.M ∈ T(α−◦β);
5. if M ∈ T(α−◦β), N ∈ Tα, and FV(M) ∩ FV(N) = ∅, then (M N) ∈ Tβ.

Clauses 4 and 5 imply that any typed linear λ-term λx.M is such that there is
exactly one free occurrence of x in M . Remark, on the other hand, that constants
and unknowns may occur several times in the same linear λ-term.

From now on, we define T to be
⋃

α∈F Tα (which is a proper subset of
the set of raw λ-terms). It is easy to prove that the sets (Tα)α∈F are pairwise
disjoint. Consequently, we may define the type of a typed linear λ-term M to be
the unique linear type α such that M ∈ Tα.

We take for granted the usual notions of α-conversion, η-expansion, β-redex,
one step β-reduction (→β), n step β-reduction ( n→β), many step β-reduction
(→→β), and β-conversion (=β). We use ∆ (possibly with a subscript) to range
over β-redexes, and we write ∆ ⊂ M to say that ∆ is a β-redex occurring in a
λ-term M .

We let M [x:=N ] denote the usual capture-avoiding substitution of a λ-
variable by a λ-term. Similarly, M [X:=N ] denotes the capture-avoiding sub-
stitution of an unknown by a λ-term. Note that any β-redex (λx.M) N occur-
ring in a linear λ-term is such that FV(λx.M) ∩ FV(N) = ∅. Moreover we
may suppose, by α-conversion, that x 6∈ FV(N). Consequently, when writing
M [x:=N ] (or M [X:=N ]) we always assume that FV(M)∩FV(N) = ∅. Finally
we abbreviate M [x0:=N0] · · · [xn−1:=Nn−1] as M [xi:=Ni]i∈n.

In Section 5, we will also consider a more semantic version of substitution, i.e.,
a function σ : Y → T that is the identity almost everywhere. The finite subset
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of Y where σ(X) 6= X is called the domain of the substitution (in notation,
dom(σ)). It is clear that such a substitution σ determines a unique syntactic
substitution (X := σ(X))X∈dom(σ), and conversely.

We now give a precise definition of the matching problem with which we are
concerned.

Definition 4. A linear higher-order matching problem modulo β (respectively,
modulo βη) is a pair of typed linear λ-terms 〈M,N〉 of the same type such that N
is pure (i.e., does not contain any unknown). Such a problem admits a solution if
and only if there exists a substitution (Xi:=Oi)i∈n such that M [Xi:=Oi]i∈n =β

N (respectively, M [Xi:=Oi]i∈n =βη N).

In the sequel of this paper, a pair of λ-terms 〈M,N〉 obeying the conditions
of the above definition will also be called a syntactic equation. Moreover, we will
assume that the right-hand side of such an equation (namely, N) is a pure closed
λ-term. There is no loss of generality in this assumption because, for x ∈ FV(N),
〈M,N〉 admits a solution if and only if 〈λx.M, λx.N〉 admits a solution.

3 Decidability

We first define the size of a term.

Definition 5. The size |M | of a linear λ-term M is inductively defined as fol-
lows:

1. |a| = 1
2. |X| = 0
3. |x| = 1
4. |λx.M | = |M |
5. |M N | = |M |+ |N |

The set of linear typed λ-term is a subset of the simply typed λ-terms that is
closed under β-reduction. Consequently it inherits the properties of confluence,
subject reduction, and strong normalisation. This last property is also an obvious
consequence of the following easy lemma.

Lemma 1. Let M and N be two linear typed λ-terms such that M →β N . Then
|M | = |N |+ 1.

Proof. A direct consequence of the fact that any λ-abstraction λx.M is such
that there is one and only one free occurrence of x in M . ut

As a consequence of this lemma, we obtain that all the reduction sequences
from one term to another one have the same length.

Lemma 2. Suppose that M and N are two linear typed λ-terms such that M
n→β

N and M
m→β N . Then m = n.
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Proof. By iterating Lemma 1, we have n = |M | − |N | = m. ut

The above lemma allows the following definition to be introduced.

Definition 6. The reducibility degree ν(M) of a linear typed λ-term M is de-
fined to be the unique natural number n such that M

n→β N , where N is the
β-normal form of M .

We also introduce the following notions of complexity.

Definition 7. The complexity ρ(α) of a linear type α is defined to be the number
of “−◦” it contains:

1. ρ(a) = 0
2. ρ(α−◦ β) = ρ(α) + ρ(β) + 1

The complexity ρ(∆) of a β-redex ∆ = (λx.M) N is defined to be the complexity
of the type of the abstraction λx.M .

Lemma 3. Let M ∈ Tα−◦β, and N ∈ Tα. Then∑
∆⊂M N

ρ(∆) ≤
∑

∆⊂M

ρ(∆) +
∑

∆⊂N

ρ(∆) + ρ(α−◦ β).

Proof. In case M is not an abstraction, we have
∑

∆⊂M N ρ(∆) =
∑

∆⊂M ρ(∆)+∑
∆⊂N ρ(∆). Otherwise we have

∑
∆⊂M N ρ(∆) =

∑
∆⊂M ρ(∆)+

∑
∆⊂N ρ(∆)+

ρ(α−◦ β), because M N itself is a β-redex whose complexity is ρ(α−◦ β). ut

Lemma 4. Let M ∈ T , and N,x ∈ Tα be such that x ∈ FV(M). Then∑
∆⊂M [x:=N ]

ρ(∆) ≤
∑

∆⊂M

ρ(∆) +
∑

∆⊂N

ρ(∆) + ρ(α).

Proof. By induction on the structure of M . The only case that is not straight-
forward is when M ≡ xO and N is an abstraction. In this case, one additional
redex of complexity ρ(α) is created. ut

We now prove the key lemma of this section.

Lemma 5. Let M be any linear typed λ-term. The following inequality holds:

ν(M) ≤
∑

∆⊂M

ρ(∆) (1)

Proof. The proof is done by induction on the length of M . We distinguish be-
tween two cases according to the structure of M .

M ≡ ξ N0 . . . Nn−1 where ξ ≡ a, ξ ≡ X, or ξ ≡ x, and where the sequence
of terms (Ni)i∈n is possibly empty. We have that ν(M) =

∑
i∈n ν(Ni) and

5



that
∑

∆⊂M ρ(∆) =
∑

i∈n

∑
∆⊂Ni

ρ(∆). Consequently, (1) holds by induction
hypothesis.

M ≡ (λx.N) N0 . . . Nn−1. Let the type of λx.N be α −◦ β. If n = 0 (i.e., the
sequence of terms (Ni)i∈n is empty) the induction is straightforward. If n = 1,
we have:

ν(M) = ν(N [x:=N0]) + 1
≤

∑
∆⊂N [x := N0]

ρ(∆) + 1 (by induction hypothesis)
≤

∑
∆⊂N ρ(∆) +

∑
∆⊂N0

ρ(∆) + ρ(α) + 1 (by lemma 4)
≤

∑
∆⊂N ρ(∆) +

∑
∆⊂N0

ρ(∆) + ρ(α−◦ β)
=

∑
∆⊂M ρ(∆)

Finally, if n ≥ 2:

ν(M) = ν(N [x:=N0]N1 . . . Nn−1) + 1
≤

∑
∆⊂N [x:=N0] N1... Nn−1

ρ(∆) + 1 (by induction hypothesis)
=

∑
∆⊂N [x:=N0] N1

ρ(∆) +
∑

i∈n−2

∑
∆⊂Ni+2

ρ(∆) + 1
≤

∑
∆⊂N [x:=N0]

ρ(∆) + ρ(β) +
∑

i∈n−1

∑
∆⊂Ni+1

ρ(∆) + 1 (by lemma 3)
≤

∑
∆⊂N ρ(∆) + ρ(α) + ρ(β) +

∑
i∈n

∑
∆⊂Ni

ρ(∆) + 1 (by lemma 4)
=

∑
∆⊂N ρ(∆) + ρ(α−◦ β) +

∑
i∈n

∑
∆⊂Ni

ρ(∆)
=

∑
∆⊂M ρ(∆) ut

Linearity plays a central role in the above Lemmas. In fact, Lemmas 1, 2,
4, and 5 do not hold for the simply typed λ-calculus. This is quite clear for
Lemmas 1 and 2. Moreover, without the latter, Definition 6 does not make sense.
Nevertheless, one might try to adapt this definition to the case of the simply
typed λ-calculus by defining the reducibility degree of a λ-term M to be the
maximal natural number n such that M

n→β N (where N is the β-normal form
of M). Lemma 4 could also be adapted by taking into account the number of free
occurrences of x in M . But then, any attempt in adapting Lemma 5 would fail
because linearity does not play a part only in the statement of this last lemma,
but also in its proof. Indeed, this proof is done by induction on the length of a
term M and, in case M ≡ (λx.N) N0, we apply the induction hypothesis to the
term N [x:=N0]. Now, if x occurs more than once in N , there is no reason why
the length of N [x:=N0] should be less than the length of (λx.N) N0.

We now prove the main result of this paper.

Proposition 1. Linear higher-order matching (modulo β) is decidable.

Proof. We prove that the length of any possible solution is bounded, which
implies that the set of possible solutions is finite.

Let 〈M,N〉 be a linear higher-order matching problem, and assume, without
loss of generality, that M and N are β-normal. Let (Xi)i∈n be the unknowns
that occur in M , and suppose that (Xi:=Oi)i∈n is a solution to the problem
where the Oi’s are β-normal. By Lemma 1, we have:

ν(M [Xi:=Oi]i∈n) = |M [Xi:=Oi]i∈n| − |N | (1)
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Let ni be the number of occurrences of Xi in M . Equation (1) may be rewritten
as follows:

ν(M [Xi:=Oi]i∈n) =
∑
i∈n

ni|Oi|+ |M | − |N | (2)

On the other hand, by Lemma 5, we have:

ν(M [Xi:=Oi]i∈n) ≤
∑

∆∈M [Xi := Oi]i∈n

ρ(∆) (3)

Since M and (Oi)i∈n are β-normal, the β-redexes that occur in M [Xi:=Oi]i∈n

are created by the substitution, which is the case whenever some Oi is an ab-
straction and some subterm of the form Xi P occurs in M . Consequently, we
have: ∑

∆∈M [Xi := Oi]i∈n

ρ(∆) ≤
∑
i∈n

niρ(αi) (4)

where αi is the type of the unknown Xi. From (3) and (4), we have

ν(M [Xi:=Oi]i∈n) ≤
∑
i∈n

niρ(αi) (5)

Finally, from (2) and (5), we obtain∑
i∈n

ni|Oi| ≤ |N | − |M |+
∑
i∈n

niρ(αi) (6)

which gives an upper bound to the length of the solution. ut

As a corollary to this proposition, we immediately obtain that higher-order
linear matching modulo ηβ is decidable because the set of η-expanded β-normal
forms closed by abstraction and application is provably closed under substitution
and β-reduction [10].

4 NP-completeness

Note that the upper bound given by Proposition 1 is polynomial in the length
of the problem. Moreover, β- and βη-conversion between two pure linear λ-
terms may be decided in polynomial time since normalization is linear. Hence,
a non deterministic Turing machine may guess a substitution and check that
this substitution is indeed a solution in polynomial time. Consequently, linear
higher-order matching belongs to NP. In fact, as we show in this section, it is
NP-complete.

Let Σ be an alphabet containing at least two symbols, and let X be a count-
able set of variables. We write Σ∗ (respectively, Σ+) for the set of words (respec-
tively, non-empty words) generated by Σ. We denote the concatenation of two
words u and v by u · v. The next proposition, which states the NP-completeness
of associative matching, is due to Angluin [1, Theorem 3.6].
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Proposition 2. Given v ∈ (Σ ∪X )∗ and w ∈ Σ∗, deciding whether there exists
a non-erasing substitution σ : X → Σ+ such that σ(v) = w is NP-complete. ut

We need a slight variant of this proposition in order to take erasing substi-
tutions into account.

Proposition 3. Given v ∈ (Σ ∪X )∗ and w ∈ Σ∗, deciding whether there exists
a substitution σ : X → Σ∗ such that σ(v) = w is NP-complete.

Proof. Consider a symbol, say #, that does not belong to Σ. For any word
u ∈ (Σ ∪ X )∗, let u be inductively defined as follows:

1. ε = ε, where ε is the empty word;
2. a · u′ = # · a · u′, where a ∈ (Σ ∪ X ), and u′ ∈ (Σ ∪ X )∗.

Let v′ ∈ (Σ ∪ X )∗ and w′ ∈ Σ∗. It is almost immediate that there exists a
substitution σ : X → Σ+ such that σ(v′) = w′ if and only if there exists a
substitution τ : X → (Σ ∪ {#})∗ such that τ(v′) = w′. ut

In order to get our NP-completeness result, it remains to reduce the problem
of the above proposition to a linear higher-order matching problem. The trick is
to encode word concatenation as function composition.

Proposition 4. Linear higher-order matching is NP-complete.

Proof. Let ι ∈ A be an atomic type, and let Σι−◦ι = Σ and Yι−◦ι = X . Finally,
let x ∈ Xι. For any word u ∈ (Σ ∪ X )∗, we inductively define u as follows:

1. ε = λx. x, where ε is the empty word;
2. a · u′ = λx.a (u′ x), where a ∈ (Σ ∪ X ), and u′ ∈ (Σ ∪ X )∗.

It is easy to show that there exist a susbstitution σ : X → Σ∗ such that σ(v) = w
if and only if the syntactic equation 〈v, w〉 admits a solution (modulo β, or
modulo βη). ut

The existence of a set of constants Σι−◦ι seems to be crucial in the above
proof. Indeed, contrarily to the case of the simply typed λ-calculus, there is an
essential difference between constants and free λ-variables. Clause 4 of Definition
3 implies that there is at most one free occurrence of any λ-variable in any
linear λ-term. There is no such restriction on the constants. Consequently, a
given constant may occur several time in the same linear λ-term. This fact is
implicitely used in the above proof.

5 Heuristics for an implementation

In this section, we give a practical algorithm obtained by specializing Huet’s
unification procedure [9]. We first specify this algorithm by giving a set of trans-
formations in the spirit of [11, 20]. These transformations obey the following
form:

e −→ 〈Se, σe〉 (∗)
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where e is a syntactic equation, Se is a set of syntactic equations, and σe is a
substitution. Transformations such as (∗) may then be applied to pairs 〈S, σ〉
made of a set S of syntactic equations, and a substitution σ:

〈S, σ〉 −→ 〈σe((S \ {e}) ∪ Se), σe ◦ σ〉 (∗∗)

provided that e ∈ S. By iterating (∗∗), one possibly exhausts the set S:

〈S, σ〉 −→∗ 〈∅, τ〉,

in which case τ is intended to be a solution of the system of syntactic equations
S.

For the sake of simplicity, we specify an algorithm that solves the problem
modulo βη. The set of transformations is given by the three schemes listed below.
All the λ-terms occurring in these schemes are considered to be in η-expanded
β-normal forms.

1. Simplification:

e ≡ 〈λxP.a(MQ), λxP.a(NQ) 〉
Se ≡ { 〈λxPi .Mi, λxPi . Ni, 〉 | i ∈ Q }
σe ≡ id

provided that FV(Mi) = FV(Ni), and where a is either a constant or a bound
variable, and the family of sets (Pi)i∈Q is such that {xj | j ∈ Pi } = FV(Mi).

2. Imitation:

e ≡ 〈λxP.X(MQ), λxP. a(NR) 〉
Se ≡ { e }
σe ≡ (X := λyQ. a(λzni

.Yi(yQi
)(zni

))i∈R)

where (Qi)i∈R is a family of disjoint sets such that
⋃

i∈R Qi = Q, (Yi)i∈R is
a family of fresh unknowns whose types may be inferred from the context.

3. Projection:

e ≡ 〈λxP.X(MQ), λxP.a(NR) 〉
Se ≡ { e }
σe ≡ (X := λyQ. yk(λzni

.Yi(yQi
)(zni

))i∈m)

where k ∈ Q, m is the arity of yk, (Qi)i∈m is a family of disjoint sets such that⋃
i∈m Qi = Q\{k}, (Yi)i∈m is a family of fresh unknowns of the appropriate

type.

We now sketch the proof that the above set of transformations is correct and
complete.
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Lemma 6. Let e −→ 〈Se, σe〉 be one of the above transformations. Let S be a
set of syntactic equations such that e ∈ S. If σ is a substitution that solves all
the syntactic equations in σe((S \ {e}) ∪ Se) then σ ◦ σe solves all the syntactic
equations in S.

Proof. It suffices to show that σ ◦σe solves e whenever σ solves σe(Se), which is
trivial for the three transformations. ut

Lemma 7. Let S and T be two sets of syntactic equations, and let τ be a sub-
stitution such that 〈S, id〉 −→∗ 〈T, τ〉. If σ is a substitution that solves all the
syntactic equations in T then σ ◦ τ solves all the syntactic equations in S.

Proof. By iterating the previous lemma. ut

As a direct consequence of this lemma, we obtain the correctness of the
transformational algorithm.

Proposition 5. Let e = 〈M,N〉 be a syntactic equation and σ be a substitution
such that 〈{e}, id〉 −→∗ 〈∅, σ〉. Then σ(M) = N . ut

We now prove the completeness of our algorithm.

Proposition 6. Let e = 〈M,N〉 be a syntactic equation and σ be a substitu-
tion such that σ(M) = N . Then, there exists a sequence of transitions such that
〈{e}, id〉 −→∗ 〈∅, σ′〉, and σ′ agrees with σ on the set of unknowns occurring in
M .

Proof. Let S be a non-empty set of syntactic equations and let σ be a substitu-
tion that solves all the equations in S. One easily shows—see [20, Lemmas 4.16
and 4.17], for details—that there exists e ∈ S together with a transformation

e −→ 〈Se, σe〉, (1)

and a substitution τ such that:

1. σ = τ ◦ σe,
2. τ solves σe((S \ {e}) ∪ Se).

Consequently, by iterating (1) on some system R0 that is solved by some sub-
stitution σ0, one obtains a sequence of transitions:

〈R0, id〉 −→ 〈R1, ρ1〉 −→ 〈R2, ρ2〉 −→ · · · (2)

together with a sequence of substitutions (σ0, σ1, σ2, . . .) such that:

1. σ0 = σi ◦ ρi,
2. σi solves Ri.
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It remains to prove that (2) eventually terminates and, therefore, exhausts
the set R0. To this end, define the size of a system S (in notation, |S|) to be the
sum of the sizes of the right-hand sides of the syntactic equations occurring in S.
Define also the size of a substitution σ with respect to a system S (in notation,
|σ|S) to be the sum of the sizes of the terms substituted for the unknowns
occurring in S. Transformation (1) and substitution τ are such that

|τ |T ≤ |σ|S ,

where T = σe((S \ {e})∪ Se). It is then easy to show that each transition of (2)
strictly decreases the pair (|Ri|, |σi|Ri

) according to the lexicographic ordering.
ut

The three transformations we have given specify a non-deterministic algo-
rithm. Its practical implementation would therefore appeal to some backtrack-
ing mechanism. This is not surprising since we have proved linear higher-order
matching to be NP-complete. Nevertheless, some source of non-determinism
could be avoided. We conclude by discussing this issue.

A naive implementation of the transformational algorithm would give rise to
backtracking steps for two reasons:

1. the current non-empty set of syntactic equations is such that no transforma-
tion applies;

2. the size of the current substitution is strictly greater than the upper bound
given by proposition 1.

It is easy to see that the first case of failure can be detected earlier. Indeed, if no
transformation applies to a system S, it means that all the syntactic equations
in S have the following form:

〈λxm.a(Mn), λxm.b(No) 〉 (3)

where either a 6= b, or a = b but there exists k ∈ n such that FV(Mk) 6=
FV(Nk). Now, it is clear that such equations cannot be solved. Consequently,
one may fail as soon as a system S contains at least one equation like (3). In
addition, one may easily prove that any application of the simplification rule does
not alter the set of possible solutions. Therefore simplification may be applied
deterministically. These observations give rise to the following heuristic:

Start by Applying repeatedly simplification until all the heads of the left-
hand sides of the equations are unknowns. If this is not possible, fail.

This heuristic is not proper to our linear matching problem. In fact, it belongs
to the folklore of higher-order unification. We end this section by giving some
further heuristic principles that are specific to the linear aspects of our problem.

The next three lemmas, whose elementary proofs are left to the reader, will
allow us to state another condition of possible failure that we may check before
applying any transformation. Let #a(M) denote the number of occurrences of a
given constant “a” in some λ-term M . Similarly, let #X(M) denote the number
of occurrences in M of some unknown X.

11



Lemma 8. Let M and N be two linear λ-terms, and let x ∈ FV(M). Then, for
every constant a, #a(M [x:=N ]) = #a(M) + #a(N). ut

Lemma 9. Let M and N be two linear λ-terms such that M →→β N . Then, for
every constant a, #a(M) = #a(N). ut

Lemma 10. Let M and N be two linear λ-terms, and X be some unknown.
Then, for every constant a, #a(M [X:=N ]) = #a(M) + #X(M)×#a(N). ut

As a consequence of these lemmas, we have that the number of occurences of
any constant in the left-hand side of any equation cannot decrease. This allows
us to state the following failure condition.

Check, for every constant a, that each equation 〈M,N〉 is such that
#a(M) ≤ #a(N). If this is not the case, fail.

The above condition may be checked before applying any transformation,
and then kept as an invariant. To this end, it must be incorporated as a proviso
to the simplification rule. Then, the choice between imitation and/or projection
must obey the following principle:

When considering an equation such as

〈λxP.X(MQ), λxP. a(NR) 〉

check whether there exist some equation 〈A,B〉 (including the above equa-
tion) such that #a(A) + #X(A) > #a(B). If this is the case, projection
is forced. Otherwise, try imitation before trying projection.

The reason for trying imitation first, which is a heuristic used by Paulson in
Isabelle [18], is that each application of imitation gives rise to a subsequent
simplification.

When applying imitation, we face the problem of guessing the family of sets
(Qi)i∈R. This source of non-determinism is typical of linear higher-order unifica-
tion.1 Now, since any application of imitation may be immediately followed by
a simplification, the family (Qi)i∈R should be such that the subsequent simpli-
fication may be applied. We now explain how this constraint may be satisfied.

Consider some linear λ-term A whose η-expanded β-normal form is:

λxP.a(MQ)

where a is not a bound variable. We define the incidence function of A to be the
unique fA : P → Q such that:

fA(i) = j if and only if xi ∈ FV(Mj).

1 It is due to the multiplicative nature of the connective “−◦” and is reminiscent of
the context-splitting problem one has to solve when trying to prove a multiplicative
sequent of the form Γ − A ⊗ B by a backward application of the ⊗-introduction
rule.
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Now, consider the two following λ-terms:

A ≡ λxP.X(MQ)

B ≡ λxQ.a(NR)

It is not difficult to show that the incidence function of A[X:=B] is such that:

fA[X:=B] = fB ◦ fA (4)

We will apply the above identity to the case of the imitation rule. Let A, B,
and C be the terms involved in the definition of an imitation step:

A ≡ λxP.X(MQ)

B ≡ λxP. a(NR)
C ≡ λyQ. a(λzni

.Yi(yQi
)(zni

))i∈R

After the imitation step is performed, equation 〈A,B〉 is replaced by equation:

〈A[X:=C], B〉 (5)

Simplification may then be applied to (5) provided that

fA[X:=C] = fB (6)

which, by (4), is equivalent to

fC ◦ fA = fB (7)

Note that both fA and fB are known, while fC is uniquely determined by the
family of sets (Qi)i∈R, and conversely, since

fC(i) = j if and only if yi ∈ Qj

Therefore, in order to find an appropriate family of sets (Qi)i∈R, it suffices to
solve (7). Now, it is an elementary theorem of set theory that (7) admits a
solution if and only if

(∀i, j ∈ P)fA(i) = fA(j) ⇒ fB(i) = fB(j),

which gives a condition that may be checked before applying any imitation.
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