
A complete axiomatisation for the inclusion ofseries-parallel partial ordersDenis Bechet, Philippe de Groote, Christian RetoréProjet CalligrammeINRIA-Lorraine � CRIN � CNRS615, rue du Jardin Botanique - B.P. 10154602 Villers lès Nancy Cedex � FRANCEe-mail: {bechet,degroote,retore}@loria.frAbstract. Series-parallel orders are de�ned as the least class of partialorders containing the one-element order and closed by ordinal sum anddisjoint union. From this inductive de�nition, it is almost immediate thatany series-parallel order may be represented by an algebraic expression,which is unique up to the associativity of ordinal sum and to the associa-tivivity and commutativity of disjoint union. In this paper, we introducea rewrite system acting on these algebraic expressions that axiomatisescompletely the sub-ordering relation for the class of series-parallel orders.1 IntroductionAmong the several sorts of partial orders that are of interest in applied mathe-matics, much attention has been paid to series-parallel partial orders (SP-orders,for short).The class of SP-orders is de�ned as the smallest class of partial orders con-taining the one-element order and closed by disjoint union and ordinal sum. Forthis reason, SP-orders are an appropriate abstraction of several kinds of struc-tures that arise naturally in di�erent applied and theoretical problems. Thesedi�erent classes of structures share the property of being generated from atomicelements by two composition operations: one of these operations, called par-allel composition, is associative and commutative; the other one, called seriescomposition, is associative and non-commutative.In electrical engineering, for instance, SP-orders correspond to the line graphsof electrical networks. In operations research, they arise as time constraints inscheduling problems. In graph theory, they appear as both vertex series-paralleldigraphs and edge series-parallel multigraphs. In computer science, they play animportant role in the theory of parallelismwhere the two composition operationscorrespond naturally to the sequential and parallel composition of processes.The ubiquity of SP-orders has lead to the independent discovery of the mainconcepts and results (see [3] for a comprehensive survey, including applications).More recently, SP-orders attracted the attention of the authors of the presentpaper when they were de�ning two calculi that both extend linear logic withnon-commutative operators [1, 4, 6].



In Retoré's pomset logic [4, 6], the multiple conclusions of a proof are pro-vided with a partial order. Then, when trying to formulate pomset logic bymeans of a sequent calculus, it is natural to restrict one's attention to sequentsthat may be interpreted as single formulas, which is possible if and only if thepartial order on the conclusions is series-parallel. Similarly, in de Groote's par-tially commutative logic [1], sequents are built by means of two meta-operatorsthat correspond to commutative and non-commutative conjunctions. Then, theinteresting semantic interpretation of this syntactic construction is in terms ofSP-orders.The two calculi may be seen as logics dealing with ordering constraints andthey both include rules that allow these constraints to be relaxed. Trying toaxiomatise such rules gave rise to the following natural question. Let t1 and t2be two algebraic terms corresponding to two SP-orders, O1 and O2, on the samecarrier (these are terms sharing the same atoms and built using two operators:the series and the parallel composition). Is there a rewriting system that wouldallow t1 to be rewritten into t2 if and only if O2 is a sub-order of O1?The present paper, which gives a positive solution to the above problem, isorganised as follows. The next section is devoted to the basic concepts that willbe needed in the sequel. Section 3 discusses the problem and introduces oursolution. In Section 4, we prove that our axiomatisation is complete, while weexplain in Section 5 how to extend our result to similar classes of relations.2 Basic concepts and de�nitionsLet U be some denumerable universe. We will de�ne SP-orders (over U) assimple digraphs R = (VR;ER), where VR � U is a �nite set (called the carrier),and ER � VR � VR is an irre�exive relation over VR. We de�ne one to bethe class of digraphs (fxg;?), for x 2 U . Given a digraph R and some nonempty set E � U , RjE denotes the restriction of R to E and is de�ned asRjE = (VR \E;ER \E2).As explained in the introduction, SP-orders are built from atomic elementsby means of two composition operations. These operations are formally de�nedas follows.De�nition 2.1 Let R = (VR;ER) and S = (VS ;ES) be two digraphs suchthat VR \VS = ?. We de�ne the parallel composition (or disjoint union) of Rand S to be the digraph R� S = (VR�S ;ER�S) such that:VR�S = VR [VS and ER�S = ER [ ES :We de�ne the series composition (or ordinal sum) of R and S to be the digraphR4 S = (VR4S ;ER4S) such that:VR4S = VR [VS and ER4S = ER [ ES [ (VR �VS):



It is a simple exercice to establish that ��� is associative and commutativeand that �4� is associative. Then, the above de�nition allows the class of SP-orders to be formally de�ned.De�nition 2.2 The class of SP-orders is the smallest class of digraphs con-taining one, and closed by series and parallel compositions.Notice that if R is an SP-order then ER is transitive and antisymmetric,which justi�es the name order a posteriori.It is immediate from de�nition 2.2 that any SP-order may be representedas an algebraic expression built from constants, corresponding to elements ofU , by means of two function symbols denoting ��� and �4�. Since series andparallel composition are de�ned only on disjoint carriers, these algebraic termsare sub-linear in the sense that each element of U appears at most once in anyexpression. We use T to denote this set of sub-linear terms over U . Given t 2 T ,we write #(t) for the set of constants occurring in t (hence, for any t 2 T , wehave #(t) � U ). In fact, the algebraic representation of any SP-order is uniquemodulo the associativity of 4;� and the commutativity of �. We write T=� forthe corresponding quotient set, which is in bijection with the class of SP-orders.We end this section by giving a well-known characterisation of SP-orders interms of forbidden con�gurations [8] (see [4] for an alternative proof).De�nition 2.3 A digraph R = (VR;ER) is said to be N-free whenever itsrestriction to any four element set E = fa; b; c; dg � VR is di�erent from(E; f(a; b); (c; d); (c; b)g), i.e., ab cdProposition 2.4 The class of series-parallel order is exactly the class of �niteN-free orders. utFrom this one easily obtains that the class of SP-orders is stable under re-striction.Proposition 2.5 Let R be an SP-order, and E be a subset of VR. The re-striction RjE is an SP-order. ut3 Inclusion of series-parallel partial ordersLet R and S be two SP-orders. We say that R is a sub-order of S (and, by aslight abuse of notation, we write R � S) whenever VR = VS and ER � ES .Let us illustrate the possible meaning of this relation by a practical example.Consider the following CCS expression:



a:b j c:d (1)If we accept to simulate parallelism by interleaving, each of the following expres-sion is a re�nement of (1).a:b:c:d a:c:b:d a:c:d:b c:a:b:d c:a:d:b c:d:a:b (2)Now, if one consider the above expressions as SP-orders, it turns out that (1) isa sub-order of every expression in (2).As we have seen in the previous section, any SP-order may be written as analgebraic expression, which is unique up to the associativity and the associativ-ity/commutativity of the composition operators. Therefore, it makes sense toseek an axiomatisation of the sub-order relation at this algebraic level. Moreprecisely, let R and S be two SP-orders, and tR and tS be algebraic terms rep-resenting them respectively. We are going to introduce a rewriting system suchthat tR ! tS if and only if S � R. This problem is not as simple as it seemsbecause, in general, the structure of the term tS may be quite di�erent from thestructure of the term tR. This is illustrated, for instance, by the following ordersa bc ed f � a bc ed fwhose algebraic representations are respectively:a� (b4 c 4 d)� (e4 f) and ((b4 (a � c)) � e) 4 (d� f):Our axiomatisation of the sub-order relation is given by the following de�ni-tion.De�nition 3.1 The rewriting relation �!� is de�ned over T=� by the followingformal system:(a) s 4 t! s � t,(b) s 4 (t � t0)! (s4 t)� t0,(c) (s � s0)4 t! s � (s0 4 t),(d) (s � s0)4 (t� t0)! (s 4 t)� (s0 4 t0),(e) t! t,(f) s! s0 t! t0s 4 t! s0 4 t0 , (g) s! s0 t! t0s� t! s0 � t0 , (h) s! t t! us! u .



The most important law in the above de�nition is Rule (d). Indeed, when enrich-ing the algebra with an identity element � (which would correspond to the emptySP-order on the empty carrier) together with the laws �4 t = t4 � = t = �� t,Rules (a), (b), and (c) appear as particular cases of Rule (d).Let us demonstrate how our system works on our last example:((b4 (a� c))� e)4 (d� f) ! ((b4 (a� c))4 d)� (e 4 f) by Rule (d)� ((b4 (c� a))4 d)� (e 4 f)! (((b4 c)� a)4 d)� (e 4 f) by Rule (b)� ((a� (b4 c))4 d)� (e 4 f)! (a� ((b4 c)4 d))� (e 4 f) by Rule (c)It is almost a routine exercise to check that the system of De�nition 3.1 isa consistent axiomatisation of a sub-ordering relation for the class of SP-orders.More precisely, the following proposition holds.Proposition 3.2 Let R;S be SP-orders, and let tR and tS be their respectivealgebraic representations. If tR ! tS then R � S. utThe converse of this proposition, which is far from trivial, occupies the nextsection.4 CompletenessThis section contains our main result, namely the completeness of the axiomati-sation given in De�nition 3.1. More precisely, we intend to prove the following.Proposition 4.1 Let R;S be SP-orders, and let r and s be their respectivealgebraic representations. If R � S then r! s. utThe di�culty in establishing this proposition is that a simple induction on theinductive structures of R and S does not seem to work. Indeed, these structuresmay be rather dissimilar as we have seen in the previous section. For this reason,our proof works by induction on the number of points in the common carrier ofR and S. This allows us to apply induction hypotheses on restrictions of R andS, taking advantage of Proposition 2.5. To this end, however, we need the nextde�nition together with a lemma whose proof is left to the reader.De�nition 4.2 Let t 2 T=� and E � U be such that #(t) \ E 6= ?. Thesyntactic restriction tjE of t to E is inductively de�ned as follows:(i) ajE = a if a 2 E(ii) (s � t)jE = sjE � tjE if E \ #(s) 6= ? and E \ #(t) 6= ?(iii) (s � t)jE = sjE if E \ #(t) = ?(iv) (s � t)jE = tjE if E \ #(s) = ?where � is either 4 or �.



Lemma 4.3 Let R be an SP-order and r be its algebraic representation. LetE � U be such that E \ VR 6= ?. Then, rjE is the algebraic representation ofRjE . utIn the course of the proof of Proposition 4.1, we also need the following twodecomposition lemmas.Lemma 4.4 Let R, R0, R00, and S be SP-orders such that:(a) R = R0 �R00,(b) S � R.Then there exist SP-orders S0 and S00 such that:(c) S0 � R0 and S00 � R00.(d) S = S0 � S00.Proof. Take S0 = SjVR0 and S00 = SjVR00 . By lemma 2.5, both S0 and S00are SP-orders. Moreover, since S � R, we obviously have that S0 � R0 andS00 � R00. This establishes (c).Now, let a 2 VR0 and b 2 VR00 . Since R = R0�R00, we have that (a; b); (b; a) 62ER. Then, because S � R, we have that (a; b); (b; a) 62 ES , which establishes(d). utLemma 4.5 Let R, S, S0, and S00 be SP-orders such that:(a) S = S0 4 S00,(b) S � R.Then there exist SP-orders R0 and R00 such that:(c) S0 � R0 and S00 � R00.(d) R = R0 4R00.Proof. Take R0 = RjVS0 and R00 = RjVS00 . By lemma 2.5, both R0 and R00 areSP-orders. Moreover, since S � R, we must have that S0 � R0 and S00 � R00.This establishes (c).Now, let a 2 VS0 and b 2 VS00 . Since S = S0 4 S00, we have that (a; b) 2 ES .Then, because S � R, we have that (a; b) 2 ER, which establishes (d). utWe are now in a position to prove Proposition 4.1.Proof of Proposition 4.1 The proof proceeds by induction on the numberof elements in VR. For the base case, when #VR = 1, there is nothing to prove.For the inductive case, when #VR > 1, we proceed by case analysis on the in-ductive structure of R.Case 1: the last operation in the inductive de�nition of R is �. Then, R maybe written as r = r0 � r00. Because S � R, by Lemma 4.4, the last operation of



S is � and S may be written as s = s0�s00 with #(r0) = #(s0) and #(r00) = #(s00)(we choose s0 = sj#(r0) and s00 = sj#(r00)). Thus by induction we have r0 ! s0,r00 ! s00 and thus r = r0 � r00 ! s0 � s00 = s.Case 2: the last operation in the inductive de�nition of R is 4. We distinguishbetween two subcases according to the inductive structure of S.Subcase 2.1: the last operation in the inductive de�nition of S is 4. Smay be written as s = s0 4 s00. Because S � R, by Lemma 4.5, R may bewritten as r = r0 4 r00 with #(r0) = #(s0) and #(r00) = #(s00) (we can chooser0 = rj#(s0) and r00 = rj#(s00)). Thus by induction we have r0 ! s0, r00 ! s00 andthus r = r0 4 r00 ! s0 4 s00 = s.Subcase 2.2: the last operation in the inductive de�nition of S is �. R maybe written as r = r0 4 r00 and S as s = s0 � s00. Now let us consider the twopartitions of VR given byVR = #(r) = #(r0) [ #(r00) = #(s) = #(s0) [ #(s00)and the four sets #(r0) \ #(s0) #(r0) \ #(s00)#(r00) \ #(s0) #(r00) \ #(s00)Since #(r0), #(r00), #(s0), #(s00) are not empty, the four sets above give apartition of VR into two, three or four parts (because several intersections maybe empty). Since � is symmetrical, we can reduce the cases to the four followingcon�gurations:1. the four sets are not empty and VR is split into four parts.2. #(r0) \ #(s00) is empty and VR is split into three parts.3. #(r00) \ #(s0) is empty and VR is split into three parts.4. #(r0) \ #(s00) and #(r00) \ #(s0) are empty and VR is split in two parts.The four con�gurations correspond to Rules (d), (c), (b), and (a) of De�ni-tion 3.1.For Con�guration 1, the four sets are not empty. We can prove that:r = r0 4 r00! sj#(r0) 4 sj#(r00) (1)= (s0j#(r0) � s00j#(r0))4 (s0j#(r00 ) � s00j#(r00))= (sj#(r0)\#(s0) � sj#(r0)\#(s00)) 4 (sj#(r00)\#(s0) � sj#(r00)\#(s00))! (sj#(r0)\#(s0) 4 sj#(r00)\#(s0)) � (sj#(r0)\#(s00) 4 sj#(r00)\#(s00)) (2)= (s0j#(r0) 4 s0j#(r00))� (s00j#(r0) 4 s00j#(r00))! s0 � s00 (3)The SP-order corresponding to sj#(r0) is included in the one corresponding tor0. Thus by induction we have r0 ! sj#(r0). For the same reason r00 ! sj#(r00) and(1) follows. (2) is obtained by the application Rule (d) of De�nition 3.1. TheSP-order corresponding to s0 is included in the one corresponding to s0j#(r0) 4



s0j#(r00). Thus, by induction we have s0j#(r0) 4 s0j#(r00) ! s0. For the same reason,s00j#(r0) 4 s00j#(r00) ! s00 and (3) follows.The other con�gurations are very similar to the general case where VR issplit in four parts except that some of the sub-terms are omited. The steps forCon�guration 2 are:r = r0 4 r00! sj#(r0) 4 sj#(r00) (1)= s0j#(r0) 4 (s0j#(r00) � s00j#(r00))= sj#(r0)\#(s0) 4 (sj#(r00)\#(s0) � sj#(r00)\#(s00))! (sj#(r0)\#(s0) 4 sj#(r00)\#(s0)) � sj#(r00)\#(s00) (2)= (s0j#(r0) 4 s0j#(r00))� s00j#(r00)! s0 � s00 (3)(2) comes from Rule (b) of De�nition 3.1. The third con�guration is similar,using Rule (c) instead of Rule (b).For Con�guration 4:r = r0 4 r00! sj#(r0) 4 sj#(r00) (1)= s0j#(r0) 4 s00j#(r00)= sj#(r0)\#(s0) 4 sj#(r00)\#(s00)! sj#(r0)\#(s0) � sj#(r00)\#(s00) (2)= s0j#(r0) � s00j#(r00)! s0 � s00 = s (3)(2) comes from Rule (a) of De�nition 3.1. ut5 Adapting the result to other classes of relationsThe inductive principle underlying the construction of series-parallel orders istypical of another class of graphs called cographs [3, 2]. This class, also knownas series-parallel graphs, may de�ned by replacing, in De�nition 2.2, the ordinalsum by a symmetric series composition.De�nition 5.1 Let R = (VR;ER) and S = (VS ;ES) be two digraphs suchthat VR \VS = ?. We de�ne the symmetric series composition of R and S tobe the digraph R� S = (VR�S ;ER�S) such that:VR�S = VR [VS and ER�S = ER [ ES [ (VR � VS) [ (VS �VR):Then, the class of SP-graphs is de�ned as the smallest class of digraphscontaining one, and closed under � and �. The inclusion relation within thisclass may be axiomatised by the following system, which is completely similarto that of De�nition 3.1 (up to the commutativity of �).



Inclusion of SP-graphss � t! s � ts � (t � t0)! (s � t) � t0(s � s0)� (t � t0)! (s � t) � (s0 � t0)Now, let us come back for a while to our linear logic motivations. Pomset logicis based on the three multiplicative connectives &, < and 
, which correspond,from a proofnet theoretic point of view, to the operator �, 4 and � [5]. Thisexplains that we are interested in the more general class of digraphs that isinductively de�ned by means of the three composition operations. We call themembers of this class, which does not appear in the literature, SSP-relations.De�nition 5.2 The class of SSP-relations is the smallest class of digraphscontaining one, and closed by series (4), symmetric series (�), and parallel(�) compositions.The inclusion relation, for this class, is axiomatised by the following rewrit-ting rules. Inclusion of SSP-relationss � t! s � ts � (t � t0)! (s � t) � t0(s � s0)� (t � t0)! (s � t) � (s0 � t0)s � t! s 4 ts � (t 4 t0)! (s � t) 4 t0(s 4 s0) � t! s 4 (s0 � t)(s � s0)4 (t � t0)! (s 4 t) � (s0 4 t0)s 4 t! s � ts 4 (t � t0)! (s 4 t) � t0(s � s0) 4 t! s � (s0 4 t)(s � s0)4 (t � t0)! (s 4 t) � (s0 4 t0)The reason why the proof of Proposition 4.1 may be carried over to the casesof SP-graphs and SSP-relations is twofold:1. both classes are inductively de�ned by means of composition operations;2. both classes are stable by restriction.In the case of SP-orders, the stability by restriction is a direct consequence oftheir characterisation as N -free digraphs. Similarly, SP-graphs may be charac-terised as P4-free graphs, i.e., graphs whose restriction to any four element setE = fa; b; c; dg is never (E; f(a; b); (b; a); (b; c); (c; b); (c; d); (d; c)g) [3]. The classof SSP-relations may also be characterised in terms of forbidden con�gurations.We end this section by giving this supplementary result, which is original to thebest of our knowledge.Our characterisation of the SSP-relations in terms of forbidden subgraphsand structural properties is given by the following proposition.



Proposition 5.3 A digraph R = (VR;ER) is an SSP-relation if an only if itsati�es the three following properties1. The directed part R" of R de�ned by VR" = VR and ER" = f(x; y) 2ER j (y; x) 62 ERg is N-free2. The symmetrical part Rl of R de�ned by VRl = VR and ERl = f(x; y) 2ER j (y; x) 2 ERg is P4-free3. ER is weakly transitive, i.e. (x; y) 2 ER" ^ (y; z) 2 ER ) (x; z) 2 ER and(x; y) 2 ER ^ (y; z) 2 ER" ) (x; z) 2 ER. utRemark that all these properties are preserved under restriction (and com-plement). Moreover, Rl is an SP-graph (since Rl is symmetrical by de�nition)and, similarly,R" is an SP-order (because the weak transitivity of R implies thetransitivity of R").To establish the above proposition we �rst establish a lemma.Lemma 5.4 Let R be a digraph satisfying 1,2 and 3 of Proposition 5.3. LetA be the carrier of a connected component of ERl and B be the carrier of aconnected component of ER" . Then A \B = ? or A � B or B � A.Proof. Because A and B are the carriers of connected components of ERl andER" respectively, we have:(�) if x 2 A nB and y 2 B nA then (x; y) 62 ER and (y; x) 62 ER.We proceed by contradiction: assuming that A nB, A \B and B nA are allnon empty, we will refute (�).Since A \ B and B n A are not empty, while B is a connected componentof ER" , there should exists one arc (c; b) 2 ER" (or (b; c) 2 ER" , but this caseis symmetrical) with c 2 A \ B and b 2 B n A. Now consider some a 2 A n B.There are two cases.Case 1: (a; c) 2 ERl . Then, by weak transitivity we would have (a; b) 2 ER,which con�icts with (�).Case 2: (a; c) 62 ERl . Because Rl is P4-free and connected, the distance be-tween any two vertices must be less than two. Consequently, there exists ana0 2 A such that (a; a0) 2 ERl and (a0; c) 2 ERlSubcase 2.1: a0 2 A n B. We must have, by weak transitivity, (a0; b) 2 R,which contradicts (�).Subcase 2.2: a0 2 A\B. Then by weak transitivity we have (a0; b) 2 R. Butthen, as A is a connected component of ERl , and b 62 A, we have (a0; b) 2 ER"(i.e., (b; a) 62 ER). Now we have (a; a0) 2 ERl and (a0; b) 2 ER" , and thus, byweak transitivity, we should have (a; b) 2 R, which con�icts with (�). ut



Proof of Proposition 5.3 Let R be a digraph satisfying 1, 2 and 3. We willshow that R = R0 � R00 or R = R0 4 R00 or R = R0 � R00 where R0; R00 aredigraphs that necessarily satisfy 1, 2 and 3 because R0 = RjVR0 and R00 = RjVR00(indeed, 1, 2, and 3 are preserved under restriction). This immediately entailsthe theorem, by induction on #VR.Consider the connected components of ER" and ERl , and call (Ci)1�i�n themaximal ones w.r.t. inclusion. By Lemma 5.4, these maximal components donot overlap. Consequently, they de�ne a partition of VR.Case 1: n � 2. Then R = RjC1 �RjC2[���[Cn . Indeed, if xi 2 Ci and xj 2 Cj(with i 6= j), then (xi; xj) 62 ER and (xj; xi) 62 ER, because such an arc can nei-ther be in ER" nor in ERl , Ci and Cj being connected components of ER" or ERl .Case 2: n = 1. Three subcases may occur.Subcase 2.1: #(VR) = 1. Then R 2 one.Subcase 2.2: C1 = VR is a connected component of ERl , with #VR > 1.Then there exist S and T such that (VR;ERl) = S � T , and we take R =RjVS �RjVT .Subcase 2.3: C1 = VR is a connected component of ER" with #VR > 1.Then there exist S and T such that (VR;ER") = S 4 T and we take R =RjVS 4RjVT . utReferences[1] Philippe de Groote. Partially commutative linear logic: sequent calculus andphase semantics. In V. M. Abrusci and C. Casadio, editors, Proofs and Lin-guistic Categories, Proceedings 1996 Roma Workshop, Cooperativa LibrariaUniversitaria Editrice Bologna, 1996. pp. 199-208.[2] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Aca-demic Press, 1980.[3] R. Möhring. Computationally tractable classes of ordered sets. in [7], 1989.pp. 105�194.[4] Christian Retoré. Réseaux et Séquents Ordonnés. Thèse de Doctorat, spé-cialité Mathématiques, Université Paris 7, février 1993.[5] Christian Retoré. Perfect matchings and series-parallel graphs: multiplica-tive proof nets as R&B-graphs. Electronic Notes in Theoretical ComputerScience, 3, 1996. www.elsevier.nl/locate/entcs/volume3.html.[6] Christian Retoré. Pomset logic: a non-commutative extension of classicallinear logic. In R. Hindley and P. de Groote, editors, Proceedings of theThird International Conference on Typed Lambda Calculi and Applications,TLCA'97. Lecture Notes in Computer Science, 1210, Springer Verlag, 1997.[7] I. Rival, editor. Algorithms and Order, volume 255 of NATO ASI series C.Kluwer, 1989.[8] J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of Series-Paralleldigraphs. SIAM Journal of Computing, 11(2):298�313, May 1982.


