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Abstract. Series-parallel orders are defined as the least class of partial
orders containing the one-element order and closed by ordinal sum and
disjoint union. From this inductive definition, it is almost immediate that
any series-parallel order may be represented by an algebraic expression,
which is unique up to the associativity of ordinal sum and to the associa-
tivivity and commutativity of disjoint union. In this paper, we introduce
a rewrite system acting on these algebraic expressions that axiomatises
completely the sub-ordering relation for the class of series-parallel orders.

1 Introduction

Among the several sorts of partial orders that are of interest in applied mathe-
matics, much attention has been paid to series-parallel partial orders (SP-orders,
for short).

The class of SP-orders 1s defined as the smallest class of partial orders con-
taining the one-element order and closed by disjoint union and ordinal sum. For
this reason, SP-orders are an appropriate abstraction of several kinds of struc-
tures that arise naturally in different applied and theoretical problems. These
different classes of structures share the property of being generated from atomic
elements by two composition operations: one of these operations, called par-
allel composition, is associative and commutative; the other one, called series
composition, is associative and non-commutative.

In electrical engineering, for instance, SP-orders correspond to the line graphs
of electrical networks. In operations research, they arise as time constraints in
scheduling problems. In graph theory, they appear as both vertex series-parallel
digraphs and edge series-parallel multigraphs. In computer science, they play an
important role in the theory of parallelism where the two composition operations
correspond naturally to the sequential and parallel composition of processes.

The ubiquity of SP-orders has lead to the independent discovery of the main
concepts and results (see [3] for a comprehensive survey, including applications).
More recently, SP-orders attracted the attention of the authors of the present
paper when they were defining two calculi that both extend linear logic with
non-commutative operators [1, 4, 6].



In Retoré’s pomset logic [4, 6], the multiple conclusions of a proof are pro-
vided with a partial order. Then, when trying to formulate pomset logic by
means of a sequent calculus, it is natural to restrict one’s attention to sequents
that may be interpreted as single formulas, which is possible if and only if the
partial order on the conclusions is series-parallel. Similarly, in de Groote’s par-
tially commutative logic [1], sequents are built by means of two meta-operators
that correspond to commutative and non-commutative conjunctions. Then, the
interesting semantic interpretation of this syntactic construction is in terms of
SP-orders.

The two calculi may be seen as logics dealing with ordering constraints and
they both include rules that allow these constraints to be relaxed. Trying to
axiomatise such rules gave rise to the following natural question. Let ¢ and 1,
be two algebraic terms corresponding to two SP-orders, O1 and O3, on the same
carrier (these are terms sharing the same atoms and built using two operators:
the series and the parallel composition). Is there a rewriting system that would
allow t1 to be rewritten into to if and only if Oy is a sub-order of 017

The present paper, which gives a positive solution to the above problem, is
organised as follows. The next section is devoted to the basic concepts that will
be needed in the sequel. Section 3 discusses the problem and introduces our
solution. In Section 4, we prove that our axiomatisation is complete, while we
explain in Section 5 how to extend our result to similar classes of relations.

2 Basic concepts and definitions

Let U be some denumerable universe. We will define SP-orders (over U) as
simple digraphs R = (Vg, Eg), where Vp C U is a finite set (called the carrier),
and Eg C Vg x Vg is an irreflexive relation over Vg. We define ONE to be
the class of digraphs ({z}, @), for « € U. Given a digraph R and some non
empty set £ C U, Rjg denotes the restriction of R to I and is defined as
R|E = (VRQE,ERﬂEz).

As explained in the introduction, SP-orders are built from atomic elements
by means of two composition operations. These operations are formally defined
as follows.

Definition 2.1  Let R = (Vg,Eg) and S = (Vs,Eg) be two digraphs such
that VR NVg = &. We define the parallel composition (or disjoint union) of R
and S to be the digraph R® S = (VRres, Eres) such that:

Veres = VrRUVg and Egrgs =EgrUEs.

We define the series composition (or ordinal sum) of R and S to be the digraph
R© S = (Vnres,Eres) such that:

Veres = VrRUVg and ER@SZERUESU(VRXVS).



It 1s a simple exercice to establish that “@” 1s associative and commutative
and that “©” is associative. Then, the above definition allows the class of SP-
orders to be formally defined.

Definition 2.2 The class of SP-orders is the smallest class of digraphs con-
taining ONE, and closed by series and parallel compositions. |

Notice that if R is an SP-order then Eg is transitive and antisymmetric,
which justifies the name order a posteriori.

It is immediate from definition 2.2 that any SP-order may be represented
as an algebraic expression built from constants, corresponding to elements of
U, by means of two function symbols denoting “@” and “©@”. Since series and
parallel composition are defined only on disjoint carriers, these algebraic terms
are sub-linear in the sense that each element of U appears at most once in any
expression. We use 7 to denote this set of sub-linear terms over U. Givent € T,
we write ¥(t) for the set of constants occurring in ¢ (hence, for any ¢t € 7, we
have ¥(t) C U). In fact, the algebraic representation of any SP-order is unique
modulo the associativity of ©,® and the commutativity of @. We write 7, for
the corresponding quotient set, which is in bijection with the class of SP-orders.

We end this section by giving a well-known characterisation of SP-orders in
terms of forbidden configurations [8] (see [4] for an alternative proof).

Definition 2.3 A digraph R = (Vg,ERr) is said to be N-free whenever its
restriction to any four element set E = {a,b,c,d} C Vg is different from

(E,{(a,b),(e,d),(c,b)}), i.e.,
b d

a c [ |

Proposition 2.4 The class of series-parallel order is exactly the class of finite
N-free orders. a

From this one easily obtains that the class of SP-orders is stable under re-
striction.

Proposition 2.5 Let R be an SP-order, and E be a subset of Vg. The re-
striction Ry is an SP-order. a

3 Inclusion of series-parallel partial orders

Let R and S be two SP-orders. We say that R is a sub-order of S (and, by a
slight abuse of notation, we write R C S) whenever Vg = Vg and Er C Eg.
Let us illustrate the possible meaning of this relation by a practical example.
Consider the following CCS expression:



a.b|ed (1)

If we accept to simulate parallelism by interleaving, each of the following expres-
sion is a refinement of (1).

abed a.cbhbd acdb cabd cadb cdab (2)

Now, if one consider the above expressions as SP-orders, it turns out that (1) is
a sub-order of every expression in (2).

As we have seen in the previous section, any SP-order may be written as an
algebraic expression, which is unique up to the associativity and the associativ-
ity /commutativity of the composition operators. Therefore, it makes sense to
seek an axiomatisation of the sub-order relation at this algebraic level. More
precisely, let R and S be two SP-orders, and tg and ts be algebraic terms rep-
resenting them respectively. We are going to introduce a rewriting system such
that tg — tg if and only if S C R. This problem is not as simple as it seems
because, in general, the structure of the term ¢g may be quite different from the
structure of the term ¢g. This is illustrated, for instance, by the following orders

d, f d, [

a. cs € C a €

whose algebraic representations are respectively:
ad(bocod)d(eef) and ((h@(adc)) de)(dd f).

Our axiomatisation of the sub-order relation is given by the following defini-
tion.

Definition 3.1  The rewriting relation “—" is defined over T, by the following
formal system:

st = sPt,
s@tdt) > (set)dt/,

)
)
(c) (sds)et—osd(set),
) (s@she(tet)—(set)d(set),
)

t >,

s—=s t—=t s—=s t—=t s>t t—u

2re e 2re rrr h
s@t—s ot (g) s®t—s !’ () s—u



The most important law in the above definition is Rule (d). Indeed, when enrich-
ing the algebra with an identity element € (which would correspond to the empty
SP-order on the empty carrier) together with the laws e@t =t©@ec=1t=ecd,
Rules (a), (b), and (c) appear as particular cases of Rule (d).

Let us demonstrate how our system works on our last example:

(be(ade))de)o(ddf) o (b (ade)od)d (e f) by Rule(d)
~((be(cda)ed) ®(e©f)
> ((bec)pa)od)d(e©f) by Rule(b)
~((aea(b©c))@d)ea(e@f)
—(ad((boc)od) ®(e©f) by Rule(c)

It is almost a routine exercise to check that the system of Definition 3.1 is
a consistent axiomatisation of a sub-ordering relation for the class of SP-orders.
More precisely, the following proposition holds.

Proposition 3.2  Let R, S be SP-orders, and let tg and ts be their respective
algebraic representations. Iftg —tg then R D S. a

The converse of this proposition, which is far from trivial, occupies the next
section.

4 Completeness

This section contains our main result, namely the completeness of the axiomati-
sation given in Definition 3.1. More precisely, we intend to prove the following.

Proposition 4.1 Let R, S be SP-orders, and let v and s be their respective
algebraic representations. If R D S then r — s. a

The difficulty in establishing this proposition is that a simple induction on the
inductive structures of R and S does not seem to work. Indeed, these structures
may be rather dissimilar as we have seen in the previous section. For this reason,
our proof works by induction on the number of points in the common carrier of
R and S. This allows us to apply induction hypotheses on restrictions of R and
S, taking advantage of Proposition 2.5. To this end, however, we need the next
definition together with a lemma whose proof is left to the reader.

Definition 4.2 Let t € 7). and E C U be such that ¥(t) N E # @. The
syntactic restriction {|g of t to I is inductively defined as follows:
i) alg =a ifa€e E
(sot)p=spotlig fENI(s)# @ and END(t) # @
iit)  (sol)|g =s|p FENI) =
(sot)p=tE ifENI(s) =
where o s either @ or @. |

[
[



Lemma 4.3  Let R be an SP-order and r be its algebraic representation. Let
E C U be such that EN Vg # @. Then, r|g s the algebraic representation of
R|E O

In the course of the proof of Proposition 4.1, we also need the following two
decomposition lemmas.

Lemma 4.4 Let R, R', R”, and S be SP-orders such that:

(a) R= R ®R",
(b) SCR.

Then there exist SP-orders S and S such that:

(c) §'C R and S" C R".
d) S=5@&s".

Proof.  Take S' = Sy, and " = S)y_,. By lemma 2.5, both S" and S”
are SP-orders. Moreover, since S C R, we obviously have that S’ C R’ and
S C R". This establishes (c).

Now, let @ € Vprand b € Vg, Since R = R'@R", we have that (a, b), (b,a) ¢
Egr. Then, because S C R, we have that (a,b), (b,a) € Eg, which establishes
(d). O

Lemma 4.5 Let R, S, 5’, and 5" be SP-orders such that:

(a) S=S5 o5
(b) SCR

Then there exist SP-orders R' and R such that:

(c) 8 C R and S" C R".
(d) R=R eR".

Proof. Take R' = Ry_, and R" = Rjy_,. By lemma2.5, both R’ and R are
SP-orders. Moreover, since S C R, we must have that S C R’ and 5" C R".
This establishes (c).

Now, let a € Vg and b € Vgu. Since S = 5’ @ 5", we have that (a,b) € Es.
Then, because S C R, we have that (a,b) € Egr, which establishes (d). O

We are now in a position to prove Proposition 4.1.

Proof of Proposition4.1 The proof proceeds by induction on the number
of elements in Vg. For the base case, when #V g = 1, there is nothing to prove.
For the inductive case, when #Vpg > 1, we proceed by case analysis on the in-
ductive structure of R.

CASE 1: the last operation in the inductive definition of R is @&. Then, R may
be written as » = v’ @ '. Because S C R, by Lemma 4.4, the last operation of



Sis @ and S may be written as s = s’ @ s” with 9(r") = J(s) and 9(+"") = F(s")
(we choose s' = s|y(v) and " = s|y(v)). Thus by induction we have ' — &',
r - s and thusr =r & r"” — s’ s’ =s.

CASE 2: the last operation in the inductive definition of R is €. We distinguish
between two subcases according to the inductive structure of S.

SUBCASE 2.1: the last operation in the inductive definition of S is ©. S
may be written as s = s’ @ s”. Because S C R, by Lemma4.5, R may be
written as r = ' @ " with J(+') = 9(s') and J(r") = J(s”) (we can choose
' =1y (sry and 7" = ry(eny). Thus by induction we have r' — ', v/ — 5" and
thusr=r" @r" - s @s" =s.

SUBCASE 2.2: the last operation in the inductive definition of S is . R may
be written as r = v’ @ " and S as s = s’ @& s”. Now let us consider the two
partitions of Vg given by

Ve =9(r) = 9(r") Ud(r") = 9(s) = I(s') U V(")
and the four sets

I() N I(s")
I N 9(s")

d(r') NI(s")
A(r") N d(s")

Since 9(r'), 9(r""), ¥(s'), V(s”) are not empty, the four sets above give a
partition of Vg into two, three or four parts (because several intersections may
be empty). Since @ is symmetrical, we can reduce the cases to the four following
configurations:

1. the four sets are not empty and Vg is split into four parts.

2. 9(r")NY(s") is empty and Vg is split into three parts.

3. 9(r") N I(s') is empty and Vg is split into three parts.

4. 9(r')Nd(s") and I(r") N Y(s’) are empty and Vg is split in two parts.

The four configurations correspond to Rules (d), (c), (b), and (a) of Defini-
tion 3.1.
For Configuration 1, the four sets are not empty. We can prove that:

r=1rer
= S10(r1) © Sja (771 (1)

) )

= (sj0(yno(sn) D Sjonnas) © (Sjornne(sty ® sl (rryno(s))

= (Sp(yna(s) © Sp o (en) & (S1pnna ) © sjapmnon)  (2)
= (o) © Sl (n) @ () © 3(irin)

— s PBs” (3)

The SP-order corresponding to sjy(,+) is included in the one corresponding to
r'. Thus by induction we have ' — s)4(,1). For the same reason 7" — sjy(,») and
(1) follows. (2) is obtained by the application Rule (d) of Definition 3.1. The
SP-order corresponding to s’ is included in the one corresponding to sfﬂ(r,) )



sfﬂ( »y- Thus, by induction we have sfﬂ(r,) e Sfﬂ(r”) — s'. For the same reason,
Slﬂ )h© Slﬂ () s and (3) follows.

The other configurations are very similar to the general case where Vg is
split in four parts except that some of the sub-terms are omited. The steps for
Configuration 2 are:

r=1rer
= S © S (1)
= Slg(r) © (S oy @ [ )
= Sprno(s’) © (Slpmnas) © sjarna ()
= (Sp(yno(s) © Sp (o (en) @ sja oy (2)
= Blager) © Sjaen) @ Sy
—s' @5’ (3)

(2) comes from Rule (b) of Definition 3.1. The third configuration is similar,
using Rule (c) instead of Rule (b).
For Configuration 4:

r=rer
— Slﬂ(w) Q Sw( " (1)
= Sly(rr) © Sy ()
= Sja(rno(s’) © Sl (r)no(s")
)

= sjo(rno(sy O S (e (s (2)
— S/ S/

) @ Sjo )
s Ps’'=s (3)

(2) comes from Rule (a) of Definition 3.1. a

5 Adapting the result to other classes of relations

The inductive principle underlying the construction of series-parallel orders is
typical of another class of graphs called cographs [3, 2]. This class, also known
as series-parallel graphs, may defined by replacing, in Definition 2.2, the ordinal
sum by a symmetric series composition.

Definition 5.1 Let R = (Vg,Eg) and S = (Vs,Eg) be two digraphs such
that VR N Vs = @. We define the symmetric series composition of R and S to
be the digraph R® S = (Vres, Eres) such that:

Veres = VrRUVs and Eggs :ERUE5U(VR X Vs)U(VS XVR).
|

Then, the class of SP-graphs is defined as the smallest class of digraphs
containing ONE, and closed under ® and &. The inclusion relation within this
class may be axiomatised by the following system, which i1s completely similar
to that of Definition 3.1 (up to the commutativity of ®).



Inclusion of SP-graphs
5@t —>sdt
s@tdt) > (sot)at
(sds)@tdt) > (s0t) D (s @)

Now, let us come back for a while to our linear logic motivations. Pomset logic
is based on the three multiplicative connectives %, < and ®, which correspond,
from a proofnet theoretic point of view, to the operator @, © and ® [5]. This
explains that we are interested in the more general class of digraphs that is
inductively defined by means of the three composition operations. We call the
members of this class, which does not appear in the literature, SSP-relations.

Definition 5.2  The class of SSP-relations is the smallest class of digraphs
containing ONE, and closed by series (&), symmetric series (®), and parallel
(®) compositions. |

The inclusion relation, for this class, is axiomatised by the following rewrit-
ting rules.

Inclusion of SSP-relations
st —sPt
s@(tet) > (st)at
(s@s)@tdt) > (s@t)d (s @)
sRt —> st
s@tet)—»(sot)et
(s@s)®t—=se (s t)
(sdshetat) o (s0t)d(st)
sQt > st
s@tot)— (sot)at
(sds)ot—sd(sot)
(sdshetat) o (s0t)d(st)

The reason why the proof of Proposition 4.1 may be carried over to the cases
of SP-graphs and SSP-relations is twofold:

1. both classes are inductively defined by means of composition operations;
2. both classes are stable by restriction.

In the case of SP-orders, the stability by restriction is a direct consequence of
their characterisation as N-free digraphs. Similarly, SP-graphs may be charac-
terised as P,-free graphs, i.e., graphs whose restriction to any four element set
E ={a,b,c,d} is never (E,{(a,b), (b, a), (b,c),(e,b),(c,d),(d,c)})[3]. The class
of SSP-relations may also be characterised in terms of forbidden configurations.
We end this section by giving this supplementary result, which is original to the
best of our knowledge.

Our characterisation of the SSP-relations in terms of forbidden subgraphs
and structural properties is given by the following proposition.



Proposition 5.3 A digraph R = (Vg,Eg) is an SSP-relation if an only if it
satifies the three following properties

1. The directed part R" of R defined by Vpr = Vg and Egr = {(z,y) €
Er|(y,2) ¢ Er} is N-free
2. The symmetrical part R* of R defined by Vs = Vg and Exy = {(z,y) €
Er|(y,x) € Er} is Py-free
3. Eg is weakly transitive, i.e. (z,y) € Egr A (y,2) € Er = (#,2) € Eg and
(z,y) € ErR A(y,2) € Egrt = (x,2) € Ep.
|

Remark that all these properties are preserved under restriction (and com-
plement). Moreover, R* is an SP-graph (since R* is symmetrical by definition)
and, similarly, R" is an SP-order (because the weak transitivity of R implies the
transitivity of R").

To establish the above proposition we first establish a lemma.

Lemma 5.4 Let R be a digraph satisfying 1,2 and 3 of Proposition 5.3. Let
A be the carrier of a connected component of Egy and B be the carrier of a
connected component of Egr. Then ANB =@ or AC B or BC A.

Proof. Because A and B are the carriers of connected components of Egy and
E g+ respectively, we have:

(¢) ife € A\ Band y € B\ A then (z,y) € Eg and (y,2) ¢ Er.

We proceed by contradiction: assuming that A\ B, AN B and B\ A are all
non empty, we will refute ().

Since AN B and B\ A are not empty, while B is a connected component
of Egt, there should exists one arc (¢,b) € Egr (or (b,¢) € Egr, but this case
is symmetrical) with ¢ € AN B and b € B\ A. Now consider some a € A\ B.
There are two cases.

CasE 1: (a,c¢) € Egy. Then, by weak transitivity we would have (a,b) € Eg,
which conflicts with (x).

CASE 2: (a,c¢) & Ept. Because R is Py-free and connected, the distance be-
tween any two vertices must be less than two. Consequently, there exists an
a' € A such that (a,a’) € Ept and (a/,¢) € Ept

SUBCASE 2.1: @’ € A\ B. We must have, by weak transitivity, (a’,b) € R,
which contradicts (x).

SUBCASE 2.2: @’ € ANB. Then by weak transitivity we have (a’,b) € R. But
then, as A is a connected component of Egy, and b ¢ A, we have (a',b) € Egt
(i.e., (b,a) ¢ Er). Now we have (a,a’) € Egt and (a’,b) € Egr, and thus, by
weak transitivity, we should have (a,b) € R, which conflicts with (). O



Proof of Proposition 5.3 Let R be a digraph satisfying 1, 2 and 3. We will
show that R = RR@ R" or R= R @R’ or R = R ® R’ where R',R" are
digraphs that necessarily satisfy 1, 2 and 3 because R’ = Rjy_, and R" = Rjv_,,
(indeed, 1, 2, and 3 are preserved under restriction). This immediately entails
the theorem, by induction on #Vg.

Consider the connected components of Egr and Egz, and call (Cy)1<i<p the
maximal ones w.r.t. inclusion. By Lemma 5.4, these maximal components do
not overlap. Consequently, they define a partition of Vg.

Cask 1: n > 2. Then R = Rjc, ® Rjc,u..uc, - Indeed, if z; € C; and x; € O
(with ¢ # j), then (2;,2;) ¢ Er and (z;, ;) € Eg, because such an arc can nei-
ther be in Ext nor in Egs, C; and C; being connected components of Egt or Ept.

CASE 2: n = 1. Three subcases may occur.
SUBCASE 2.1: #(Vg) = 1. Then R € ONE.

SUBCASE 2.2: ('] = Vg is a connected component of Epg, with #Vg > 1.
Then there exist S and T such that (Vg,Ept) = S ® T, and we take R =
Ryvs ® Bjvy.

SUBCASE 2.3: C7 = Vg 1s a connected component of Eg+ with #Vg > 1
Then there exist S and T such that (Vp,Egt) = S @ T and we take R =
Rivs © Ryvy- O
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