
On the complexity of higher-order matching in
the linear λ-calculus

Sylvain Salvati and Philippe de Groote

LORIA UMR no 7503 – INRIA
Campus Scientifique, B.P. 239

54506 Vandœuvre lès Nancy Cedex – France
e-mail: salvati@loria.fr, degroote@loria.fr

Abstract. We prove that linear second-order matching in the linear λ-
calculus with linear occurrences of the unknowns is NP-complete. This
result shows that context matching and second-order matching in the
linear λ-calculus are, in fact, two different problems.

1 Introduction

Higher-order unification, which consists in solving a syntactic equation between
two simply-typed λ-terms (modulo β, or modulo βη), is undecidable [9], even in
the second-order case [7]. Consequently, several restrictions of the problem have
been introduced and studied in the literature(see [6] for a survey).

Higher-order matching is such a restriction. It consists in solving equations
whose right-hand sides do not contain any unknown. This problem, which is
indeed simpler, has been shown to be decidable in the second-order case [10],
in the third-order case [5], and in the fourth order case [13]. Starting form the
sixth-order case, higher-order matching modulo β is undecidable [12]. On the
other-hand the decidability of higher-order matching modulo βη is still open.

Another restriction consists in studying unification in the linear λ-calculus
where every λ-abstraction λx.M is such that M contains exactly one free oc-
currence of x. The problem of unification in the linear λ-calculus, in the second
order case, is related to context unification [1, 2], which consists of unifying trees
in which occur second-order variables (i.e., variables ranging on “trees with
holes”). It has been studied by Levy under the name of linear second-order uni-
fication [11]. Nevertheless, its decidability is still open. On the other hand, the
more restricted problem of higher-order matching in the linear λ-calculus has
been shown to be decidable and even NP-complete [8] which is also the case of
context matching [15]. A related problem consists in deciding whether a match-
ing problem between simply typed λ-terms admits a linear solution. This more
general problem is also decidable [4].

Finally, several other restrictions concern the way the unknowns occur in the
equation. In particular, another notion of linearity appears in the literature. In-
deed, linear unification (or matching) also designates equations whose unknowns
occur only once.

In this paper, we will be concerned with these two different notions of linearity
(equations between linear λ-terms, or linear occurrences of the unknowns). In
order not to confuse them, we will speak of matching in the linear λ-calculus,
in the first case, and we will use the expression linear matching for the second
case. This question of vocabulary being settled, we may state our main result:
linear second-order matching in the linear λ-calculus is NP-complete. Such a
complexity, at first sight, might be surprising. Indeed, it seems to be folklore
that context matching and second-order matching in the linear λ-calculus are
equivalent problems. Our result, however, shows that this is not quite the case.
Indeed, linear context matching is polynomial [15].

In fact, the key difference between a context C[x1, . . . , xn] and a second-order
λ-term is the following : in a linear λ-term λx1 . . . xn.C, the order in which the
λ-variables are abstracted does not especially correspond to the order in which
these variables occur in the body of the term. This slight difference is sufficient
to make our problem NP-complete while linear context matching is polynomial.

The paper is organized as follows. Section 2 contains prerequisite basic no-
tions, and defines precisely what is linear second-order matching in the linear
λ-calculus. In Section 3, we define a variant of the satifiability problem (which
we call 1-neg-sat), and we prove its NP-completeness. Section 4 shows how to
reduce 1-neg-sat to linear second-order matching in the linear λ-calculus, and
Section 5 proves the correctness of the reduction. Finally, in Section 6, we state
some related results.

2 Higher-order matching in the linear λ-calculus

This section reviews basic definitions and fixes the notations that we use in the
sequel of the paper.

Definition 1. Let A be a finite set, the elements of which are called atomic
types. The set F of linear functional types built upon A is defined according
to the following grammar:

F ::= A | (F −◦F).

We let the lowercase Greek letters (α, β, γ, . . .) range over F , and we adopt
the usual convention that α1−◦α2−◦· · ·αn−◦α stands for α1−◦(α2−◦(· · · (αn−◦
α) · · ·)), and we write αn −◦ β for:

α−◦ . . .−◦ α︸ ︷︷ ︸
n×

−◦β

The order of such a linear functional type is defined as usual:

order(a) = 1 if a ∈ A
order(α−◦ β) = max(order(α) + 1, order(β))

Then, the notion of raw λ-term is defined as follows.

Definition 2. Let (Σα)α∈F be a family of pairwise disjoint finite sets indexed
by F , whose almost every member is empty. Let (Xα)α∈F and (Yα)α∈F be
two families of pairwise disjoint countably infinite sets indexed by F , such that
(
⋃
α∈F Xα) ∩ (

⋃
α∈F Yα) = ∅. The set T of raw λ-terms is defined according

to the following grammar:

T ::= Σ | X | Y | λX .T | (T T),

where Σ =
⋃
α∈F Σα, X =

⋃
α∈F Xα, and Y =

⋃
α∈F Yα.

In this definition, Σ is the set of constants, X is the set of λ-variables, and
Y is the set of meta-variables or unknowns. We let the lowercase roman letters
(a,b, c, . . .) range over the constants, the lowercase italic letters (x, y, z, . . .) range
over the λ-variables, the uppercase bold letters (X,Y,Z, . . .) range over the
unknowns, and the uppercase italic letters (M,N,O, . . .) range over the λ-terms.

We write h(M1, . . . ,Mn) for a λ-term of the form ((. . . (hM1) . . .)Mn), where
h is either a constant, a λ-variable, or a meta-variable. Given such a term, h is
called the head of the term.

The notions of free and bound occurrences of a λ-variable are defined as
usual, and we write FV(M) for the set of λ-variables that occur free in a λ-term
M . Finally, a λ-term that does not contain any meta-variable is called a pure
λ-term.

We then define the notion of term of the linear λ-calculus..

Definition 3. The family (Tα)α∈F of sets of terms of the linear λ-calculus is
inductively defined as follows:

1. if a ∈ Σα then a ∈ Tα;
2. if X ∈ Yα then X ∈ Tα;
3. if x ∈ Xα then x ∈ Tα;
4. if x ∈ Xα, M ∈ Tβ, and x ∈ FV(M), then λx.M ∈ T(α−◦β);
5. if M ∈ T(α−◦β), N ∈ Tα, and FV(M) ∩ FV(N) = ∅, then (M N) ∈ Tβ.

Clauses 4 and 5 imply that any term λx.M of the linear λ-calculus is such
that there is exactly one free occurrence of x in M . Remark, on the other hand,
that constants and unknowns may occur several times in the same linear λ-term.

We define the set of terms of the linear λ-calculus to be
⋃
α∈F Tα. One easily

proves that the sets (Tα)α∈F are pairwise disjoint. Consequently, we may define
the type of a term M to be the unique linear type α such that M ∈ Tα. This
allows the order of a term to be defined as the order of its type. In particular,
we will speak about the order of a meta-variable.

The notions of α-conversion, η and β-reduction are defined as usual. In par-
ticular, we write →→β for the relation of β-reduction, and =β for the relation of
β-conversion.

We let M [x:=N] denote the usual capture-avoiding substitution of a λ-
variable by a λ-term. Similarly, M [X:=N] denotes the capture-avoiding substi-
tution of a meta-variable by a λ-term. We abbreviate M [x1:=N1] · · · [xn:=Nn]
as M [xi:=Ni]ni=1.

We now give a precise definition of the matching problem with which we are
concerned.

Definition 4. A matching problem in the linear λ-calculus is a pair of terms
of the linear λ-calculus 〈M,N〉 of the same type such that N is pure (i.e., does
not contain any meta-variable).

Such a problem admits a solution if and only if there exists a substitution
(Xi:=Oi)ni=1 such that M [Xi:=Oi]ni=1 =β N , where {X1, . . . ,Xn} is the set of
meta-variables that occur in M .

In the above definition, we have taken the relation of β-conversion to be the
notion of equality between λ-terms. Nevertheless, all the results we will establish
remain valid when taking the relation of βη-conversion as the notion of equality.

In the sequel of this paper, a pair of λ-terms 〈M,N〉 obeying the conditions
of the above definition will also be called a syntactic equation. The order of such
an equation is defined to be the maximum of the orders of the meta-variables
occurring in left-hand side the equation. Finally, such an equation is said to be
linear if the meta-variables occurring in its left-hand side occur only once.

In this paper, we will mainly be concerned with linear second-order matching
in the linear λ-calculus, i.e, the problem of solving a linear second-order syntactic
equation between terms of the linear λ-calculus.

3 1-Neg-sat

In this section, we define a variant of the satisfiability problem, due to Kilpeläinen
[14].

We first remind the reader of some basic definitions. Given a finite set
A = {a1, . . . , an} of boolean variables, a literal is defined to be either a boolean
variable ai or its negation ¬ai. A clause is a finite set of literals, and a satisfia-
bility problem consists in a finite set of clauses. A positive literal ai is satisfied
by a valuation η : A → {0, 1} if and only if η(ai) = 1, and a negative literal
¬ai is satisfied if and only if η(ai) = 0, in which case we also write η(¬ai) = 1.
Then, a satisfiability problem C admits a solution if and only if there exists a
valuation η : A → {0, 1} such that for all C ∈ C there exists l ∈ C with η(l) = 1.
As is well known, satisfiability is NP-complete [3].

We now introduce the variant of the satisfiability problem that we call 1-neg-
sat.

Definition 5. Let A be a finite set of boolean variables, and C be a finite set of
clauses over A. C is called a 1-neg-sat problem if and only if for all a ∈ A, there
exists exactly one C ∈ C such that ¬a ∈ C.

The next result is due to Kilpeläinen [14].

Lemma 1. 1-Neg-sat is NP-complete.

Proof. We show that any satisfiability problem can be reduced to a 1-neg-sat-
problem.

Let C be a finite set of clauses over the set of boolean variablesA = {a1, . . . , an}.
We introduce a set B = {b1, . . . , bn} of fresh boolean variables, and we define
D to be the set of clauses

⋃n
i=1{{ai, bi}, {¬ai,¬bi}}. Clearly, any valuation η

that satisfies D is such that η(ai) = 0 if and only if η(bi) = 1. Conversely, any
valuation η such that η(ai) = 0 if and only if η(bi) = 1 satisfies D.

Then we define C∗ as the set of clauses obtained from C by replacing each
occurrence of ¬ai by bi. By construction, C∗∪D is a 1-neg-sat problem. Moreover,
any valuation that satisfies this problem satisfies C. Conversely, given a valuation
η that satisfies C, the valuation η′ such that η′(ai) = η(ai) and η′(bi) = ¬η(ai)
satisfies C∗ ∪ D. ut

4 Reduction of 1-neg-sat

In this section we show how to associate to any 1-neg-sat problem a linear second
order syntactic equation in the linear λ-calculus.

Let C = {C1, . . . , Cm} be a 1-neg-sat problem defined over the set of boolean
variables A = {a1, . . . , an}. We define neg : A → C to be the function such that:

neg(ai) = Cj if and only if ¬ai ∈ Cj .

Similarly, we define pos : A → P(C) such that:

pos(ai) = {Cj ∈ C | ai ∈ Cj}.

For each i ∈ {1, . . . , n}, let mi be the cardinality of pos(ai), and define ψi :
{1, . . . ,mi} → {1, . . . ,m} to be a function such that:

pos(ai) = {Cψi(1), . . . , Cψi(mi)}.

In case mi = 0, by convention, ψi is defined to be the empty function.
Now, let o be an atomic type. In order to define the syntactic equation

associated to C, we introduce the following constants and meta-variables:

1. a constant a of type o;
2. a constant f of type on −◦ o;
3. for each clause C ∈ C, a constant C of type om −◦ o;
4. a meta-variable X of type om −◦ o;
5. m2 meta-variables X11, . . . ,X1m, . . . ,Xm1, . . . ,Xmm of type o.

For (i, j) ∈ {1, . . . , n} × {1, . . . ,m}, we define the following terms:

Rij =
{
Cψi(j)(a, . . . , a) if j ≤ mi

a otherwise.

Then, for i ∈ {1, . . . , n}, we define:

Ri = neg(ai)(Ri1, . . . , Rim)

Finally, the syntactic equation 〈LC , RC〉, associated to C, is defined as follows:

LC = X(C1(X11, . . . ,X1m), . . . , Cm(Xm1, . . . ,Xmm))

RC = f(R1, . . . , Rn)

Let us illustrate the above reduction by an example. Consider the following
clauses:

C1 = {a1}, C2 = {a1, a2}, C3 = {¬a1,¬a2}

to which we associate the constants C1, C2, and C3 of type o −◦ o −◦ o −◦ o,
respectively. We have neg(a1) = C3, neg(a2) = C3, pos(a1) = {C1, C2}, and
pos(a2) = {C2}. If ψ1(1) = 1, ψ1(2) = 2 and ψ2(1) = 2, the terms Rij are the
following:

R11 = C1(a, a, a) R12 = C2(a, a, a) R13 = a
R21 = C2(a, a, a) R22 = a R23 = a

Hence, the syntactic equation associated to this 1-neg-sat problem is as follows:

LC = X(C1(X11,X12,X13), C2(X21,X22,X23), C3(X31,X32,X33))

RC = f(C3(C1(a, a, a), C2(a, a, a), a), C3(C2(a, a, a), a, a))

The intuition behind this reduction is the following. If the syntactic equation
admits a solution, the term substituted for X must be of the form:

λx1 . . . xm.f(S1, . . . , Sn)

where each term Si is either some λ-variable xk, or some application of the form:

neg(ai)(Si1, . . . , Sim).

The first case corresponds to a boolean variable ai such that η(ai) = 0, while
the second case corresponds to a boolean variable ai such that η(ai) = 1.

Back to our example, one sees that the given equation admits the following
solution: X := λx1 x2 x3. f(c3(x1, x2, a), x3)

X31 := c2(a, a, a)
Xij := a for i 6= 3 or j 6= 1

which corresponds, indeed, to the only valuation that satisfies C, namely, the
valuation η such that η(a1) = 1 and η(a2) = 0.

5 Correctness of the reduction

Consider again a 1-neg-sat problem C = {C1, . . . , Cm} defined over the set of
boolean variables A = {a1, . . . , an}, and let the λ-terms Rij , Ri, LC , and RC be
defined as in the previous section.

We first prove that the syntactic equation 〈LC , RC〉 admits a solution when-
ever C is satisfiable. To this end, suppose that C is satisfied by a valuation η.

Consequently, there exists a choice function φ that picks in each clause a literal
that is satisfied by η. More precisely, we defined φ : {1, . . . ,m} → {1, . . . , n} to
be a function such that

either η(aφ(i)) = 1 and aφ(i) ∈ Ci, or η(aφ(i)) = 0 and ¬aφ(i) ∈ Ci.

Remark that this function is such that if φ(i) = φ(j) and η(aφ(i)) = 0 then i = j.
This is due to the constraint that a negative literal occurs in only one clause.

Given {x1, . . . , xm} a set of λ-variables, we define the family of terms Si, for
i ∈ {1, . . . , n}, as follows:

Si :=

{
xj if η(ai) = 0 and j such that φ(j) = i exists

neg(ai)(Si1, . . . , Sim) otherwise

where, in the second case, the family of terms Sij is the following:

Sij :=

{
xk if η(ai) = 1 and k such that φ(k) = i and Rij = Ck(a, . . . , a) exists

Rij otherwise

Finally, we define:
S = λx1 . . . xm.f(S1, . . . , Sn)

As we will show, the above term is the main ingredient of a solution to the
syntactic equation 〈LC , RC〉. In order to establish this fact, we first prove that S
is indeed a λ-term of the linear λ-calculus.

Lemma 2. For all j ∈ {1, . . . ,m}, xj ∈ FV(Sφ(j)).

Proof. We proceed by case analysis, according to the value of η(aφ(j)).
Suppose that η(aφ(j)) = 0. Then, by definition, we have that Sφ(j) = xj .

Hence, xj ∈ FV(Sφ(j)).
On the other hand, when η(aφ(j)) = 1, we have, by definition of φ, that

Cj ∈ pos(aφ(j)). Consequently, there exists k such that Rφ(j)k = Cj(a, . . . , a).
Therefore, by definition, Sφ(j)k = xj , which implies xj ∈ FV(Sφ(j)). ut

Lemma 3. If xj ∈ FV(Si) then φ(j) = i, for any j ∈ {1, . . . ,m} and any
i ∈ {1, . . . , n}.

Proof. An immediate consequence of the definition of the family of terms Sj . ut

Lemma 4. For all i ∈ {1, . . . , n} and all Ck ∈ pos(ai), there exists exactly one
j ∈ {1, . . . ,m} such that Rij = Ck(a, . . . , a).

Proof. An immediate consequence of the definition of the family of terms Rij .
ut

Lemma 5. S = λx1 . . . xm.f(S1, . . . , Sn) is a term of the linear λ-calculus.

Proof. We have to prove that each of the λ-variables x1, . . . , xm has exactly
one occurrence in f(S1, . . . , Sn). By Lemma 2, we know that x1, . . . , xm ∈
FV(f(S1, . . . , Sn)). Hence, it remains to show that for any j ∈ {1, . . . ,m}, xj oc-
curs at most once in f(S1, . . . , Sn). By Lemma 3, this amounts to prove that for
any i ∈ {1, . . . , n}, xj occurs at most once in Si. So, suppose that xj ∈ FV(Si).
Then, either xj = Si, or xj = Sik for some k. In the second case, k is such that
Rik = Cj(a, . . . , a). Hence, it is unique by Lemma 4. Therefore, in both cases,
there is only one occurence of xj in Si. ut

It appears in the proof of Lemma 2 that for all i ∈ {1, . . . ,m} either there
exists k ∈ {1, . . . , n} such that xi = Sk, or there exists k ∈ {1, . . . , n} and
l ∈ {1, . . . ,m} such that xi = Skl. This fact allows the family of terms Tij (for
i, j ∈ {1, . . . ,m}) to be defined as follows:

Tij =
{
Rkj if k such that xi = Sk exists
a if k and l such that xi = Skl exist

It is immediate that these terms are terms of the linear λ-calculus.
We are now in a position of establishing that the syntactic equation 〈LC , RC〉

admits a solution provided that C is satisfiable.

Proposition 1. Let C be a 1-neg-sat problem, and 〈LC , RC〉 be the associated
syntactic equation. If C is satisfiable, then 〈LC , RC〉 admits a solution.

Proof. The fact that C is satisfiable allows the terms S, and Tij to be defined,
and we prove that

LC [X := S][Xij := Tij]mi=1
m
j=1 →→β RC

Indeed, we have:

LC [X := S][Xij := Tij]mi=1
m
j=1

= S(C1(T11, . . . , T1m), . . . Cm(Tm1, . . . , Tmm))

→→β f(S1, . . . , Sn)[xj := Cj(Tj1, . . . , Tjm)]mj=1

Then, it remains to show that for all i ∈ {1, . . . , n}:

Si[xj := Cj(Tj1, . . . , Tjm)]mj=1 = Ri

There are two cases:

1. Si = xk, for some k ∈ {1, . . . ,m}.
In this case, we have that Tkl = Ril, for all l ∈ {1, . . . ,m}. We also have
η(ai) = 0 and φ(k) = i, which implies that neg(ai) = Ck. Consequently:

xk[xj := Cj(Tj1, . . . , Tjm)]mj=1 = xk[xk := Ck(Ri1, . . . , Rim)]
= Ck(Ri1, . . . , Rim)
= neg(ai)(Ri1, . . . , Rim)
= Ri

2. Si = neg(ai)(Si1, . . . , Sim).
In this case, it is sufficient to show that for all k ∈ {1, . . . ,m}:

Sik[xj := Cj(Tj1, . . . , Tjm)]mj=1 = Rik

There are two subcases. In the case Sik = xl, for some l ∈ {1, . . . ,m}, we
have that Rik = Cl(a, . . . , a) and Tkj = a, for all j ∈ {1, . . . ,m}. Therefore:

xl[xj := Cj(Tj1, . . . , Tjm)]mj=1 = xl[xl := Cl(a, . . . , a)]
= Cl(a, . . . , a)
= Rik

Otherwise, we have Sik = Rik, and the desired property follows immediately.
ut

It remains to prove that C is satisfiable whenever 〈LC , RC〉 admits a solution.
We first establish a technical lemma concerning the form of the possible solutions
of 〈LC , RC〉.

Lemma 6. If the equation 〈LC , RC〉 admits a solution then the variable X is
substituted by a term of the form

λx1 . . . xm.f(U1, . . . , Un)

where the terms Ui are such that:

1. either Ui = xk (for some k ∈ {1, . . . ,m}), in which case neg(ai) = Ck,
2. or Ui = neg(ai)(Ui1, . . . , Uim) where the terms Uij are such that:

(a) either Uij = xk (for some k ∈ {1, . . . ,m}), in which case Ck ∈ pos(ai),
(b) or Uij = Rij.

Proof. Suppose that {
X = U
Xij = Vij

is a solution to the syntactic equation 〈LC , RC〉. Then, we must have:

U(C1(V11, . . . , V1m), . . . Cm(Vm1, . . . , Vmm)) →→β f(R1, . . . , Rn)

This implies that U is indeed of the form

λx1 . . . xm.f(U1, . . . , Un)

where for all i ∈ {1, . . . , n}:

Ui[xj := Cj(Vj1, . . . , Vjm)]mj=1 →→β Ri

Now, the head of each Ui is either some λ-variable xk or some constant. In the
first case, Ui = xk, and we must have that

Ck(Vk1, . . . , Vkm), = Ri

which implies that neg(ai) = Ck. In the second case, the head of Ui must be the
head of Ri, which implies that Ui is of the form

neg(ai)(Ui1, . . . , Uim)

Moreover, we must have that

Uik[xj := Cj(Vj1, . . . , Vjm)]mj=1 →→β Rik

Now, if the head of Uik is some λ-variable xl, we must have Uik = xl, and:

Cl(Vl1, . . . , Vlm) = Rik

This implies that Cl ∈ pos(ai). Otherwise, we have

Uik = Rik.

ut

We are now in a position of proving the second half of our reduction result.

Proposition 2. Let C be a 1-neg-sat problem, and 〈LC , RC〉 be the associated
syntactic equation. If 〈LC , RC〉 admits a solution, then C is satisfiable.

Proof. According to Lemma 6, if 〈LC , RC〉 admits a solution, then te term U
substituted for X is of the form

λx1 . . . xm.f(U1, . . . , Un)

where:

1. either Ui = xk, for some k ∈ {1, . . . ,m},
2. or Ui = neg(ai)(Ui1, . . . , Uim).

We define a valuation η as follows:

η(ai) =
{

0 if Ui = xj for some j ∈ {1, . . . ,m}
1 otherwise

Now, for every clause Cj such that xj = Ui, for some i ∈ {1, . . . , n}, we have,
by Lemma 6, that neg(ai) = Cj , i.e., ¬ai ∈ Cj . Consequently, these clauses are
satisfied by η.

As for the other clauses Ck, since U is a term of the linear λ-calculus,
there must exists some term Uij such that Uij = xk. In this case, according
to Lemma 6, Ck ∈ pos(ai), i.e., ai ∈ Ck. Consequently, these clauses are also
satisfied by η. ut

As a consequence of Lemma 1, and Propositions 1, and 2, we get the main
theorem of this paper.

Theorem 1. Linear second-order matching in the linear λ-calculus is NP-com-
plete.

6 Related results

The main difference between a context and a linear second-order λ-term is that
the latter has the ability of rearranging its arguments in any order. This explains
why linear second-order matching in the linear λ-calculus is NP-complete while
linear context matching is not. Nevertheless, this difference is not significant
when the arguments of the second-order meta-variable do not contain any meta-
variable (first-order or second-order). Consider a second-order equation of the
form:

X(T1, . . . , Tn) = T

where T1, . . . , Tn, and T are first-order pure linear λ-terms (such an equation is
called an interpolation equation). It is not difficult to see that it may be solved in
polynomial time. Indeed, it amounts to check whether the union of the multisets
of the subterms of T1, . . . , Tn is included in the multiset of the subterms of T .

This polynomiality result, which is quite specific, cannot be generalized. In-
deed, as we prove in the next proposition, interpolation in third-order case is
NP-complete.

Proposition 3. Third-order interpolation in the linear λ-calculus is NP-com-
plete.

Proof. The proof consists in a reduction of 1-Neg-sat that we obtain by reducing
the equation 〈LC , RC〉 (as defined in section 4) to a third-order interpolation
equation

Let C = {C1, . . . , Cm} be a 1-neg-sat problem defined over the set of boolean
variables A = {a1, . . . , an}. We build a third-order interpolation equation 〈L,R〉
which has a solution if and only if the equation 〈LC , RC〉 has a solution. From
Propositions 1 and 2, this is equivalent to say that 〈L,R〉 has a solution if and
only if C is satisfiable. Therefore, from Lemma 1, we obtain that third-order
interpolation is NP-complete problem.

We first define{
L = Y (λx1 . . . xm.C1(x1, . . . , xm), . . . , λx1 . . . xm.Cm(x1, . . . , xm))
R = RC

Then it remains to prove that 〈L,RC〉 has a solution if and only if 〈LC , RC〉 has
a solution.

Suppose 〈LC , RC〉 has a solution :{
X = U
Xij = Vij

then the term

S = λy1 . . . ym.U(y1(V11, . . . , V1m), . . . , ym(Vm1, . . . , Vmm))

is a solution of 〈L,RC〉. Indeed:

S(λx1 . . . xm.C1(x1, . . . , xm), . . . , λx1 . . . xm.Cm(x1, . . . , xm)) →→β

U(C1(V11, . . . , V1m), . . . , Cm(Vm1, . . . , Vmm)) →→β RC

Conversely if 〈L,RC〉 [Y := S], then S = λy1 . . . ym.S
′ and one can find terms

of linear λ-calculus U , V11, . . . , V1m,. . . ,Vm1, . . . , Vmm such that:

U(y1(V11, . . . , V1m), . . . , ym(Vm1, . . . , Vmm)) →→β S
′

and then {
X = U
Xij = Vij

is obviously a solution of 〈LC , RC〉. ut

References

1. H. Comon. Completion of rewrite systems with membership constraints. Part I:
Deduction rules. Journal of Symbolic Computation, 25(4):397–419, 1998.

2. H. Comon. Completion of rewrite systems with membership constraints. Part II:
Constraint solving. Journal of Symbolic Computation, 25(4):421–453, 1998.

3. S. A. Cook. The complexity of theorem proving procedures. Proceedings of the 3rd
annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

4. D. Dougherty and T. Wierzbicki. A decidable variant of higher order matching.
In Proc. 13th Conf. on Rewriting Techniques and Applications, RTA’02, volume
2378, pages 340–351, 2002.

5. G. Dowek. Third order matching is decidable. Annals of Pure and Applied Logic,
69(2–3):135–155, 1994.

6. G. Dowek. Higher-order unification and matching. In A. Robinson and A. Voronkov
(eds.), Handbook of Automated Reasoning, pp. 1009-1062, Elsevier, 2001.

7. W. D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13(2):225–230, 1981.

8. Ph. de Groote. Higher-order linear matching is np-complete. Lecture Notes in
Computer Science, 1833:127–140, 2000.

9. G. Huet. The undecidability of unification in third order logic. Information and
Control, 22(3):257–267, 1973.

10. G. Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse de
Doctorat d’Etat, Université Paris 7, 1976.

11. J. Levy. Linear second-order unification. In H. Ganzinger, editor, Rewriting Tech-
niques and Applications, RTA’96, volume 1103 of Lecture Notes in Computer Sci-
ence, pages 332–346. Springer-Verlag, 1996.

12. R. Loader. Higher order β matching is undecidable. Logic Journal of the IGPL,
11(1): 51–68, 2002.

13. V. Padovani. Filtrage d’ordre supérieure. Thèse de Doctorat, Université de Paris
7, 1996.

14. P. Kilpeläinen. Ordered and unordered tree inclusion. SIAM. J. Comput., 24(2):
340–356, 1995.

15. M. Schmidt-Schauß and J. Stuber. On the complexity of linear and stratified
context matching problems. Rapport de recherche A01-R-411, LORIA, December
2001.

